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Single-molecule super-resolution microscopy (SMLM) techniques like dSTORM can reveal
biological structures down to the nanometer scale. The achievable resolution is not only
defined by the localization precision of individual fluorescent molecules, but also by their
density, which becomes a limiting factor e.g., in expansion microscopy. Artificial deep
neural networks can learn to reconstruct dense super-resolved structures such as
microtubules from a sparse, noisy set of data points. This approach requires a robust
method to assess the quality of a predicted density image and to quantitatively compare it
to a ground truth image. Such a quality measure needs to be differentiable to be applied as
loss function in deep learning. We developed a new trainable quality measure based on
Fourier Ring Correlation (FRC) and used it to train deep neural networks to map a small
number of sampling points to an underlying density. Smooth ground truth images of
microtubules were generated from localization coordinates using an anisotropic Gaussian
kernel density estimator. We show that the FRC criterion ideally complements the existing
state-of-the-art multiscale structural similarity index, since both are interpretable and there
is no trade-off between them during optimization. The TensorFlow implementation of our
FRC metric can easily be integrated into existing deep learning workflows.

Keywords: dSTORM, deep learning–artificial neural network (DL-ANN), single molecule localization microscopy,
microtubule cytoskeleton, super-resolution

INTRODUCTION

Single-molecule localization microscopy (SMLM) can overcome the diffraction barrier in
fluorescence microscopy by stretching the activation of fluorophores over time. To achieve this,
individual non-overlapping active emitters are localized with a precision of a few nanometers, limited
only by the number of photons acquired and the noise (van de Linde et al., 2011). The trade-off in
SMLM is the acquisition time required to obtain enough localizations to reconstruct a dense super-
resolved image. New deep learning-based fitting algorithms can reconstruct localizations from raw
frames at higher densities (Nehme et al., 2018; Speiser et al., 2021). This allows for shorter acquisition
times by increasing the number of blinking fluorophores in each frame. In some cases, however, the
density of localizations is inherently limited, for example due to unstable photodyes or low emitter
density in expanded samples. The density of localizations limits the resolution of SMLM independent
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of localization precision, since no structures at a length scale
smaller than two emitter distances can be resolved according to
the Nyquist limit.

Applications of deep convolutional neural networks to SMLM
have so far mainly been for fitting: using raw diffraction-limited
frames as input, trained deep networks predict localization
coordinates (Zelger et al., 2018), super-resolved images
(Nehme et al., 2018), or images with localization coordinates
encoded in the pixel values (Speiser et al., 2021). By learning non-
linear mappings from intensity distributions to point coordinates,
the sparsity requirements needed for accurate Gaussian fitting
can be relaxed and much higher localization densities can be
imaged, thus reducing the necessary measuring time. In
fluorescence microscopy in general, deep learning has many
other applications, including denoising and image restoration
(Weigert et al., 2018), classification, and segmentation. Most of
these applications are image-to-image tasks, i.e., the network
takes images as input and generates denoised images or
segmentation labels as output.

For image-to-image tasks like denoising and segmentation, the
U-Net architecture introduced by (Ronnebergeret al., 2015) is
considered state-of-the-art. It consists of an autoencoder-like
convolutional network with additional skip connections
between the down- and upsampling part. This way, a high-
level feature-based representation is efficiently combined with
spatial information. To train a U-Net, the generated image or
label map is compared to a ground truth image using various
image-based metrics (Zhao et al., 2017). The classical metric in
image-to-image tasks is the L2 loss, corresponding to the pixel-
wise mean squared error between output and target image. L2 is
common standard but causes artifacts as it does not penalize
small errors. The structural similarity index measure (SSIM) is a
good alternative as it takes the properties of the human perceptive
system into account. It shows best results when combined with
the absolute pixel-wise error or L1 loss to prevent an intensity
offset (Zhao et al., 2017). Alternatively, the loss function can be
learned by optimizing the image generator against a second
network (discriminator) that tries to discriminate ground truth
images from those generated by the U-Net in an approach called
“conditional generative adversarial network” or cGAN (Isola
et al., 2017). While this architecture can learn to generate
surprisingly realistic-looking images, the authors note that it is
not suitable for segmentation due to its tendency to generate
plausible-looking but non-existing structures in images.

To reconstruct dense SMLM images from sparse subsets of
localization, ANNA-PALM by (Ouyang et al., 2018) elegantly
combines the pix2pix cGAN architecture from (Isola et al., 2017)
with a consistency check against low-resolution images to
overcome the limitations of generative networks. In addition,
multiscale SSIM and L1 loss as described in (Zhao et al., 2017) are
used for training the U-Net generator. The generator-
discriminator loss by itself cannot be interpreted as measure of
prediction accuracy, as the two networks depend on each other.
During supervised training, there are ground truth images that
can serve as target to compare the prediction to the ground truth
and to determine the error, but when applying the trained
network to new images, this information is not available. To

solve this problem, a comparison with low-resolution wide-field
images is performed in (Ouyang et al., 2018) in cases where such
images are available.

Due to the stochastic blinking during the measurement, the
SMLM imaging process can be interpreted as sampling from an
underlying fluorophore-labeled density. This sampling contains
errors due to mislabeling, photobleaching, and post-processing.
Hence, one goal for each SMLM method is to estimate the real
underlying fluorophore distribution from a measured error-
prone sample. In some cases, the precise coordinates of
individual emitters are relevant, for example when looking at
the relative arrangements of discrete, isolated labeled molecules.
In most cases, however, the individual locations are of secondary
interest, and the reconstruction of the underlying density is the
central goal. This is the case for example when imaging
continuous structures in the cell, for example, cytoskeletal
filaments.

Localization coordinates can be visualized in different ways to
give an impression of the underlying density. When represented
as 2D histogram where each pixel contains the number of
localizations detected within the area of the pixel, blurring
each localization with a Gaussian kernel with a variance sigma
corresponding to the localization uncertainty can give a more
accurate impression of density. A single value for sigma based on
the average localization uncertainty of the entire image is an
efficient approximation (R. P. J. Nieuwenhuizen et al., 2014). This
Gaussian filter is an example of a kernel density estimate (KDE)
with a constant (non-adaptive) kernel width sigma. More
elaborate versions of KDE use adaptive kernels, for example
with a sigma proportional to the density of localizations in the
region of the image. Some interesting aspects of density
estimation from discrete localizations are described in (Rees
et al., 2012). Going one step further, the kernel for density
estimation could be made anisotropic. In different context,
adaptive anisotropic kernel density estimates have been used
by (Hensen et al., 2009) for improving configurational
entropies of macromolecules, or by (Ronneberger et al., 2015)
for human motion capture. The use of adaptive anisotropic KDE
for density estimation in SMLM localization data was
demonstrated by (Chen et al., 2014). They used anisotropic
Gaussian kernels where the covariance is a function of the
surrounding density of points and show that thresholding the
estimated density results in a better segmentation of subcellular
structures compared to conventional Gaussian rendering.

Estimating the resolution in a single image is not easily
possible, but when two images of the same structure are
available, their resolution can be estimated using Fourier Ring
Correlation (FRC). The 2D cross correlation of the two images is
calculated, and the intensity in the Fourier transformed
correlation image is summed up and binned by frequency.
The resulting curve shows how much the signal in the two
images is correlated as a function of frequency, or
correspondingly, length scale. If the images are dominated by
uncorrelated random noise beyond a certain frequency or below a
certain length scale, then these length scales cannot be resolved.
FRC was originally developed for electron cryomicroscopy, where
two independent images each using one half of the information
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are compared. It can easily be applied to SMLM, since it is
possible to reconstruct two subimages using one half of the
localizations each (Robert P. J. Nieuwenhuizen et al., 2013).
FRC is also used for image volume reconstruction, where
adjacent slices in a volume can be compared against each
other using the integral of the FRC (Preusser et al., 2021).
FRC has recently been shown to be useful to improve and
monitor image restoration and deconvolution, and can also be
applied to single images by constructing different subsamplings
(Koho et al., 2019). It was noted in (Legant et al., 2016) that the
result cannot always be interpreted as a measure for image
resolution, and that care must be taken when two different
types of images are compared. FRC can vary within images
depending on the content, and local FRC maps can be used to
compare super-resolved images to wide-field images (Culley et al.,
2018). A suitable quantification of SMLM resolution remains
challenging and is an active field of research (Cohen et al., 2019;
Descloux et al., 2019). A robust quality measure of reconstructed
images is a key requirement to assess image reconstruction
methods, and there is a general interest to develop robust
quality measures for SMLM images and to integrate them into
trainable image reconstruction workflows. FRC as an established
measure in the SMLM field is a promising candidate for such a
measure but using it for deep learning would require it to be
available as differentiable loss function.

Here, we present a deep learning approach to reconstruct
density estimates for microtubules from small subsets of
localizations. We show how the preprocessing of ground truth
images can be improved by using an anisotropic kernel density
estimate. We then introduce a new loss function based on a
modified FRC criterion and implement it as differentiable
function that can be used for training deep neural networks.
In combination, this can help to make deep learning based SMLM
density reconstruction easier to interpret. The FRC loss is
compared to the multiscale structural similarity index
(MSSIM) by training a U-Net with different combinations of
loss functions to reconstruct microtubules. As ground truth, we
use conventional Gaussian rendered histograms and density
estimates based on anisotropic adaptive kernels. Finally, we
discuss the differences of our approach to the existing state of
the art (ANNA-PALM) regarding ease of use and interpretability.
Our implementation is openly available on our github repository,
enabling its application for trainable image reconstruction also
beyond SMLM.

MATERIALS AND METHODS

Cell Culture, Fixation, and Staining
African green monkey kidney fibroblast-like cells (COS7, Cell
Lines Service GmbH, Eppelheim, #605470) were cultured in
DMEM (Sigma, #D8062) containing 10% FCS (Sigma-Aldrich,
#F7524), 100 U/ml penicillin and 0.1 mg/ml streptomycin
(Sigma-Aldrich, #P4333) at 37°C and 5% CO2. Cells were
grown in standard T25-culture flasks (Greiner Bio-One).
Staining of tubulin filaments was performed as described
earlier (van de Linde et al., 2011). COS-7 cells were

permeabilized for 1–2 min and simultaneously pre-fixed with a
prewarmed buffer (37°C) containing 0.3% glutaraldehyde and
0.25% Triton X-100 in Cytoskeletal Buffer. The buffer is then
exchanged for preheated (37°C) 2% glutaraldehyde (in CB) and
incubated for 10 min. Fixation is stopped by 100 mM glycine (in
PBS) step for 5 min, and cells were washed at least 3 times 5 min
with PBS. Blocking of epitopes inducing unspecific labeling was
carried out by 30 min incubation with 5% BSA. Primary antibody
(rabbit α-tubulin, PA5-19489, Thermo Fisher) was added at
concentrations of 10 μg/ml (in 5% BSA) for 60 min at room
temperature, and unspecifically bound primary antibody was
removed by rinsing the sample several times with 0.05%
Tween20 (in PBS) solution followed by washing with normal
PBS for 3 times 5 min. Secondary antibody [F (ab’) 2 goat-anti-
rabbit IgG (H + L) Alexa-647] was added at concentrations of
10 μg/ml in 5% BSA for at least 60 min at room temperature.
Washing steps with tween solution and PBS were applied as
described above. To maintain the labeling of both antibodies a
post fixation step with 4% formaldehyde (in PBS) for 10 min was
performed.

dSTORM Imaging
Imaging was performed on a Nikon Eclipse Ti inverted wide-field
microscope using a 640 nm laser at 200 mW excitation output
power, a Nikon APO TIRF 100x/1.49 oil immersion objective,
adapted HILO illumination and ×22 binning resulting in a pixel
size of 108 nm. In total 12 spots with microtubules were imaged,
and 50.000 frames were acquired per position. Each image covers
a square of about 21 × 21 μm2. Exposure time was set to 20 ms.
Raw frames were processed with the MLE fitter in Picasso
(Schnitzbauer et al., 2017) using a net gradient setting of 4,500
and drift correction.

Anisotropic Kernel Density Estimate
Localization files generated by Picasso were spatially binned into
2D histograms with a pixel size of 5 nm. These super-resolved
images were then filtered by convolution of the image I with a
discrete filter kernelK such that the estimated densityf( �xi) of the
i-th pixel pi is

f( �xi) � 1
n
∑k
j�1

I( �xj)K( �xi, �xj),
where �xi is the pixel’s position in the image. The summation is
performed over all k pixels within the kernel window placed on
top of xi. The classical isotropic Gaussian filter corresponds to the
kernel

K( �xi, �xj) � 1
2πb

exp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ −

( �xi − �xj)2

2b2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where b denotes the constant variance of the Gaussian filter. This
density estimator is commonly used to render super-resolved
images from localization tables (R. P. J. Nieuwenhuizen et al.,
2014). It accounts for the localization uncertainty but does not
consider the heterogeneity and anisotropy of the localization
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density. Adaptive KDE as an alternative (Rees et al., 2012) scales b
with the density of localizations but is still isotropic. The main
limitation of a Gaussian KDE, adaptive or not, is that it is not
sensitive to anisotropic spatial distributions of fluorophores. For
anisotropic structures like microtubule filaments, the density
within the filaments becomes increasingly continuous when
increasing b, approximating the actual filament. The edges
however become more and more blurred as higher frequencies
in the image are increasingly suppressed by the Gaussian kernel,
since it acts as a low-pass filter.

The anisotropic adaptive KDE proposed by (Chen et al., 2014)
uses a kernel that adapts not only its scale, but also its shape and
orientation to the local distribution of localizations for each pixel.
We implemented anisotropic adaptive KDE using the 2D
multivariate Gaussian convolution kernel

K( �xi, �xj) � 1��������
(2π)2|Σi|2

√ exp( − 1
2
( �xi − �xj)T∑−1

i
( �xi − �xj)),

where Σi is the positive definite covariance matrix that defines the
properties of the kernel at position xi, and |Σi| is its determinant.
To adapt to the local distribution of localizations, the covariance
is estimated as

Σi � 1
~I
∑k
j�1
( �xj − �μi)( �xj − �μi)T

with ~I � ∑k
j�1

I( �xj),
with �μi the mean intensity within the kernel window at pixel pi.

Again, the summation is performed over all k pixels within the
kernel window placed around pi. At each pixel pi, the
corresponding covariance Σi shaped by the spatial intensity
distribution within the filter window is calculated. The
eigenvectors of Σi are perpendicular and define the orientation
of the kernel, whereas its eigenvalues λ1 and λ2 define its shape.
The covariance is diagonal along the main axis of the kernel,
i.e., when rotated towards the direction of highest localization
density. The resulting kernel is scaled by a constant factor and

applied to the corresponding region of the original image. We
used a constant odd window size of 11 × 11 pixel and varied the
scale between 1 and 4 (Figure 1). The same approach can be used
for higher dimensions, as multivariate Gaussian functions can
easily be generalized to 3D, as demonstrated e.g. for spatial
directional statistics simulations–see (Paul and
Kollmannsberger, 2020) for an implementation in python.

Fourier Ring Correlation Loss
Fourier Ring Correlation (FRC) measures the correlation of a
pair of images as a function of spatial frequency. When applied
to a pair of super-resolved images generated by dividing the list
of localization coordinates in two subsamples, it can be
interpreted as a measure of resolution of the full SMLM
image (Robert P. J. Nieuwenhuizen et al., 2013). The two
images are correlated by multiplying their Fourier
transforms Fx and Fy, and the FRCxy is obtained by
summing over concentric rings ri in Fourier space:

FRCxy(ri) � ∑r∈riFx(r)Fy(r)p������������������∑r∈riF
2
x(r)∑r∈riF

2
y(r)p

√
,

normalized by the total intensities in each ring. The signal at a
distance ri from the center of the Fourier transformed images
corresponds to the spatial frequency.

fi � ri
N
,

with N the number of frequency bins, or pixels in the image. The
spatial frequency where the FRC falls below a value of 1/7 is
defined as cut-off frequency and interpreted as resolution of the
full image (Robert P. J. Nieuwenhuizen et al., 2013).

The value of the cut-off frequency by itself does not contain
any information about the magnitude of correlation at lower
frequencies. Maximizing it is thus not an ideal target for
optimization (Figure 2). Instead of maximizing the cut-off
frequency during optimization, we calculate the area of the

FIGURE 1 | Anisotropic KDE as density estimate for filaments. (A) Illustration of the method as proposed by (Chen et al., 2014) but here implemented in image
space; red ellipses indicate the different shapes and orientations of the 2D anisotropic Gaussian filter kernels. (B) Histogram rendering of a complete field of view of a
reconstructed dSTORM image of microtubules in a COS7 cell, scale bar � 2 μm. (C) zoomed-in detail indicated by the box in b) (scale bar � 0.2 µm), top: unfiltered
histogram (left) and density estimation by classical Gaussian filtering with fixed sigma of 1–3 pixels, corresponding to 5–15 nm; bottom: same region, but with
anisotropic KDE applied using an adaptive multivariate Gaussian kernel scaled by a factor of 1–4 (from left to right).
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FRC similar to (Preusser et al., 2021) but only up to a fixed
frequency f′ and use it as target:

Lxy(f′) � 1 − FRCxy,f′ with FRCxy,f′ � ∑f′
j�0

FRCxy,f′(j),
where the summation is performed over all FRC values
corresponding to the spatial frequency j.

We implemented the differentiable area-FRC as described
above using the built-in complex multiplication, 2D-FFT and
reduce_sum functions of Tensorflow2. The frequency rings are
precomputed and held in GPU memory as constant masks.

DeepNeural Network for Image Restoration
We used a 2D U-Net-like (Ronneberger et al., 2015) deep
convolutional neural network. The details of the architecture
are identical to the generator part used in the pix2pix cGAN (Isola
et al., 2017) and in ANNA-PALM (Ouyang et al., 2018): the input
image is downsampled with eight consecutive 2D convolution
layers with stride � 2 and size � 4, Leaky ReLU activation, and
increasing filter number (64-128-256-512-. . .-512), followed by a
mirrored upsampling part with the corresponding transposed
convolutions using identical stride and filter number, ReLU
activation, and skip connections concatenating the output of
the corresponding downsampling layer to the upsampling
layer of the same size. The last layer is a transposed
convolution with tanh activation and generates the final
output image. The network was implemented in Tensorflow2
based on the pix2pix implementation in the official

documentation (https://www.tensorflow.org/tutorials/
generative/pix2pix) but without the discriminator part.

Network Training
Training data were generated from localization tables produced by
Picasso as follows: first, each full localization table was rendered into a
2D histogram with a pixel size of 5 nm. Isolated localizations were
removed, and density was estimated either by filtering with a
Gaussian blur filter of sigma � 5 nm (isotropic KDE) or by
applying anisotropic KDE with window size 11 × 11 and scale
factor between 1 and 4. The resulting density estimates were used
as training targets. The corresponding input images were generated
by rendering 2D histograms of a subset of frames using randomly
selected time windows containing between 5 and 30% of the total
number of localizations. Input-target image pairs were created by
randomly cropping pairs of corresponding patches with a size of
750 × 750 pixels from the sparse subset images, and from the density
estimates of the full dataset. From the 11 fields of view, 2 were held
back for validation. During training, patches were augmented by
applying continuous on-GPU rotation to prevent overfitting, and a
512 × 512 patch was cropped from the center of the rotated images.
ADAMoptimizationwith a learning rate of 2× 10−4 and β1� 0.5 was
used to train the network for 1,000 epochs (iterations over the
training set). The loss function was either area-FRC, multiscale
structural similarity index, or the sum of both, as indicated.
Additionally, we added a small L1 loss (absolute pixel-wise
difference) to stabilize training, since neither MS-SIM nor FRC
punish deviations in background or total intensity, which can lead
to offset or inverted output images.

FIGURE 2 | Fourier Ring Correlation to estimate image improvement with increasing density of localizations. (A) Histogram rendering (top) and corresponding FRC
(bottom) of full and sparse set of localizations, with threshold 1/7 and area threshold 0.2 (green) and 0.5 (red) indicated. Scale bar: 300 nm, (B) FRC cutoff frequency
(blue) and corresponding resolution (red) as function of the fraction of total localizations, (C) FRC area loss for a threshold of 0.2 (yellow) and 0.5 (blue) as function of the
fraction of total localizations.
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RESULTS

Anisotropic Kernel Density Estimate
Density estimation can help to improve trainable image
reconstruction algorithms that are designed to reconstruct the
density from a given subset of localizations. The problem with
such attempts is that the training data are available as point
clouds, so the training optimizes reconstruction of discrete
localization patterns rather than continuous densities. Rendered
histograms of localization data contain the discrete count of
localizations in each pixel, which can be non-continuous. KDE-
smoothed histograms are better suited as target for trainable image
reconstruction, as they do not encourage the training process to
optimize for reconstructing discontinuous localization patterns, but
instead for the continuous underlying density. Isotropic Gaussian
KDE provides such a density estimate, but at the expense of lowering
the effective resolution due to low-pass effect of Gaussian blur. We
implemented an anisotropic kernel density estimation as proposed in
(Chen et al., 2014) as window-based filter operation in Python
(Figure 1A), and applied it to rendered histograms of localization
datasets of tubulin (Figure 1B). The scale of the anisotropic KDEwas
systematically varied and compared to the results of conventional
KDE by Gaussian filtering (Figure 1C).

The purpose of applying KDE is to obtain an estimate of the
underlying true density of the labeled epitope that would be
observed in the limit of perfect labeling efficiency and infinite
measuring time, from the experimentally measured sample of
localizations. We found that for high-density dSTORM datasets
of microtubules, the anisotropic KDE provides a better estimate
of density as it does not blur the edges of the filaments
(Figure 1C). We hypothesize that preprocessing of real
training data with anisotropic KDE as shown in Figure 1 is an
alternative approach for anisotropic structures and will result in
improved reconstruction quality.

Fourier Ring Correlation and Localization
Density
Fourier Ring Correlation (FRC) can be used to measure image
resolution of SMLM images by splitting the localization data in
two subsets and calculating the FRC of the reconstructed histograms
(Robert P. J. Nieuwenhuizen et al., 2013). Recently, FRC has been
proposed to monitor the progress of image reconstruction and
deconvolution methods (Koho et al., 2019). Here, we explore the
potential of using FRC as target function to train deep neural
networks to reconstruct the underlying density from sparse
localization images. We implemented FRC in Tensorflow2 as
differentiable function, as described in materials and methods. To
determine how FRC depends on the localization density, we
generated sparse localization datasets using a subset of frames
with a defined fraction of localizations of the entire dataset. Each
resulting subset of localizations was then split in two, and the FRC
cut-off frequency of the corresponding rendered histograms was
calculated (Figures 2A,B). When correlating sparse and dense
images, the cut-off frequency cannot be directly used as resolution
measure, because the already reconstructed images cannot be split in
two subsets. The FRC vs. frequency plot nevertheless gives a measure

for similarity between the sparse and dense images: two identical
images would have FRC � 1 for all frequencies, whereas for unrelated
images, FRC would be � 0 everywhere. We thus propose the integral
of the FRC as new measure for reconstruction quality. To avoid the
influence of spurious correlations at high frequencies, we calculate the
FRC integral up to a cut-off frequency of 0.2 or 0.5 of the maximum
frequency.

The dependency of our area-FRCmeasure is shown in Figure 2C.
Here, the FRC between the reconstructed histogram of the subset and
that of the full dataset was calculated and summed up to a cut-off
frequency of 0.2 or 0.5. The area FRC scales similarly to the original
FRC, and shows a stronger dependency on fraction of localizations
when only using lower frequencies up to 0.2. For comparison, we also
calculated the area FRC in the classical way, i.e., by splitting the
localization data in two and summing up the FRC between the two
sub-histograms (Figure 2B). As can be seen, the dependency is
qualitatively similar. In summary, we conclude that the area of the
FRC between the sparse and the full density SMLM image can be
interpreted as a measure for the similarity between the two images.
Consequently, by comparing a reconstructed density image to the
true density image, one could monitor the quality of the
reconstruction and thus the progress of a trainable reconstruction
algorithm.

Training Neural Networks With FRC Loss
We implemented our area FRC measure as differentiable function in
Tensorflow2 to be able to use it as loss function for deep neural
network training. We generated a set of training and validation
images from a dSTORM experiment on labelled tubulin in cells, as
described in themethods section, and trained a 2DU-Net-like image-
to-image fully convolutional network (Figures 3A–C) using different
loss functions and targets. The final trained network was then used to
predict test images not used during training to assess network
performance. The evaluation criteria were peak signal-to-noise
ratio (PSNR), mean squared error (MSE) or L2 loss, multiscale
structural similarity index (MSSIM), and area FRC, independent
of the loss function used during training.

We first investigated if using the anisotropic kernel density
estimate as training target improves the training process. We
trained the same network using MSSIM loss using either
Gaussian KDE or anisotropic KDE target images and
monitored the improvement of the loss during training
(Figure 3D). The anisotropic density estimation target results
in faster convergence of the training process. This shows that the
smoothing effect of the anisotropic kernel provides a better
optimization target compared to regular isotropic Gaussian
density estimation for anisotropic structures like filaments.

Next, we compared our FRC area loss to MSSIM, which is the
state-of-the-art loss function for image-to-image tasks andwas shown
to work well for SMLM sparse-to-dense reconstruction (Ouyang
et al., 2018). We trained the network on the same data using either
MSSIM only, FRC only, or both together, and monitored both losses
during training (Figures 3E,F). We observed that the FRC loss
decreases at the same rate when optimizing for FRC area only or
for MSSIM + FRC, but at a slower rate when optimizing for MSSIM
only. Correspondingly, MSSIM goes down at the same rate when
optimizing for FRC + MSSIM as when optimizing for MSSIM only,
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but at a slower rate when optimizing for FRC only. This shows that
there is no trade-off between both losses: using MSSIM and FRC
together gives an improvement over using only one of the two. This
shows that our new area FRC loss provides an improvement over
using only MSSIM when both are combined.

Quantification of Reconstruction Quality
The final trained networks were used to predict images not used
during training to assess network performance. The evaluation

criteria were peak signal-to-noise ratio (PSNR), mean squared
error (MSE) or L2 loss, multiscale structural similarity index
(MSSIM), and area FRC, independent of the loss function used
during training (Figure 4A). In all cases, the network trained on
the combination of both loss functions shows comparable or
improved performance. The change of the FRC as function of
frequency gives information on how different length scales or
frequencies contribute to the improvement (Figure 4B). The FRC
of predicted and ground truth image shows a shift to higher

FIGURE 3 | Deep learning-based density reconstruction with FRC area loss. (A) Deep learning workflow using a 2D U-Net architecture to predict density images
from sparse input. (B) Example of sparse input with 10% of localizations (left), network prediction after training (middle), and target image using the full dataset (right).
Scale bar � 0.5 µm (C) Total loss monitored during network training for training (black) and unseen validation images (orange). (D) FRC loss during training for target
density images generated by classical isotropic Gaussian (grey) and anisotropic kernel density estimation (black). (E) Structural similarity index (MS-SSIM) during
training for a network trained on FRC loss only (red), SSIM (blue) and both together (black). (F) FRC area loss during training for a network trained on FRC loss only (red),
SSIM (blue), and both together (black).

FIGURE 4 | Evaluation of trained networks. (A) averagedMS-SIM and FRC (top), as well as peak signal-to-noise ratio (PSNR) and mean squared error (MSE) for 20
network output and target images from the validation dataset; error bars denote SEM. (B) FRC improvement as function of spatial frequency of input (left) vs. target (right)
and output (center) vs. target. Scale bar � 100 nm. (C) Line Profiler evaluation illustrated at the top and applied to two adjacent simulated filaments with distance of 80 nm
(green), 90 nm (yellow) and 100 nm (blue), showing the emergence of two separate peaks.
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frequencies as well as a constant offset in the frequencies above
the cut-off frequency in comparison to the FRC between input
and target image. The quality of reconstructed filaments and
image resolution is often measured by single line profiles
perpendicular to filament direction, but this criterion is not
objective. The tool LineProfiler was developed to provide an
unbiased measure for filament image quality (Zwettler et al.,
2020). We applied LineProfiler to reconstructions of simulated
sparse microtubule filament images with predefined distances
(Figure 4C). By defining the ability for resolving two filaments via
the existence of two peaks and a minimum, and evaluation of 20
independent simulations, we obtained a resolution capability of
89.15 ± 2.61 nm.

DISCUSSION

We introduced a new loss function based on the area of the FRC
for deep learning-based reconstruction of SMLM density
estimates for microtubules from small subsets of localizations.
Preprocessing of ground truth images by a novel anisotropic
kernel density estimate improved the training process. The FRC
loss ideally complements the multiscale structural similarity
index (MSSIM) and leads to an improved reconstruction
outcome. We implemented the adaptive anisotropic KDE
proposed in (Chen et al., 2014) in pixel space using a defined
support window and scale to calculate the covariance matrix.
While being more efficient, the disadvantage of such an image-
based implementation is the fixed window size, whereas in a
localization-based algorithm also far away localizations would
contribute to sparse regions, limiting the influence of isolated
localizations. The principle behind anisotropic KDE calculated in
image space is similar to anisotropic diffusion filtering, a widely
used concept in image processing (Weickert 1996).

We used the area of the FRC, as described in (Preusser et al.,
2021), up to a limit of 0.2 of the maximum frequency. Using the
entire FRC area, the network learned to achieve correlation at
high frequencies by blurring the image, but this did not improve
image quality. Fixed FRC cut-off values like 1/7 (Robert P.
J. Nieuwenhuizen et al., 2013) are problematic, as discussed in
(Heel et al., 2005). When used as optimization target, the
resulting FRC values are sometimes just above the threshold,
leading to poor image quality and high background intensity. In
general, FRC as image resolution metric must be used carefully
since it can give biased results (Johnson et al., 2021).

As with many deep learning-based methods, the question is
how much the generated images can be trusted, or if the network
makes up information that is not in the original data. In principle,
the information that is lost by removing a large fraction of the
localizations cannot be regained, neither by applying deep
learning nor by other reconstruction methods. In other words,
there is no way to infer the precise location of emitters that were
either never detected, or removed from the dataset. Instead, the
idea behind density reconstruction from sparse localization data
is to estimate the underlying density from a small sample of
emitter positions. SMLM imaging in fact always involves such an
estimate rather than measuring the true emitter density, since the

latter would require perfect labeling efficiency and infinite
measuring time. The benefit of density reconstruction by deep
learning or other means is that it can use inherent redundancy in
the localization data, thus reducing the number of required
localizations while only minimally compromising the
reconstruction quality. One could also argue that density
estimation from localization point cloud data can be seen
more as a segmentation task rather than denoising or
deconvolution.

Although we demonstrate our approach only on microtubule
filaments, the area-FRC loss is generally applicable, since FRC
works also for other structures than filaments. The feasibility of
NN-based SMLM reconstruction for a variety of structures was
already demonstrated in (Ouyang et al., 2018). The absolute
values of the FRC are however highly dependent on the
frequency content of an image and thus on the imaged
structures (Heel et al., 2005; Legant et al., 2016). Images with
filaments (e.g., microtubules) yield a different FRC area or
“resolution” compared to more continuous structures such as
mitochondria, even when imaged with the same optical
resolution. Nevertheless, using FRC area at low spatial
frequencies as optimization target for improving the same
image is possible, since only the change of the loss measure
but not its absolute value is used as criterion.

For density reconstruction from sparse localization data, ANNA-
PALMpresented byOuyang et al., (2018) presents the current state-
of-the-art based on conditional generative adversarial networks, or
cGANs. The original authors of the cGAN architecture (Isola et al.,
2017) argue that cGANs are not suitable for image segmentation as
they tend to hallucinate realistic-looking details to fool the
discriminator. Ouyang et al. elegantly solve this problem by
using a plausibility criterion where the consistency of the
restored image with respect to a widefield low-resolution image
is determined. Here, we did not use a cGAN, but a simpler
architecture using only a generator U-Net, and focus on
comparing the performance of different loss functions and
preprocessing methods. We thus see this work as
complementary to ANNA-PALM, and as basis for future
extensions using new architectures. For example, the standard
convolutional architecture could be modified to incorporate prior
knowledge about the physical constraints of the measurement
process. Introducing loss functions in Fourier space has
recently been shown to make deep learning-based image
reconstruction and perceptual superrsolution more efficient
(Fuoli et al., 2021), and might have other interesting applications
in the future. We make the python code of our training workflow
and our implementation of the area FRC loss and the anisotropic
kernel density estimation freely available to the community so that it
can easily be integrated into other deep learning workflows.
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