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Boosted by the exponential growth of microbiome-based studies, analyzing microbiome
patterns is now a hot-topic, finding different fields of application. In particular, the use of
machine learning techniques is increasing in microbiome studies, providing deep insights
into microbial community composition. In this context, in order to investigate microbial
patterns from 16S rRNA metabarcoding data, we explored the effectiveness of
Association Rule Mining (ARM) technique, a supervised-machine learning procedure, to
extract patterns (in this work, intended as groups of species or taxa) from microbiome
data. ARM can generate huge amounts of data, making spurious information removal and
visualizing results challenging. Our work sheds light on the strengths and weaknesses of
pattern mining strategy into the study of microbial patterns, in particular from 16S rRNA
microbiome datasets, applying ARM on real case studies and providing guidelines for
future usage. Our results highlighted issues related to the type of input and the use of
metadata in microbial pattern extraction, identifying the key steps that must be considered
to apply ARM consciously on 16S rRNAmicrobiome data. To promote the use of ARM and
the visualization of microbiome patterns, specifically, we developed microFIM (microbial
Frequent Itemset Mining), a versatile Python tool that facilitates the use of ARM integrating
common microbiome outputs, such as taxa tables. microFIM implements interest
measures to remove spurious information and merges the results of ARM analysis with
the common microbiome outputs, providing similar microbiome strategies that help
scientists to integrate ARM in microbiome applications. With this work, we aimed at
creating a bridge between microbial ecology researchers and ARM technique, making
researchers aware about the strength and weaknesses of association rule mining
approach.
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1 INTRODUCTION

Studying microbiome patterns is now a hot-topic in different
fields of application (Kyrpides et al., 2016; Wood-Charlson et al.,
2020). From ecology to medicine, microbiomes are undoubtedly a
cornerstone of research, acknowledged as being key participants
in all ecosystems, including the human one (Duvallet et al., 2017;
Layeghifard et al., 2017). In recent years, DNA sequencing
strategies have become one of the main sources for studying
microbial communities (Wood-Charlson et al., 2020). Further,
16S rRNA metabarcoding is currently the preferential method to
obtain great amounts of information in a time and cost effective
manner (Wood-Charlson et al., 2020), becoming one of the
primary sources of data regarding microbiome studies
(Gonzalez et al., 2018; Knight et al., 2018; Bokulich et al.,
2020; Mitchell et al., 2020).

In this context, data mining approaches seem to be newfangled
solutions for disclosuring and understanding microbial
ecosystems (Wood-Charlson et al., 2020; Galimberti et al.,
2021; Ghannam and Techtmann, 2021). Spanning from
classification and signature extraction to interaction and trait
associations (Pasolli et al., 2016; Qu et al., 2019), data mining
strategies can identify hidden patterns that may help to predict
biological functions (Noor et al., 2019; Thomposon et al., 2019).
Investigating patterns and exploring their role in functional and
predictive aspects are now pivotal to proxy the knowledge of
microbial associations, both disentangling interactions and niche
specialization (Chaffron et al., 2010; Faust and Raes, 2012; Ma
et al., 2020).

Considering the size and complexity of High-Throughput
Sequencing (HTS) 16S rRNA metabarcoding data,
interpretation and summarization are not straightforward
(Naulaerts et al., 2015) and, for this reason, pattern mining
strategies have become essential for researchers to disentangle
the high amount of information (Kyrpides et al., 2016; Wood-
Charlson et al., 2020; Ghannam and Techtmann, 2021).

Recently, association rule mining (ARM) emerged as a
promising technique to study microbiome patterns (Naulaerts
et al., 2015; Tandon et al., 2016). Specifically, Tandon et al. (2016)
have demonstrated the potentials of this technique on two
microbiome datasets, in particular the HMP dataset
(Turnbaugh et al., 2007) and two prebiotic studies (Kato et al.,
2014; Xiao et al., 2014). From the classic application on market
basket problems (Agrawal et al., 1993), association rule mining
started to be applied to answer a wide range of biological
questions. From annotation tasks (Manda et al., 2012; Manda
et al., 2013; Manda, 2020) to protein interaction networks
(Koyuturk et al., 2006), ARM was applied to a wide range of
research fields, including genetics (Carmona-Saez et al., 2006;
Alves et al., 2010; Karpinets et al., 2012; Ong et al., 2020),
molecular biology (Agapito et al., 2015; Boutorh and
Guessoum, 2016; Naulaerts et al., 2016), and biochemical
disciplines (Yoon and Lee, 2011; Zhou et al., 2013; Naulaerts
et al., 2016). Noticeably, the expression ‘association rule mining’
comprehends two main phases: 1) frequent itemset mining, the
extraction of patterns intended as elements often co-occur
together in a dataset (Agrawal et al., 1993), and 2) rule

calculation, to identify strong association between patterns
previously extracted (Agrawal et al., 1993).

Despite the apparent simplicity of use, large datasets can
produce high numbers of patterns, making their extraction
difficult (Agrawal et al., 1993; Han et al., 2004; Karpinets
et al., 2012; Naulaerts et al., 2015). Beside several algorithms
have been developed to better capture reliable patterns, as for
example Eclat (Agrawal et al., 1996), FP-Growth (Han et al.,
2004) or Apriori (Agrawal et al., 1993), avoiding uninformative or
spurious information is still a current issue (Naulaerts et al.,
2015). Interesting measures such as support (frequency of a
pattern) or pattern length are pivotal to control the generation
and the evaluation of patterns discovered (Agrawal et al., 1993;
Karpinets et al., 2012; Naulaerts et al., 2015). Still, a few issues
exist in setting these parameters (Naulaerts et al., 2015).
Considering the support, setting a low value leads to a high
amount of patterns, difficult to explore and visualize. At the same
time, setting a high support value can be detrimental for finding
rare but informative patterns. Over and above, researchers try to
identify metrics that can be used to pinpoint patterns of interest
(and so called “interest measures”). In detail, several metrics have
been implemented (Tan et al., 2002; Omiecinski, 2003;
Franceschini et al., 2012; Tang et al., 2012), as for example lift
or maximal entropy (Tatti and Mampaey, 2010; Hussein et al.,
2015). Nevertheless, extracting effective information is not an
easy task as the definition of interestingness is strictly associated
with the biological question and the research field under study
(Koyutürk et al., 2006; Karpinets et al., 2012; Naulaerts et al.,
2015). Considering the rule calculation phase, issues regarding
the evaluation of reliable rules remain (Karpinets et al., 2012;
Naulaerts et al., 2015). In general, taking into account previous
works, the most widely used parameters to evaluate both patterns
and rules are support and confidence, where confidence is a
measure that describes the strength of the association between the
two elements of the rule (Naulaerts et al., 2015).

Recently, different works related to pattern mining applied to
microbiome studies were published, such asMITRE (Bogart et al.,
2019), MANIEA framework (Liu et al., 2021) and the work of
Tandon et al. (2016). Nevertheless, as also highlighted by the
work of Faust (2021), applying such an algorithm still has its
limitations and, despite the efforts of recent works, guidelines for
microbiome data applications have not been completely defined
(Naulaerts et al., 2015; Faust, 2021). Different libraries have been
implemented, such as pyfim (Muino and Borgelt, 2014), mlxtend
(Raschka, 2018) and arules (Hahsler et al., 2011). A few
frameworks have been recently developed and applied on real
case studies (Tandon et al., 2016; Liu et al., 2021). However, tests
to establish specific best practices for 16S rRNA metabarcoding
data do not exist.

Apart from the availability of tools, the application of pattern
mining to study microbiome patterns must consider the intrinsic
biological aspect of microbiome data (Balint et al., 2016; Gloor
et al., 2017). Beside the issues related to species abundances that
should be filtered to obtain a solid input dataset, also metadata
composition and taxonomy level should be considered. Further,
microbiome matrices can be large and complex: composed of
thousands of taxa and hundreds of samples (Faust, 2021;
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Ghannam and Techtmann, 2021), microbiome data can affect
pattern mining approaches, sometimes obliging to set high but
improper interest measures. This last point is crucial if we
consider that 16S rRNA metabarcoding data can describe
putative ecological properties and sparse microbial associations
(Faust, 2021).

Given these premises, our work wants to shed light on the
strengths and weaknesses of pattern mining strategy into the
study of microbial patterns, in particular from 16S rRNA
microbiome datasets. In detail, we show pitfalls of ARM
applied on real case studies, highlighting issues related to the
type of input and the use of metadata. Then, we identify the key
steps that must be considered to apply ARM consciously on 16S
rRNA microbiome data. Moreover, to facilitate the integration of
ARM technique into microbiome pipeline, we developed
microFIM (microbial Frequent Itemset Mining), a versatile
user-friendly and open source Python tool that promotes the
use of ARM integrating common microbiome practices, such as
taxa tables and distance matrix visualizations. Besides the
conventional parameters, microFIM implements interest
measures to remove spurious information. Moreover, it
merges the results of ARM analysis with the typical
microbiome outputs, aiming at creating a bridge between
microbial ecology research and ARM technique.

2 MATERIALS AND METHODS

This section comprehends twomain paragraphs: 1) description of
microFIM (microbial Frequent Itemset Mining) tool to promote
microbiome pattern exploration with two simulated dataset and
2) microFIM analysis on real case microbiome datasets to
highlight ARM potentials and caveats. microFIM was
developed on the basis of Frequent Itemset Mining (Naulaerts
et al., 2015), in which patterns of elements that co-occur can be
extracted from a transactional dataset, typically (Naulaerts et al.,

2015). A pattern (or itemset) is called frequent if its support value
within the dataset is greater than a given minimal support
threshold. For an overview of the method and its translation
in terms of bacterial composition instead of elements, please see
Figure 1. A complete description of the approach with formalized
expression can be found in the works of Tan et al., 2002 (Chapter
6), Goethals, 2005, and Naulaerts et al. (2015).

2.1 microFIM Implementation
To promote and integrate the use of ARM in microbiome studies,
we developed microFIM (microbial Frequent Itemset Mining), a
versatile open-source user-friendly tool implemented in Python
(v. > 3; https://github.com/qLSLab/microFIM).

microFIM receives as input the taxa table and the metadata file
used during the microbiome bioinformatic analysis. In particular,
a taxa table is composed of rows and columns representing the
taxa and their abundances for each sample. It derives from the
conversion of the BIOM file into a CSV or TSV file (https://biom-
format.org/). In general, considering the well-established QIIME2
microbiome platform (https://qiime2.org/; Bolyen et al., 2018),
complete frameworks and scripts to analyse and obtain taxa tables
are implemented.

To promote the usage to a wider group of researchers, the tool
can be used both via Python functions and running the pre-
settled scripts, which allow interactivity through the command-
line, avoiding coding implementations. To favor easy integration
in Python scripting and future implementation of additional
functions and metrics, Python functions were divided into
thematic sections. microFIM is composed by six main steps: 1)
filtering taxa table with metadata, 2) converting taxa table into a
transactional database to be read by ARM algorithms, 3) extract
microbiome patterns, 4) calculate additional interest measures to
evaluate the patterns extracted, 5) create the pattern table (a taxa
table improved with patterns, presence-absence information
among samples and interest measures) and 6) visualization of
results.

FIGURE 1 |Graphical overview of Frequent Itemset Mining (A) and Association Rule mining (B) approach integrated with elements related to microbiome analysis.
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Template files are provided to runmicroFIM scripts. Considering
interest measures, we integrated support, pattern length and all-
confidence metrics, which generates “hyperclique patterns”
(Agrawal et al., 1993; Tan et al., 2002; Omiecinski, 2003; Xiong
et al., 2006). Considering a pattern “X” composed of different items,
all-confidence is calculated as the ratio between the support of “X”
and the highest support retrieved from the elements of the pattern
“X.” For example, a pattern X is composed of three elements that,
considering the entire dataset, have the following support threshold:
0.3, 0.6 and 0.8. Overall, the pattern X has a support of 0.3. All-
confidence will be calculated as the ratio between the support of
X—0.3—and the higher support within X—0.8, resulting in 0.37.
All-confidence, in this way, is defined as the smallest confidence of all
rules which can be produced from a pattern, i.e., all rules produced
from a pattern will have a confidence greater or equal to its all-
confidence value (Tan et al., 2002; Omiecinski, 2003). In detail,
confidence is an indication of how often a rule has been found to be
true, so it is considered as a measure of rule reliability (Hornik et al.,
2005; Hahsler et al., 2011; Naulaerts et al., 2015).

In order to show the usage and the potentials of microFIM, we
tested the tool on simulated matrices (available in
Supplementary Tables S1, S2) and on real case studies. In
particular, the cases selected are: 1) the ECAM dataset
(Bokulich et al., 2016), 2) the vaginal microbiome dataset of
Ravel et al. (2011) and 3) the Montassier dataset (Montassier
et al., 2016). Details about the application of microFIM on real
case studies are described in the next sections. Parameters used to
run microFIM on simulated matrices are the following: 0.3 as
minimum support threshold, a minimum of two elements and a
maximum of 10 to extract patterns.

In the Results section, a complete scheme of the tool is
provided. microFIM is mainly based on four Python libraries:
fim (Muino and Borgelt, 2014), Pandas (McKinney, 2010; Reback
et al., 2020), Numpy (Harris et al., 2020), and plotly (https://
plotly.com/). It is available as a conda environment (https://docs.
anaconda.com/; Anaconda Software Distribution, 2020) and all
the details about tutorials and installation are available in our
Github repository (https://github.com/qLSLab/microFIM).
Python notebooks and an example of microFIM usage via
scripting are also reported in the repository. In general, beside
the focus of this work, microFIM may potentially be used for a
wide range of applications. As the primary resource input consists
in a matrix describing the presence-absence of an element (rows)
in a dataset (columns, representing samples), fields of study in
which it can be applied may be various, also merely consider the
analysis of OTU (Operational Taxonomic Unit) or ESV (Exact
Sequence Variants) instead of taxa (Schloss and Westcott, 2011;
Callahan et al., 2017) of 16S rRNA metabarcoding data.

2.2 Real Case Studies Analysis
To show the caveats and potentials of association rule mining, we
used microFIM on three real case studies: the ECAM dataset (Early
Childhood Antibiotics and the Microbiome; Bokulich et al., 2016),
the vaginal microbiome case study of Ravel et al. (2011) and
Montassier case study (Montassier et al., 2016). Different input
types were selected based on taxonomy level and metadata
composition. In detail, the ECAM dataset collects a total of 875

samples, describing the gut microbiome of the first 2 years of life of
43 infants. Presence-absence tables were created taking account of
the taxonomic rank. In particular, we used: 1) the taxa table obtained
directly from QIIME2 datasets (Bolyen et al., 2018) in which only
taxa assigned to genus level, with a relative abundance > 0.1% in
more than 15% of samples, are considered (Input 1—data are
available in Supplementary Table S3); 2) family table obtained
from collapsing the previous Input 1 via QIIME2 plugins (https://
github.com/qiime2/q2-taxa; Input 2—Supplementary Table S4); 3)
a taxa table consisting only of taxa with complete taxonomy at the
genus level (Input 3—Supplementary Table S5). Metadata as type
of delivery and antibiotic exposition were considered to evaluate
patterns extraction.

Considering the vaginal microbiome dataset (Ravel et al.,
2011), we obtained from MLRepo repository (Vangay et al.,
2019) the taxa table obtained via the MLRepo pipeline
(Vangay et al., 2019). The dataset collects 388 samples,
investigating the vaginal microbiome of 396 asymptomatic
North American women. Additional presence-absence tables
were created taking account of the taxonomic rank, in
particular from the original dataset obtained from MLRepo,
also family and genus levels were considered. Low and high
nugent score values (a scoring system for vaginal swabs to
diagnose bacterial vaginosis) were considered for the
evaluation regarding metadata filtering.

Finally, the dataset of Montassier et al. (2016) was included.
The dataset collects 28 samples from patients with non-Hodgkin
lymphoma undergoing allogeneic hematopoietic stem cell
transplantation (HSCT) in order to identify microbes that
predict the risk of BSI (bloodstream infection). OTU table and
taxa table obtained with MLRepo pipeline were selected (Vangay
et al., 2019).

For the ECAM and Ravel et al. (2011) datasets, minimum
support threshold of 0.2, minimum length of 3 and a maximum
length of 15 elements were used. Montassier et al. (2016) datasets
were analysed considering a minimum support of 0.9, a minimum
length of 5 and a maximum length of 10. After pattern extraction,
interest measures as support, pattern length and all-confidence were
calculated (Tan et al., 2002; Omiecinski, 2003; Xiong et al., 2006).
Distributions of number of patterns, length and support were
evaluated considering both ARM analysis and interest measures
filtering. A minimum of 0.5 and 0.8 of all-confidence were used to
evaluate hypercliques patterns (Tan et al., 2002; Omiecinski, 2003;
Xiong et al., 2006). Consideringmetadata filtering, pattern extraction
was performed with the previous settings. A minimum of 0.8 of all-
confidence was used to evaluate hypercliques patterns (Tan et al.,
2002; Omiecinski, 2003; Xiong et al., 2006). Visualizations were
created with plotly and pandas Python libraries. Both datasets,
results and metadata files are available in Supplementary Material.

3 RESULTS

3.1 microFIM Tool: Extending Association
Rule Mining to Microbiome Pattern Analysis
Association rule mining demonstrates its useful properties in
different contexts (Naulaerts et al., 2015; Tandon et al., 2016). To
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promote the use of ARM in the microbial community field, we
implemented microFIM, a versatile open-source project
developed in Python and freely available at https://github.com/
qLSLab/microFIM.

In this section, we explain the framework of usage, the main steps
of pattern extraction and filtering and insights of visualizations
available. In addition, two main examples are reported, in order
to show the workflow of the tool. In Figure 2 a scheme of microFIM
framework is reported. In particular, microbiome data (taxa table)
can be filtered (step 1) and then converted into a transactional
dataset (step 2), in order to be read as input by association rule
mining algorithm. Subsequently, patterns can be generated setting
parameters via a template file to be filled (tutorials and templates are
available at https://github.com/qLSLab/microFIM) (step 3). In detail,
minimum support threshold, minimum and maximum length of
patterns must be specified. Pattern extraction was implemented via
pyfim library (Muino and Borgelt, 2014). At this stage, the default
algorithm used is Eclat (Muino and Borgelt, 2014), but other
algorithms are available within the pyfim library (Apriori or FP-
Growth; Muino and Borgelt, 2014). The set of interest measures
initially calculated are “support” and “pattern length” (which
describes the number of elements belonging to a pattern).
Further, other interest measures are added (step 4) and can be
used to filter patterns. In microFIM implementation, all-confidence
interest measure was included, in order to help remove spurious
information (Tan et al., 2002; Omiecinski, 2003; Xiong et al., 2006).
As described in Section 2, all-confidence can be used to set the
smallest confidence of all rules that can be produced from a pattern,
i.e., all rules produced from the pattern will have a confidence greater
or equal to its all-confidence value, creating the basis for rule

reliability exploration at the pattern level (Tan et al., 2002;
Hornik et al., 2005; Omiecinski, 2003; Xiong et al., 2006; Hahsler
et al., 2011; Naulaerts et al., 2015).

The main result of this step is the creation of the pattern table
(step 5). Conceptually similar to the microbiome taxa table, the
pattern table described the presence of a pattern for each sample,
integrating the interest measures previously calculated (step 4).
microFIM visualizations comprehend distributions of patterns
considering support, length and interest measure values. To
describe the relationships between samples considering patterns
found, a Jaccardmatrix can be also obtained and visualized (step 6).

To better show the potentials of microFIM, we included a
demonstrative analysis of both simulated data and data belonging
to real case studies (see the next Section 3). In particular, as also
described in the Section 2, simulated data are composed of two
main matrices with a dimension of 10 samples and 5 taxa. In
Figures 3A,B a graphical representation of the simulated
matrices is shown. Through microFIM, ARM analysis was
performed. The final output of the analysis is the pattern
table, represented in Figures 3C,D and available in
Supplementary Tables S6, S7, respectively. The pattern table
integrates the interest measures of length, support and all-
confidence and, as it is a dataframe, patterns can be filtered
and further visualized with Python libraries or other data analysis
tools easily. In addition, results of the pattern table can be
visualized with microFIM through the following plots: scatter
plot, bar chart and heatmap. In Figures 3E,F, heatmaps built on
Jaccard distance results are shown.

In detail, Dataset 1 (Figure 3A; Supplementary Table S1) is a
full-presence dataset. This means that ARM can potentially

FIGURE 2 | Scheme of microFIM framework. 1) Filtering taxa table; 2) Conversion of taxa table into transactional file; 3) Extract patterns with template file filled with
minimum support threshold, minimum andmaximum length; 4) Adding of interest measures as support, pattern length and all-confidence (Omiecinski, 2003; Xiong et al.,
2006); 5) Generating pattern table, composed by presence-absence of patterns within samples and interest measures; 6) Generating visualizations.
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generate all the combinations of patterns from a length of 1 to a
length of 5. All patterns will have a 1.0 of support and a 1.0 of all-
confidence, as they are all associated with each other. In this case,
considering only the pattern composed by Taxa1, Taxa2, Taxa3,
Taxa4, and Taxa5, with a length equal to 5 and a support equal to
1.0, can be sufficient to resume the information within the
dataset. In addition, these settings can be adjusted directly by
running the algorithm, avoiding the creation of uninformative
patterns and reducing calculation time. In Figure 3E, Jaccard

heatmap shows also the 100% similarity between Dataset 1
samples. The complete pattern list obtained by Dataset 1 is
available in Supplementary Table S6.

Considering Dataset 2 (Figure 3B; Supplementary Table S2),
instead, a different composition can be observed. In particular,
Taxa1, Taxa2 and Taxa3 co-occur in samples 1, 2, and 3. In
addition, Taxa3 is present in all the samples (Figure 3B). As we
ran an ARM analysis considering a minimum length of 2, the
pattern composed by only Taxa3 was not detected. However, the

FIGURE 3 | (A) Graphical representation of Table 1; (B) Graphical representation of Table 2; (C) Pattern table generated from Table 1; (D) Pattern table generated
from Table 2; (E) Jaccard heatmap plot of Table 1; (F) Jaccard heatmap plot of Table 2.
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pattern built by Taxa1, Taxa2 and Taxa3 was detected, with a
pattern length of 3 and a support of 0.3. Focus the attention on
Taxa1-Taxa2 pattern, the value of all-confidence is equal to 1.0,
meaning that there is a strong association between them and the
rules generated from this pattern will have a minimum
confidence of 1.0. Details about patterns extracted from
Dataset 2 are available in Supplementary Table S7.

3.2 microFIM Applied on Real Case Studies
Association rule mining is a data mining technique widely used in
very different research fields and applications. This chapter is

dedicated to the use of ARM, in particular the pattern mining
step, on real microbiome case studies. In detail, three case studies
was chosen to demonstrate the potentials of ARM andmicroFIM:
the ECAM dataset (Bokulich et al., 2016), the vaginal microbiome
case study of Ravel et al. (2011) and the Montassier case study
(Montassier et al., 2016) (see Section 2 for details). Considering
the potential of ARM to reconstruct patterns, we focused the
analysis on three main aspects: the type of input used, the filter of
patterns whose elements are highly related to each other (also
called hyperclique patterns; Xiong et al., 2006) and the use of
metadata to filter and apply ARM.

FIGURE 4 | For Input 1, 2 and 3, here number of patterns obtained (1a, 2a, 3a), distribution of support values (1b, 2b, 3b) and distribution of pattern lengths (1c, 2c,
3c) are shown. In particular, three levels of analysis are shown: no filters applied to patterns, a minimum all-confidence of 0.5 and a minimum all-confidence of 0.8.
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To evaluate how ARM can be used on microbiome data,
different types of inputs were considered. In particular, for the
ECAM case study, we used: 1) the ECAM taxa table obtained
directly from QIIME2 datasets (Bolyen et al., 2018) in which only
taxa assigned to genus level, with a relative abundance > 0.1% in
more than 15% of samples, are considered (Input 1—data are
available in Supplementary File S3); 2) family table obtained
from collapsing the original one via QIIME2 plugins (Input
2—Supplementary File S4); 3) a taxa table consisting only of
taxa with complete taxonomy at the genus level (Input
3—Supplementary File S5).

Minimum support thresholds of 0.2, minimum length of 3 and
maximum length of 15 were considered. In Figure 4 we show the
results about the number of patterns retrieved considering three
levels of analysis: output after the analysis previously described,
patterns filtered with a minimum all-confidence of 0.5 and
patterns filtered with a minimum all-confidence of 0.8. In
Figure 4, for each filter, the distribution of support values and
pattern length are provided.

In detail, Input 1 (Supplementary File S3) generated a total of
1,844,696 patterns. The mean support achieved by the patterns
generated is 0.3 and a median of 0.2, with a minimum value of 0.2
and maximum value of 0.7. Regarding the pattern length, the
mean value is 8.45, while the median is 8, with a minimum value
of 3 and maximum value of 16.

Family table (Input 2—Supplementary File S5) generated a
total of 23,997 patterns. The mean support achieved by the
patterns generated is 0.28 and a median of 0.24, with a
minimum value of 0.2 and maximum value of 0.85. Regarding
the pattern length, the mean value is 6.38, while the median is 6,
with a minimum value of 3 and maximum value of 12.

Regarding genus table (Input 3—Supplementary File S6),
ARM analysis generated a total of 25,250 patterns. The mean
support achieved by the patterns generated is 0.25 and a median
of 0.23, with a minimum value of 0.2 and maximum value of 0.85.
Regarding the pattern length, the mean value is 6.14, while the
median is 6, with a minimum value of 3 and maximum value of
11. All the results are available in Supplementary Tables S6–S8,
respectively, and can be visualized in Figure 4.

In order to consider the putative informative patterns, a
framework involving hypercliques patterns (Xiong et al., 2006)
was applied. In particular, the all-confidence metric was
considered at 0.5 and 0.8 thresholds for all the datasets
analysed (Inputs 1–3).

Regarding the Input 1 (Supplementary File S3), a total of
2,213 patterns were extracted considering an all-confidence of
0.5, while no patterns were obtained with 0.8 threshold. First all-
confidence threshold resulted in patterns with a mean and a
median support value was 0.43, with a minimum value of 0.21
and amaximum of 0.72. Pattern length consisted in a mean of 3.9,
a median length of 4, with minimum and maximum of 3 and 7,
respectively.

Regarding the Input 2 (Supplementary File S4), a total of
2,081 patterns were extracted considering an all-confidence of
0.5. A mean support of 0.53 and a median support was 0.51 were
observed, with a minimum value of 0.21 and a maximum of 0.85.
Pattern length consisted of a mean of 4.98, a median length of 5,

with minimum and maximum of 3 and 9, respectively. A total of
78 patterns were extracted considering an all-confidence of 0.8. A
mean support of 0.72 and a median support was 0.73 were
observed, with a minimum value of 0.51 and a maximum of
0.85. Pattern length consisted of a mean of 3.23, a median length
of 3, with minimum and maximum of 3 and 4, respectively.

Regarding the Input 3 (Supplementary File S5), instead, a
total of 25,250 patterns were extracted considering an all-
confidence of 0.5, while no patterns were obtained with 0.8
threshold. First all-confidence threshold resulted in patterns
with a mean of 0.25 and a median support value of 0.23, with
a minimum value of 0.2 and a maximum of 0.72. Pattern length
consisted in a mean of 6.14, a median length of 6, with minimum
and maximum of 3 and 11, respectively.

For demonstrative purposes, a Jaccard heatmap considering
samples belonging to the first sampling date of the ECAM dataset
of the Input 3 table (Supplementary Table S5) was generated, in
order to show a potential use of Jaccard distance on pattern
analysis (available in Supplementary Figure S11). In general,
results are summarized in Figure 4 and tables are available in
Supplementary Tables S8–S10, respectively.

Overall, Input 1 obtained the highest number of patterns,
achieving 1,844,696 patterns. The support distribution has a great
range of values for all the three datasets, from 0.2 to almost 0.8.
Also length achieved a wide range of values, considering patterns
from 3 elements length to almost 16. In general, a great reduction
in the number of patterns was observed considering the all-
confidence filtering (Figure 4—sections 1a, 2a and 3a). In parallel,
this filter resulted in higher support values (Figure 4—sections
1b, 2b and 3b) and lower pattern length (Figure 4—sections 1c, 2c
and 3c).

Metadata filtering was applied to the genus ECAM dataset,
considering two category types: antibiotic administration and
type of delivery. The complete results of the pattern analysis are
available in Supplementary Table S12. Overall, a total of 141,480
patterns were obtained from the data belonging antibiotic
administration, while the opposite obtained a total of 8,223.
Vaginal delivery resulted in a total of 45,412 patterns, while
cesarean delivery samples resulted in 10,288. Also in this case, the
usage of all-confidence filtering drastically reduced the number of
explorable patterns, achieving the following results: 2 and 1
patterns for antibiotic administration and vaginal delivery,
respectively, and 0 patterns for the opposites.

microFIM was also applied to other two real case studies:
vaginal microbiome obtained by the work of Ravel et al. (2011)
and the dataset of Montassier case study (Montassier et al., 2016).
Considering the first one, different input types and metadata
filtering were used: in particular, the dataset was obtained from
the MLRepo collection (Vangay et al., 2019). Then, family level
and genus level dataset were obtained. Dataset can be identified as
Input 4 (dataset available in MLRepo; Vangay et al.,
2019—Supplementary File S15A), Input 5 (dataset at the
family level—Supplementary File S15B) and Input 6 (dataset
at the genus level—Supplementary File S15C). As for the ECAM
analysis, results are presented considering the three main input
types and the number of distribution of patterns are evaluated as
the previous scheme.
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In particular, Input 4 (Supplementary File S15A)
generated a total of 83 patterns. The mean support
achieved by the patterns generated is 0.2 and a median of
0.2, with a minimum value of 0.2 and maximum value of 0.5.
Regarding the pattern length, the mean value is 3.1, while the
median is 3, with a minimum value of 3 and maximum value
of 4. Family table (Input 5—Supplementary File S15B)
generated a total of 226 patterns. The mean support
achieved by the patterns generated is 0.25 and a median of
0.23, with a minimum value of 0.2 and maximum value of
0.55. Regarding the pattern length, the mean value is 3.68,
while the median is 4, with a minimum value of 3 and
maximum value of 6. Regarding genus table (Input
6—Supplementary File S15C), ARM analysis generated a
total of 225 patterns. The mean support achieved by the
patterns generated is 0.25 and a median of 0.24, with a
minimum value of 0.2 and maximum value of 0.46.
Regarding the pattern length, the mean value is 3.77, while
the median is 4, with a minimum value of 3 and maximum
value of 6. All the results are available in Supplementary
Tables S15D–F, respectively, and can be consulted in
Supplementary Table S14.

Minimum all-confidence of 0.5 and 0.8 were considered to
evaluate hypercliques patterns. Regarding the Input 4
(Supplementary File S15A), 16 patterns were extracted
considering an all-confidence of 0.5, while no patterns were
obtained with 0.8 threshold. First all-confidence threshold
resulted in patterns with a mean of 0.23 and a median support
value was 0.21, with a minimum value of 0.2 and a maximum of
0.48. Pattern length consisted in a mean of 3.06, a median length
of 3, with minimum and maximum of 3 and 4, respectively.

Input 5 (Supplementary File S15B) obtained two patterns,
considering an all-confidence of 0.5, while no patterns were
obtained with 0.8 threshold. The 0.5 all-confidence threshold
resulted in patterns with 0.46 and 0.55 support values. Both
patterns have a length of 3.

Regarding the Input 6 (Supplementary File S15C), 15
patterns were extracted considering an all-confidence of 0.5,
while no patterns were obtained with 0.8 threshold. First all-
confidence threshold resulted in patterns with a mean and a
median support value was 0.3, with a minimum value of 0.25 and
a maximum of 0.38. Pattern length consisted in a mean of 3.13, a
median length of 3, with minimum and maximum of 3 and 4,
respectively.

Overall, the support distribution has a low range of values for
all the three input files, from 0.2 to almost 0.5. Length is around 3
elements per pattern. In general, also in this case a great reduction
in the number of patterns was observed considering the all-
confidence filtering (Supplementary Table S14).

Metadata filtering was applied to the dataset, considering the
nugent category, low and high levels. The complete results of the
pattern analysis are available in Supplementary Table S14.
Overall, a total of 15,836 patterns were obtained from the data
belonging to high nugent score value, while the opposite obtained
a total of 21. The usage of all-confidence filtering drastically
reduced the number of explorable patterns, obtaining 16 patterns
for high nugent score value.

Finally, Montassier dataset (Montassier et al., 2016) was tested
considering the OTU table and taxa table obtained fromMLRepo
pipeline (Vangay et al., 2019). A minimum support threshold of
0.9 was considered, with a minimum length of 5 and a maximum
length of 10. A total of 446 patterns were obtained considering the
taxa table, while 9 patterns were obtained considering the
OTU table.

Distributions of pattern and length are similar between the
two input files. In particular, a mean support of 0.93 and a mean
length of 5.1 (5–6) were detected.

4 DISCUSSION

Pattern mining strategies are now newfangled solutions for
disclosure of microbial patterns (Tandon et al., 2016; Liu
et al., 2021). However, besides the power of these techniques,
great efforts must be undertaken to extrapolate relevant patterns
that can be integrated into biological contexts (Naulaerts et al.,
2015; Faust, 2021).

Basically, the strategy consists of two main phases: 1)
extraction of patterns (also known as “frequent itemset
mining”) and 2) rules calculation. In this work, we focused in
particular on the first phase, as great potential can be achieved
considering the exploration of patterns at any length and
subsequently be filtered to create reliable associations.

In detail, our Section 4 will touch two main topics: 1)
considerations about parameter settings to perform pattern
mining strategies in the context of 16S rRNA metabarcoding
data and 2) guidelines and future perspectives to support real
applications. In order to present an overview of frequent itemset
mining as a tool for microbiome pattern analysis, we developed a

FIGURE 5 | Overview of the main strengths, weaknesses, opportunities
and threats (SWOT analysis) related to the use of frequent itemset mining as a
tool for microbiome pattern analysis.
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SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis
(Figure 5).

4.1 Run Association Rule Mining Could Not
Be Enough Without Care in Setting
Parameters
As described above, pattern mining strategies can be powerful to
get insights from large and complex datasets (Naulaerts et al.,
2015). However, pattern analysis may have limitations (Faust,
2021). In this work, we provide ARM analysis on both simulated
and real datasets and propose microFIM (https://github.com/
qLSLab/microFIM), a Python tool specifically suited for
microbiome pattern analysis. Our results will consider the
pattern composition obtained through our framework (Section
2) without considering their biological implications, as it is
beyond the scope of this work.

Considering the application of ARM on simulated datasets, we
showed that initial settings can reduce the amount of information
retrievable, both considering interest measures as support or
length and all-confidence metric.

Regarding the application on the real case studies, a few
considerations can be made. First of all, the type of input can
change the reliability of results: different numbers of patterns
have been generated considering different input types. In
particular, both considering aspects related to data
visualization and interpretation, the taxonomy level of
investigation must be considered.

A second point that arises is the minimum support threshold
to choose. The choice can be both related to biological questions,
as for example which is the minimum number of samples to
retain a pattern interesting, but also on technicalities. In detail,
exploring all the potential patterns cannot be reliable and useful,
as the number of patterns can be very high, related also to great
computational efforts and visualization issues (Naulaerts et al.,
2015). For this reason, we started using a support of 0.2, that
means that only the taxa that co-occur in at least the 20% of
samples were considered (up to 175 of 875 for the ECAM dataset
and up to 77 of 388 for the Ravel case study). However, this is a
case-specific threshold as no guidelines exist to set a correct
support threshold in this research field. The wrong value can
potentially hide information and, at the same time, create
spurious patterns. In addition, it can generate misleading
results without taking into account the Simpson’s paradox
(Tan et al., 2002), a phenomenon in which a pattern appears
frequently but disappears or drastically changes when the data are
combined differently, as for example considering only a set of
samples (Tan et al., 2002).

Nevertheless, once patterns are generated, filtering steps can
be added, in order to both reduce the information and better
evaluate specific patterns, with peculiar characteristics. Filters can
include the length of patterns or additional interest measures
(Agrawal et al., 1993; Karpinets et al., 2012; Naulaerts et al., 2015).

Pattern length, in particular, can be also included before
running the analysis, as algorithms take into account a
minimum and a maximum value of pattern length, in order to
reduce the number of explorable patterns (Agrawal et al., 1993).

However, this choice must be done before exploring the results.
Of course, it is possible to reduce the number of patterns after
extraction, but computational efforts and running time must be
considered (Agrawal et al., 1993; Naulaerts et al., 2015). Pattern
length can also vary based on the research field of application and
the biological questions. In the ECAM case study, for example, we
observed different median values of pattern length, from
minimum values of 3 to maximum of 16, suggesting also
different levels of analysis.

However, other metrics can be included to filter patterns (Tan
et al., 2002; Omiecinski, 2003; Franceschini et al., 2012; Tang
et al., 2012). Usually they are called “interest measures” and are
generally used to evaluate a set of peculiar patterns, in order to
filter the interesting ones (Tatti and Mampaey, 2010; Hussein
et al., 2015; Naulaerts et al., 2015). Also in this case, the biological
question can guide how to properly set the filtering step. In this
work, we used all-confidence metrics, which generate hyperclique
patterns (Omiecinski, 2003; Xiong et al., 2006). The application of
this metric helps to find groups of items (in this case species or
taxa) where items belonging to the same pattern are highly
affiliated with each other and can generate rules with the
minimum threshold chosen. Using this approach reduces
drastically the number of patterns and, in addition, allows to
filter only strong associated groups. In this case, the amount of
information was drastically reduced considering the two
thresholds of all-confidence considered (0.5 and 0.8). This
reduction can promote a manual exploration of results and
pave the way for exploring strong associations and putative
rules. Clearly, other interest measures can be applied. All-
confidence may not be the only interest measures useful for
microbiome analysis. Other metrics can be selected to filter
patterns, but they must be identified based on specific
questions related to the research field of application (Naulaerts
et al., 2015).

4.2 Fitting Association Rule Mining for
Microbiome Studies: Guidelines to Support
Real Applications
Frequent itemset mining and, subsequently, association rule
mining, is a pattern mining technique able to explore items
that co-occur with a certain frequency, as sets of commercial
products that customers buy together in the classic supermarket
basket problem (Agrawal et al., 1993; Naulaerts et al., 2015). The
flexibility of frequent itemset mining techniques is demonstrated
by the wide range of bioinformatics applications, from for
example SNPs association studies to annotations and motif
association exploration (Carmona-Saez et al., 2006; Koyuturk
et al., 2006; Alves et al., 2010; Karpinets et al., 2012; Manda et al.,
2012; Manda et al., 2013; Zhou et al., 2013; Agapito et al., 2015;
Boutorh and Guessoum, 2016; Naulaerts et al., 2016; Manda,
2020; Ong et al., 2020). It is a powerful instrument to explore
patterns from large and complex data sets (Agrawal et al., 1993;
Karpinets et al., 2012; Naulaerts et al., 2015), providing different
algorithms and a wide range of parameters to filter patterns of
interest. Besides the most used, as support (frequency of a pattern
or a rule in the dataset) or length (the number of species
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contained in a pattern), other metrics can be included in the
pattern analysis (Naulaerts et al., 2015; Agrawal et al., 1993;
Hornik et al., 2005). Beside its potentials, great efforts have to be
made to perform pattern mining strategies on microbiome data
and obtain reliable and interpretable results, with sound
biological implications. As mentioned above, a few points
raised from the works done. From threshold choices to input
data types, setting pattern analysis is not an easy task.
Considering the peculiarities of microbiome data and the
flexibility of the technique, here we propose five statements to
guide researchers before starting ARM analysis.

4.2.1 Setting the Input Data
This point highlights the importance of the type of pattern to be
considered. In the microbial ecology field, a lot of interest
probably regards the investigation of species patterns, in order
to evaluate community patterns and putative ecological
processes. However, this is not straightforward if we consider
16S rRNAmetabarcoding data: taxonomy does not always reach a
species level and this uncertainty can negatively impact pattern
reconstruction. In addition, noise derived from contamination or
sequencing biases can be present (Faust and Raes, 2012; Balint
et al., 2016; Gloor et al., 2017; Faust, 2021). However, precautions
can be taken: removing uncertain taxa or cleaning the table based
on abundance thresholds or statistical methods is possible (Faust
and Raes, 2012; Balint et al., 2016; Gloor et al., 2017). Different
levels of taxonomy can be used as input, as we also demonstrated
in the previous sections. Of course, choices must be taken with
conscience as they will impact on the final result and therefore the
interpretation must be correctly contextualized.

4.2.2 Consider the Use of Metadata
The inclusion or filtering considering metadata information can
improve the reliability of the method, both looking for specific
patterns linked to metadata and also to better explore the dataset.
In this way, we can reduce the information to be explored,
lowering the support value, retaining rare or patterns related
to specific metadata, and preventing Simpson’s paradox issues
(Agrawal et al., 1993; Naulaerts et al., 2015).

4.2.3 Individuate What is Interesting for the Specific
Case Study
The definition of what is interesting depends on the biological
context at issue. No simple guidelines exist, as the application of
pattern mining on microbiome data is still in its infancy
(Naulaerts et al., 2015). Testing and developing new metrics is
an important field of research and can make a difference to track
reliable patterns that can be further used for classification tasks or
functional analysis. In this work, we applied the all-confidence
metric (Omiecinski, 2003; Xiong et al., 2006). However, we
believe that other interest measures can be applied and a wide
variety of them are available in other tools already developed
(Hahsler et al., 2005; Hahsler et al., 2011). In general, this step
allows to drastically reduce the number of explorable patterns
(Tan et al., 2002; Omiecinski, 2003; Xiong et al., 2006).

Basically, length can be used to clean the information extracted
via ARM. As ARM can generate patterns at any length, single

items or only pairs of items can be pruned, in order to find
interesting associations composed by 3 or more elements. From a
biological point of view, exploring longer microbial patterns can
enhance microbial community investigations and pave the way
for high-order interactions exploration (Faust, 2021).

4.2.4 Consider Computational Time
As fully described in previous works, data dimensions and density
drastically increase time calculation and memory usage (Agrawal
et al., 1993; Naulaerts et al., 2015). Reducing input data can make
ARM more reliable and faster to be performed (Agrawal et al.,
1993; Naulaerts et al., 2015). In addition, beside the common
concept of pattern, closed and maximal patterns exist. Both result
in a faster extraction, but with a reduction of information
(Agrawal et al., 1993; Naulaerts et al., 2015).

Overall, the inclusion of interest measures directly into the
ARM framework may favour the development of new faster
algorithms, leading the technique directly to the exploration of
specific patterns (Omiecinski, 2003; Xiong et al., 2006; Naulaerts
et al., 2015).

4.2.5 Tools and Visualization Strategies
To better suit pattern mining for microbiome data applications,
tools and visualization techniques are essentials (Naulaerts et al.,
2015). In detail, in this work we tried to concept a new pattern
mining output combining the common microbiome output with
pattern analysis. The pattern table can be an important resource
to perform and visualize pattern results in a microbial
perspective. In addition, it allows further statistical analysis
that is usually performed for microbiome data. Considering
the visualization process, we set up different plots to have an
overview of pattern distributions and create a Jaccard matrix to
show the distance between samples. However, different
visualization methods exist, based on tables, matrices and
graphs (Naulaerts et al., 2015). Here we cite the R packages
arulesviz, FPViz andWiFIsViz (Hornik et al., 2005; Hahsler et al.,
2011; Naulaerts et al., 2015). Even though these visualizations
allow different strategies to explore data, issues related to high
dimensional dataset remain and none of them are conceptualized
for microbiome analysis. At the same time, collecting human
readable information can facilitate data visualization strategies
and interpretation (Naulaerts et al., 2015), but of course
interesting measures must be considered. Finally, considering
practicality of use, several ARM implementations can be utilized
(Naulaerts et al., 2015). Moreover, frameworks have been
implemented, often accompanied by GUI (Graphical User
Interface) or interactivity components (Naulaerts et al., 2015).
However, a deepening in the microbiome field has not been
established yet.

4.2.6 Evaluation and Benchmarking Strategies
From a computational point of view, the complexity and
dynamics of microbial communities leads to difficulties in
developing and testing methods to evaluate them. In general,
it was demonstrated that microbial co-occurrence analysis may be
an extraordinarily promising approach for studying microbiomes
(Faust and Raes, 2012). Several works explained how co-
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occurrences reveal indications about ecological processes shaping
community structure (Lima-Mendez et al., 2015), exploring hub
species and potential microorganisms relationships (Berry and
Widder, 2014). Further, Ma et al. (2020) showed how global
microbial co-occurrence analysis and network reconstruction
may be an encouraging strategy to reveal patterns and explore
new mechanisms. However, besides these results, transform
microbiome data into purposeful biological insights remain
challenging, as also demonstrated by different evaluations
(Faust and Raes, 2012; Berry and Widder, 2014), and open
questions still remain (Faust and Raes, 2012; Layeghifard
et al., 2017; Ma et al., 2020; Faust, 2021). The use of ARM on
microbiome data models or datasets created in-silico will be
necessary to disentangle the potentials of ARM in the
microbiome research field, also considering the range of
microbiome aspects that can be considered (Weiss et al., 2016;
Hosoda et al., 2020; Faust, 2021). In particular, tests should
examine how the technique is affected by noise signals, both
related to sequencing and laboratory protocols (Weiss et al.,
2016). In addition, as microbiome data may potentially
describe a complex and intricate ecological community, several
ecological aspects can be evaluated with ARM, both describing
the generation of redundant information and the difficulty
associated with extracting patterns due to specific ecological
behaviors, as for example competition, exclusion or symbiosis
(Faust and Raes, 2012; Weiss et al., 2016; Faust, 2021).

In general, recent advancements in data integration and data
reuse strategies may enhance the exploration of microbial
patterns from large-scale studies (Jordan and Mitchell, 2015;
Ma et al., 2020; Su et al., 2020; Ghannam and Techtmann,
2021). Microbiome simulators and in vitro studies can be a
great instrument for benchmarking works and improve
guidelines to apply ARM (Faust, 2021). Beside the potential of
ARM on large scale analysis, giving a great overview of data under
investigation (Naulaerts et al., 2015), these advancements may
contribute to developing tests and benchmarking strategies in
order to set ARM for microbial pattern research looking at
biological implication, specifically.

Concluding, all the challenges mentioned above can
disentangle ARM analysis for microbiome pattern exploration.
As the output of the analysis can be extensive and redundant,
results should be interpreted with caution. The associations
extracted do not necessarily imply causality. Instead, it
suggests a strong co-occurrence relationship between species.
Causality, on the other hand, requires knowledge about the
causal and effect attributes in the data (Tan et al., 2002).
There are several approaches to evaluate the robustness of an
output. In this first work, pattern length, support and all-
confidence were explored and included in the microFIM tool.
From a biological perspective, filtering results with these
parameters could help to highlight meaningful patterns, but
may not be enough. Further, we tried to depict issues that we
think must be considered before using an ARM approach for
specifical biological traits. As there is an interest in research to

exploit data mining techniques, citing for example the works of
Srivastava et al., 2019 or Zakrzewski et al., 2017, we also think that
suiting ARM for microbiome analysis will be a great resource in
the future. Considering the huge amount of data available and
produced with the advent of High-Throughput DNA Sequencing
(HTS) technologies, an increasing selection of large-scale data
science strategies seems to have enormous potential in resolving
challenges in microbiome pattern exploration (Jordan and
Mitchell, 2015; Kypides et al., 2016). Association rule mining
and microFIM tools may have great potential not only with 16S
rRNA metabarcoding data, but also in a wide range of
applications. As also supported by Naulaerts et al. (2016),
ARM analysis is a versatile technique: the integration of files
such as taxa tables guarantees the usage also on a wide variety of
datasets belonging from different sources, as for example the
QIITA platform (https://qiita.ucsd.edu/; Gonzales et al., 2018) or
the MLrepo (https://knights-lab.github.io/MLRepo/; Vangay
et al., 2019), but not only. Beside the main focus of this work
and microFIM development, very different types of data can be
analysed and integrated with ARM framework. From gene
associations to merely metabarcoding projects, whose output
has the same structure of 16S rRNA taxa table, microFIM may
potentially pave the way for multiple usages, creating a bridge
with several research fields and applications.
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