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Single-molecule localization microscopy (SMLM) is an advanced microscopy method that
uses the blinking of fluorescent molecules to determine the position of these molecules
with a resolution below the diffraction limit (∼5–40 nm). While SMLM imaging itself is
becoming more popular, the computational analysis surrounding the technique is still a
specialized area and often remains a “black box” for experimental researchers. Here, we
provide an introduction to the required computational analysis of SMLM imaging, post-
processing and typical data analysis. Importantly, user-friendly, ready-to-use and well-
documented code in Python and MATLAB with exemplary data is provided as an
interactive experience for the reader, as well as a starting point for further analysis. Our
code is supplemented by descriptions of the computational problems and their
implementation. We discuss the state of the art in computational methods and
software suites used in SMLM imaging and data analysis. Finally, we give an outlook
into further computational challenges in the field.

Keywords: SMLMPython andMATLAB code, temporal median filtering, SMLM localization and localizationmerging,
drift and chromatic aberration correction, SMLM image formation, single-particle tracking, SMLM clustering, SMLM
localization precision and structural image resolution

INTRODUCTION

Single-molecule localization microscopy (SMLM) is a collective term for microscopy techniques that
generate localization data of individual fluorescent molecule emission events, and can achieve
∼5–40 nm resolution at ∼10–100 Hz (Betzig et al., 2006; Rust et al., 2006; Sage et al., 2019).
Localization-based microscopy can be performed with relatively standard, albeit sensitive, wide-field
fluorescence microscopes. The key requirement is that the fluorescent molecules used are able to
switch between on and off states, ensuring that all molecules are read out individually (Endesfelder
et al., 2011). dSTORM (direct stochastic optical reconstruction microscopy) achieves this on/off-
switching via chemical equilibria of organic fluorophores, often assisted via (near-)UV light and/or
reactive chemicals (Rust et al., 2006; Heilemann et al., 2008). For in vivo SMLM imaging, PALM
(photo-activated localization microscopy) is a conceptually similar technique as dSTORM, but relies
on photo-induced chemical transitions of fluorescent proteins (Betzig et al., 2006; Manley et al.,
2008). Alternatively, the on/off-switching can be accomplished by repetitive binding/unbinding of
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the fluorophore as done by PAINT microscopy (points
accumulation for imaging in nanoscale topography) (Sharonov
and Hochstrasser, 2006). As long as the fluorophore is unbound,
it diffuses too rapidly to produce a well-formed point-spread
function (PSF). This binding/unbinding is often, but not
exclusively, induced via DNA complementarity, i.e. DNA-
PAINT (Schnitzbauer et al., 2017).

A further increase in spatiotemporal resolution can be
achieved by various improvements in sample, fluorophores,
instrument, or computational design. For instance, increasing
labeling density and specificity, increasing emitter fluorescence,
or decreasing the distance between fluorophore to structure of
interest will result in a better observed resolution (Grimm et al.,
2016; Virant et al., 2018; Vojnovic and Endesfelder, 2020;
Geertsema et al., 2021). Accurate axial drift correction and
experimental PSF descriptions also have an influence (Li et al.,
2018; Vojnovic and Endesfelder, 2020). Instrumentally, the on/
off-switching of organic fluorophores or photo-activatable
fluorescent proteins can be combined with structured
illumination profiles, reaching up to 2–3 nm spatial resolution
(Balzarotti et al., 2017; Gu et al., 2019; Cnossen et al., 2020;
Jouchet et al., 2021).

All SMLM methods fundamentally result in an identical
output: a movie of individual fluorophore emissions from
which a coordinate list, containing at least time, x, and y
positions of individual emitters, often complemented by
information on localization uncertainty, emitter intensity, and
axial (z) position, can be extracted. This output can principally be
used to explore two main avenues: super-resolution imaging or
single-particle tracking (spt).

In super-resolution imaging, the sample of interest is usually
chemically fixed. Resolving all fluorophores’ positions, the
fluorescently-tagged structure of interest can be visualized with
a resolution about 10–20-fold lower than the classical diffraction
limit [∼250 nm (Abbe, 1873)]. With the help of super-resolution
imaging several unknown molecular arrangements in structural
biology could be revealed and quantified andmany review articles
summarize these findings and achievements in detail (Huang
et al., 2009; Patterson et al., 2010; Turkowyd et al., 2016; Baddeley
and Bewersdorf, 2018; Sigal et al., 2018).

Alternatively, in spt, a natural biological sample (i.e. single
living cells) with fluorophore-tagged proteins of interest are
imaged (Manley et al., 2008). The behaviour of the individual
intracellular biomolecules can be quantified, providing detailed
information on molecular dynamics and interactions (Shen et al.,
2017; Kapanidis et al., 2018; Elf and Barkefors, 2019). Spt can also
be applied in ex vivo settings, such as membrane proteins in
synthetic membranes or material science (Schütz et al., 1997;
Martens et al., 2020).

Clearly, applications of SMLM imaging are highly diverse.
Nevertheless, all of them inherently make use of similar
computational analysis tools - from localization software, drift
correction or color channel overlays to clustering or tracking
routines. Over the past decades, a multitude of analysis methods
and tools for localization data have evolved. Understanding the
obligate computational details of SMLM imaging and knowing
which tools to apply (when), and how to expand or modify them

for a specific use case can be overwhelming, especially for
researchers without a background in computer science. In this
manuscript, we provide an overview of the most common
computational analysis procedures in single-molecule
localization microscopy and supply code written in Python
and MATLAB. The structure of this work focuses on
understanding of the problems and their solutions, rather than
providing the most efficient or theoretically best solution.
Wherever possible, information about less intuitive, but state-
of-the-art alternatives is provided, as well as references to relevant
software suites.

MATERIALS AND METHODS

Samples
The E. coli RNA polymerase (RNAP) data for fiducial drift
correction, image generation, clustering and Nearest Neighbor
based Analysis (NeNA, (Endesfelder et al., 2014)) were taken
from our previous work (Virant et al., 2017). Briefly, RNAPs were
tagged with mEos3.2-A69T at their β′-subunit. Red,
photoconverted mEos3.2-A69T fluorescence was read out
using primed photoconversion. Movies were recorded with
16.67 Hz image acquisition until no new spots appeared.
Localizations were obtained using RapidSTORM (Wolter et al.,
2012).

The vimentin-BC2-tag data for the Fourier Ring Correlation
(FRC) analysis were taken from our previous work (Virant et al.,
2018). Briefly, vimentin, transiently expressed from a plasmid in
HeLa cells, was tagged by the BC2 peptide tag sequence. After
chemical fixation, cells were stained with the bivalent anti-BC2
nanobody labeled by AlexaFluor 647. The region of interest was
imaged for 20,000 frames using the dSTORM imaging buffer (van
de Linde et al., 2011) and localizations were obtained using
RapidSTORM.

DNA-PAINT nanoruler SMLM data was recorded for the
temporal median filter, localization, chromatic aberration and
cross correlation drift correction modules. The GATTA-PAINT
80RG nanoruler was obtained fromGattaquant, Germany. 10.000
frames were recorded with 100 ms interval under 561 nm
(1.5 kW/cm2) and 640 nm (1 kW/cm2) excitation, using a
ZET405/488/561/640m dichroic, ZT405/488/561/640rpc
rejection filter, and respectively ET610/75 or ET655LP
bandpass filter.

For the single-particle tracking analysis, we prepared 20 nm
diameter red and 200 nm diameter dark-red fluorescent beads
(FluoSphere Thermo Fisher; 580 nm excitation/605 nm emission
and 660 nm excitation/680 nm emission, respectively) in
respectively a 1:1,000 and 1:10,000 dilution from the original
stock in milli-Q water. ∼10 µL solution was placed on a coverslip
and covered with another coverslip. Coverslips were gently
pressed together to remove excess liquid and air bubbles and
placed on the microscope. 10,000 frames were recorded with
15 ms interval, and 1 ms stroboscopic 488 and 561 nm laser
illumination set at 3 and 0.3 kW/cm2, respectively. No
bandpass filter was used. Localizations were obtained using
ThunderStorm (Ovesny et al., 2014).
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All movie and localization datasets used in the computational
modules can be found on https://github.com/Endesfelder-Lab/
SMLMComputational.

SMLM Imaging
Imaging was performed on a custom build setup based on an
automated Nikon Ti Eclipse microscope equipped with
appropriate dichroic and filters (ET dapi/Fitc/cy3 or ZET405/
488/561/640m dichroic, ZT405/488/561rpc or ZT405/488/561/
640rpc rejection filter, ET610/75 or ET655LP bandpass, all AHF
Analysentechnik, Germany), and a CFI Apo TIRF ×100 oil
objective (NA 1.49, Nikon). The 488 nm, 561 nm, and 637 nm
lasers (Coherent) was modulated via an acousto-optical tunable
filter (AOTF) (Gooch and Housego, United States). Fluorescence
was detected by an emCCD (iXON Ultra 888; Andor,
United Kingdom). The z-focus was controlled by a commercial
perfect focus system (Nikon, Germany). The sample was placed on
a heating stage and kept at the constant temperature 25°C.
Acquisitions were controlled by μManager (Edelstein et al., 2010).

Code
All code, sub-divided into modules (Scheme 1) is provided both
as Python code and as MATLAB code (https://drive.google.com/
drive/u/0/folders/1lOKvC_L2fb78–uwz3on4lBzDGVum8Mc and
https://github.com/Endesfelder-Lab/SMLMComputational) and
is further documented by Pseudo-code (Supplementary
information) and descriptions in the main text. The interactive
environment of the google colab implementation (https://colab.
research.google.com/) allows for direct, user-based testing and
adaptation on our example data.

RESULTS

SMLM data is typically analyzed in several, mostly consecutive
steps. The different analysis procedures in this manuscript follow
this workflow are thus subdivided in three major groups: “pre-
processing and localization”, “post-processing”, and “data

interpretation” modules (Scheme 1). The modules of the first
group “pre-processing and localization” all work on SMLM
movie data and concern analysis steps which are used to
properly translate the recorded movie material into
localization data. In the second group, called “post-
processing”, those raw localization lists are typically further
refined in several routines that raise the quality of the data or
combine different parts of data into final SMLM localization lists.
These data sets then are visualized, characterized and interpreted
by analysis routines which are grouped in “data interpretation”,
and provide additional data (images, parameters, bionumbers
and measurements etc.,) as output.

The order of our modules follows standard analysis practices,
but some modules can be skipped or performed in a different
order, and two modules (4 and 9) are subdivided into variant a
and b as they present alternatives for similar tasks (i.e. drift
correction and determination of structural resolution or
localization precision). For every module, well-documented
Pseudo-code, Python code, and MATLAB code is provided
(https://drive.google.com/drive/u/0/folders/1lOKvC_L2fb78–
uwz3on4lBzDGVum8Mc and https://github.com/Endesfelder-
Lab/SMLMComputational, Supplementary Pseudocode
S1–S9), which is accompanied by explanatory text and
illustrations, as well as software alternatives, in the following
text. We stress that this code is designed as “teaching material”
rather than best-practice software, especially relating to speed
optimization. An overview of existing SMLM analysis software
that implement at least one of this manuscript’s modules is
presented in Supplementary Table S1.

We encourage users of the codebase to not only run the analysis
with the provided raw data, but also to apply it on their own data,
and change the code accordingly and appropriately. To further
assist users new to programming language, we have included a
Supplemental Code environment (https://colab.research.google.
com/drive/1Ht-WL-W3tpFfavDMZjDofLOR9HKP-nVV), where
we show how to perform basic data handling, and include
region-of-interest selection, pixel size conversion and intensity
level correction. These little helper code snippets can be easily

SCHEME 1 | Overview of the modules.
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combined with the modules to filter, select and modify raw data as
input for the chosen module.

Within our modules we focus on intuitive solutions to
common SMLM analysis routines, and references to e.g. more
complex or less intuitive state-of-the-art alternatives are
provided. Specific analysis routines for highly specialized tasks
- mostly for the third module group “data interpretation”- are out
of scope of this work. These analysis procedures are not covered
within our modules but the interested reader is pointed towards
them in the discussion.

Module 1: Temporal Median Image Filtering
Raw single-molecule microscopy movie data often contains non-
structured background noise with different photophysical
characteristics as the fluorophores of interest, caused by for
example residual out-of-focus fluorophores e.g. in the
immersion oil or sample buffer, or by autofluorescence within
the biological sample itself (Turkowyd et al., 2019, 2020).
Additionally, out-of-focus fluorophores under HiLo or TIRF
illumination will display different blinking characteristics
compared to in-focus fluorophores, and can therefore also be
filtered out. It can have a detrimental effect on localization
efficiency (i.e. minimizing false positive and false negative
localizations) and accuracy when identifying single-molecule
emissions from the imaging data. The impact of background
noise can be lowered by globally subtracting average background
levels from the raw movie data. This, nevertheless, does not
adequately capture temporal changes. Temporal median image
filtering provides a solution to this problem (Figure 1).

Briefly, because on/off-switching of fluorophores in SMLM is
equilibrated towards the off-state, the median intensity of a pixel
is a good approximation of the background noise. Thus, the
operating principle of temporal median image filtering is that for
each pixel at time t, the median value of the pixel in the time
interval t−i/2 to t + i/2 is computed and subtracted at time t
(Figure 1B) (Hoogendoorn et al., 2014). The value i is user-
defined, and should be substantially higher than the longest on-
period of single emitters (at least twice; normally a value of ∼50
frames can be used), and is capped at high ends by unreasonable
analysis times or temporal fluctuations in background intensity.
A fast version of this algorithm is implemented as an ImageJ
plugin (Jabermoradi et al., 2021). Temporal median image
filtering should be avoided if the equilibrium of blinking is
favored towards the on-state (i.e. > 50% of the time
fluorescently active), since this would result in active removal
of fluorescent signal rather than background. Additionally, this
pre-processing step does not accurately reduce temporal
heterogeneous background fluctuations (i.e. non-specific
binding events).

Our code corresponding to module 1 can be found here:
(https://colab.research.google.com/drive/1XKMP5BQWhUkQuKAj
TkBgkaHy9bGjR23H or https://github.com/Endesfelder-Lab/
SMLMComputational, also Supplementary Pseudocode S1).
The required input is a raw SMLM movie, and the code
module outputs a temporally-median-filtered movie with
identical dimensions. Looping over every pixel in every frame,
the pixel intensity values from i/2 before the current frame to i/2
after the current frame are extracted. Alternatively, if the frame is

FIGURE 1 | Computational workflow of a temporal median filter. Fluorescence emissions from individual, blinking fluorophores are often present on top of an
inhomogeneous background (A). The intensities of individual pixels can be analysed over a period of time [(B), solid lines]. The median intensity value per pixel (dotted
lines) can be extracted and subtracted from the original intensity data to adequately remove the background from the dataset (C).
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at the beginning of the movie, the pixel values are extracted from
frame 0 onwards, and expanded further than i/2 after the current
frame (and similar at the end of the movie). The median value is
determined from this range, subtracted from the current pixel
intensity, and stored in a new data array. These steps are then
repeated for all pixels and all frames.

This concept can be taken one step further by first determining
a localization and then calculating the local background from the
spatiotemporal voxels in which no fluorescence of this emitter is
present, followed by repeating the localization step. This has been
realized by the SMALL-LABS software package (Isaacoff et al.,
2019; Martens et al., 2021). Alternatively, temporal filtering can
be based on minimum values to have a robust estimator at high
fluorophore densities (Ma et al., 2021), or heterogeneous
background can be assessed and restored via a neural network

(Krull et al., 2019; Möckl et al., 2020). sCMOS-induced noise
should be addressed separately (Diekmann et al., 2021; Zhang
et al., 2021).

Module 2: Localization
Determining the positions of individual fluorescent emitters
to translate the SMLM movie data into SMLM localization
data is the primary computational effort in SMLM imaging.
Here, localization algorithms determine the sub-pixel
accurate position of each point-spread function (PSF) of
single fluorophores in the raw movie data (Figure 2).
Principally, these localization routines consist of two steps,
although methods are developed that merge these steps: 1)
region-of-interest (ROI) selection, in which the presence or
absence of a PSF is determined; and 2) sub-pixel localization

FIGURE 2 | Typical localization methodology. A raw image (A) is filtered to enhance features that likely contain emitters (B). From this filtered image, ROIs (red
squares) are selected (C) and used to extract the PSF data from the original image (D). This region is then fitted by a PSF model (e.g. commonly a 2-dimensional
Gaussian) (E), and the localizations with sub-pixel precision are displayed or used for further analysis (F).

FIGURE 3 | Localization merging. In the shown example, two fluorophores are present. Both fluorophores are emitting for multiple frames, but are also blinking
during this period. The localization merging routine identifies emitters that emit over multiple frames, accounting for possible blinking periods. Merging the individual
localizations into one increases accuracy of fluorophore quantification and emitter localization precision.
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of the emitter in the ROI. These steps are the basis of many
user-friendly, open access software packages, such as
ThunderSTORM, rapidSTORM, SMAP, Picasso,
QuickPALM and GDSC SMLM (Henriques et al., 2010;
Wolter et al., 2012; Ovesny et al., 2014; Schnitzbauer et al.,
2017; Ries, 2020; Herbert, 2021).

Sub-pixel localization fitting procedures can benefit from
fitting raw SMLM movie input, rather than a temporal-
median-corrected movie (Module 1), if they e.g. take camera
noise models into account that are effectively removed by
temporal median image filtering. Thus, step 1 can be
performed on the output of Module 1, while step 2 should be
performed on ROIs extracted from the input of Module 1 (i.e. raw
SMLM movie). However, in certain cases, such as when
encountering hot pixels or patterned background fluorescence,
the increased localization precision from running localization on
raw movie data does not offset the removal of background.

The code belonging to thismodule can be found here: (https://colab.
research.google.com/drive/1Jir3HxTZ-au8L56ZrNHGxfBD0XlDkOMl
or https://github.com/Endesfelder-Lab/SMLMComputational, also
Supplementary Pseudocode S2). A raw SMLM movie, or
alternatively the output from Module 1 should be supplied as
input, and a localization list with (frame, x, y, intensity) columns
will be stored as output. Briefly, every frame in the temporal-
median-corrected movie undergoes a difference-of-Gaussian
(DoG) filtering to highlight PSFs. Local maximum positions are
then found in the corresponding frame in the raw movie, which
correspond to the approximate positions of PSFs. Looping over
these local maxima, a small region of interest (7 × 7 pixels) is
extracted, and the pSMLM code from (Martens et al., 2018) is used
to extract the sub-pixel PSF position. This sub-pixel position is then
added to the approximate PSF position, and added to the
localization list.

Commonly, the ROI selection is performed via image filtering
or feature enhancement. DoG filtering, like applied in this
module’s code, is a common method used for edge detection
(Marr et al., 1980). Alternatives to the DoG filter are the Laplacian
of Gaussians [LoG; (Tinevez et al., 2017)] or a β-spline wavelet
filter (Izeddin et al., 2012a).

Sub-pixel localization has seen many improvements in the
past decades and several localization software challenges
benchmarked different algorithms for different data scenarios
(Sage et al., 2019). Because a 2-dimensional Gaussian function is a
good approximation for the PSF of in-focus fluorophores,
iterative algorithms based on fitting a Gaussian function are
often used (Mortensen et al., 2010; Stallinga and Rieger, 2010),
providing good accuracy especially when using a maximum
likelihood estimator (MLE) fitting procedure (Smith et al.,
2010). Possible fast analysis methods are centroid-based
(Cheezum et al., 2001), phasor-based (Martens et al., 2018,
2021), which is used here because of the low computation
time and good accuracy, or radial-symmetry-based
(Parthasarathy, 2012). Another type of algorithms that more
accurately simulate and localize PSFs also exists, based on
theoretical or measured optical wavefronts (Liu et al., 2013;
Shechtman et al., 2014; Aristov et al., 2018; Xu et al., 2020) or
on measured PSFs (Babcock and Zhuang, 2017; Li et al., 2018).

Recently, deep-learning-based methods combine the ROI
selection and sub-pixel localization with excellent results
(Nehme et al., 2020; Speiser et al., 2021).

The sub-pixel localization step can additionally be used to
obtain information about the 3-dimensional position of
individual emitters. This requires additional optical
elements in the microscope’s emission path such as
elliptical lenses (Huang et al., 2008), deformable mirrors
(Izeddin et al., 2012b; Martens et al., 2021), or custom
phase masks (Shechtman et al., 2014), or is based on
simultaneously imaging slices at different depths (Juette
et al., 2008; Louis et al., 2020). In all cases, information
about the z-position is encoded in the shape of the PSF,
and thus more complex localization analysis needs to be
performed (Aristov et al., 2018; Li et al., 2018).

Importantly, it is assumed that every ROI only contains a
single fluorophore for most of these implementations. This is not
always the case, especially in high-density samples. While the
common approach in the SMLM community is to prevent these
high densities experimentally, there are computational
approaches designed specifically for high density and multi-
emitter fitting (Holden et al., 2011; Zhu et al., 2012; Marsh
et al., 2018; Nehme et al., 2020; Speiser et al., 2021).
Additionally, the localization result should be checked for
inhomogeneous distribution artefacts (e.g. bias towards the
center of a camera pixel), which can be especially important
when the experiment requires quantification of repeating
patterns.

Module 3: Localization Merging
The movie acquisition speed (i.e. time per imaging frame) during
SMLM imaging has to be optimized based on the method (i.e.
STORM, PALM, etc.,) and dependent on technical and biological
sample factors, e.g. whether a static or dynamic sample is imaged
(i.e. super-resolution imaging or single-particle tracking). During
imaging of static samples, fluorophores switched to their on-state
normally remain in this state for ∼10–50 ms (STORM) or
∼100–500 ms (PAINT), depending on the experimental set-up.
Additionally, the fluorophores can go in various temporary dark-
states (blinking), meaning that no emission can be detected for
several frames (Dickson et al., 1997; van de Linde and Sauer, 2014;
Berardozzi et al., 2016). Because SMLM acquisition speed is static,
it is likely that a single fluorophore can be in its on-state for more
than one imaging frame. This means that the same fluorescent
event is recorded multiple times over consecutive frames, but
could be “skipping” one or multiple frames due to fluorophore
blinking.

It can be advantageous to merge these multiple recordings of a
single emission down to a single event (Figure 3). First, this will
provide a more quantitative overview of the sample, which can
help with e.g. counting of fluorophores. Secondly, merging
multiple events allows for de facto higher photon levels (N)
per localization, which scales with localization precision by 1/
√N (Rieger and Stallinga, 2014). Merging is readily available in
the post-processing of many SMLM software packages, such as
ThunderSTORM, SMAP and Rapidstorm (Wolter et al., 2012;
Ovesny et al., 2014; Ries, 2020). In Rapidstorm, the merging is
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implemented as a Kalman-filter, which improves the merging
quality. Care should be taken when performing localization
merging on high-density datasets, as this could result in
linking different fluorophores to each other, rather than
linking multiple emissions from a single fluorophore.

Our code belonging to this module can be found here: (https://
colab.research.google.com/drive/16ooyjTonAP3xvsQKCv_
uxWcUp1hB8msC or https://github.com/Endesfelder-Lab/
SMLMComputational, also Supplementary Pseudocode S3). It
requires a localization list (at least containing frame, x, y position)
as input, and stores a corrected localization list as output. The
code itself loops over all localizations on a given frame. For every
localization, it is checked whether there are localizations in the
next 1 or 2 frames that are closer than a user-defined maximum
distance. This pair of localizations is then given an identical
“trajectory-id”. After looping over all localizations, the
localizations that have the same trajectory-id and do not
belong to special cases [e.g., on purpose placed fiducial
markers for drift correction (see Module 4a)] are merged. This
is performed by taking their collective, intensity-weighted mean
position, minimum frame value, and summed intensity. The
original localizations are then replaced by this merged
localization.

Localization merging can be reasonably expanded to work on
the level of the movie data. This would involve re-performing the
localization module on the summed raw data of merging events.

Module 4: Drift Correction
SMLM data is recorded in movies (and not in single image
snapshots), and thus the data is acquired over substantial time
periods, typically in the order of tens of minutes. The obtained
localization precision in the final reconstructed image, that
summarizes all localizations from all imaging frames, is in the
order of nanometers. But high image resolutions can only be
achieved and the results are only interpretable if some technical
criteria are fulfilled, e.g. sufficient fluorophore labeling density
and detection efficiency as well as an absence of temporal drift
during the movie acquisition (Vojnovic and Endesfelder, 2020).
For the latter, it thus is important that the sample itself moves
only very minimally with respect to the detector throughout the
acquisition. However, this is challenging, if not impossible, to
achieve via merely stabilizing hardware (even if the setup has
good heat dissipation and a vibration-damping module).
Therefore, additional drift correction procedures are used,
either on-line (directly during acquisition) or off-line (post-
processing and correcting the localization data after acquisition).

A distinction should be made between axial (i.e. in the
z-direction) and lateral (i.e. in the xy-direction) drift for two
reasons. First, axial drift is much more detrimental to the
acquisition, because the emitters are only in focus in an axial
slice of about 600 nm (Franke et al., 2017). Second, many
microscopes have axial stages equipped with piezo-stages that
provide accurate and repeatable precision of ∼1–5 nm, while the
lateral stage is usually not equipped with a piezo-stage, which
limits on-line correction of lateral drift to a micrometer-accuracy.
For these two reasons, axial drift correction is often performed
on-line via a hardware add-on based on the internal reflection of

an (infra) red laser (Liron et al., 2006), while lateral drift
correction is performed off-line using one of the numerous
variations of the methodology that we outline below. Briefly,
fiducial marker drift correction (Module 4a) can be used for any
sample, but requires introduction of steady-fluorescent markers
in the sample, while cross-correlation drift correction (Module
4b) calculates and corrects for drift directly from the samples’
features, but requires static data and thus cannot be used for
highly dynamic samples or particle tracking studies.

Module 4a: Drift Correction by Fiducial
Markers
A conceptually simple way to measure and correct sample drift is
to introduce stable fluorescent fiducial markers (Balinovic et al.,
2019). These markers are bright, non-blinking emitters [often
nanoparticles that have many individual fluorophores bound to a
support structure such as polystyrene beads, possibly excited
away from their absorption maximum (Balinovic et al., 2019)]
that emit stable and bright fluorescence throughout the
acquisition time. By incorporating and tracing the signal of
multiple fiducial markers in every field of view (FoV) that is
recorded, the drift of the sample can be assessed (Figure 4). The
displacement of this drift trace from its original position at time
point zero can then be subtracted from all localization data,
allowing for effective drift suppression that in practice achieves a
precision of about 3–5 nm (Balinovic et al., 2019). In case the
fluorescence of the fiducial markers is not stable, if the fiducial
markers cannot be distinguished from sample signal, or if the
marker moves separately from the sample, this method will
provide inaccurate results. Moreover, with high intensity
fiducial markers, camera oversaturation will result in bad
fitting, causing artefacts. Finally, if a marker with multiple
fluorophores is used, bleaching of a single fluorophore can
bias localization, if only a small number of fluorophores are
remaining on the marker (Balinovic et al., 2019).

The code belonging to this module can be found here: (https://
colab.research.google.com/drive/1U-
yiO56r4uG92hnq1KKAKAjy4IeW8n_I or https://github.com/
Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S4). For fiducial marker-based drift correction,
the fiducial localizations must be selected and isolated. In our
module, we identify the fiducials by their constant signal:
appropriately chosen fiducial markers will be present
throughout the entire movie acquisition. Alternatively, the
fiducial markers can be isolated based on higher fluorescence
intensity compared to dSTORM, PALM, or PAINT fluorophores,
or selected based on their position by hand (i.e. based on
coordinates). After performing a single-particle tracking
routine (see Module 3), the position of each marker is
compared to the position of the same marker in the first
frame of the movie. This yields time traces of the drift for
every single fiducial marker that have a temporal resolution of
one frame. These time traces of individual fiducial markers are
averaged to obtain a single drift trace. This averaged drift trace
usually has better accuracy than the individual traces because
inaccuracies in localization are averaged out. The drift trace is
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then subtracted from all localizations in the whole dataset, which
effectively removes the effects of sample drift. Fiducial marker
drift correction is normally applied to 2-dimensional data only,
but can easily be expanded to include axial drift, assuming that a
3-dimensional localization procedure is used.

Module 4b: Drift Correction by
Cross-Correlation Methods
Data belonging to structural samples that do not change
themselves during the acquisition (i.e. SMLM images of
immobilized, non-dynamic samples as being obtained by
dSTORM or PAINT imaging), can effectively be drift-
corrected by visualising the data at different time points and
comparing these visualisations (Mlodzianoski et al., 2011)
(Figure 4). In principle, drift correction by cross-correlation
methods is based on the fact that the image generated by the

localizations is identical throughout the acquisition time. This
means that e.g. for a dataset comprised of 1,000 frames, a
visualisation of the structure can be generated from imaging
frames 1–100, which can be compared with a visualisation
generated from imaging frames 101–200, etc. If drift is
present, the second visualisation will be offset from the first.
Measuring this offset over time using consecutive data subsets,
the overall drift trace can be obtained and corrected for. Drift
correction via cross-correlation requires stable, unmoving
datasets. In case the structure itself is flexible or moves
throughout the data acquisition, this method will silently fail.
In addition, heterogeneous sample drift or sample rotation (i.e.
caused by uneven matrix contraction) should be prevented.

In our module 4b found here: (https://colab.research.google.
com/drive/1DUhUxeCnYXxD7ZkL9NcIDxE6VV7fnzvQ or
https://github.com/Endesfelder-Lab/SMLMComputational, also
Supplementary Pseudocode S4), we therefore generate

FIGURE 4 | Drift correction methodologies. Most SMLM experiments exhibit sample drift, so the localizations obtained from each fluorophore depend on their
detection time within the SMLM acquisition. The reconstructed SMLM image, which combines all localizations from the SMLM experiment, is therefore affected by the
overall drift, which directly affects the structural resolution and as such can introduce misleading artifacts (e.g. smearing clusters to filaments). Drift correction methods
correct this. (A): Drift can be corrected by introducing fiducial markers that can be tracked with high precision. (B): Alternatively, the displacement of the biological
structure at different time points can be analysed via temporally cross-correlating the data.
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multiple images from different time bins.We then calculate cross-
correlations between the visualisations at each time bin and the
visualisation at the start of the SMLM acquisition (� first time
bin). The spatial position of the intensity maximum of each cross-
correlation provides a good measure for the drift. This position is
identified and attributed to the temporal centre of each bin. The
drift trace is based on these points, and—in our module as well as
for most cross correlation implementations—non-linearly
interpolated to smooth the trajectory. The drift trace is
subtracted from the original localizations. This can
additionally be expanded to three-dimensional data by taking
z-slices, and comparing those similarly.

This technique can be expanded to redundant cross-correlation
(RCC) (Wang et al., 2014), in which the temporal bins are not only
compared to the first, but to all bins. This increases computational
effort, but results in higher accuracy. Alternatively, the positions of
the emitters at different time points can be compared with each
other. The mean shift of the localizations over time is a measure for
the drift, similar to the shift of the maximum position of the cross-
correlation images, (Cnossen et al., 2021; Fazekas et al., 2021).

Module 5: Chromatic Aberration Correction
All optical components in a microscope experience chromatic
aberrations: light is refracted slightly differently based on its
wavelength (Figure 5A) (Erdelyi et al., 2013). Today, almost
every optical element in a fluorescence microscope is corrected
for chromatic aberrations. Thus, standard diffraction-limited
fluorescence microscopy can be performed without further
chromatic aberration corrections. Nevertheless, even for high-
quality optics, a residual chromatic shift in the nanometer range
shift remains. This is enough to hamper multicolor super-resolution
imaging and creates a mismatch of images generated by
fluorophores with different emission wavelengths (Zessin et al.,
2013) (Figure 5B, left). This chromatic aberration is microscope-
specific and directly dependent on the optical path and individual
components. It thus has to be measured for each setup individually.
Nevertheless, it is a static shift (as long as no components change), so
it does not need to be repeatedlymeasured for every new experiment.

In our module 5 (https://colab.research.google.com/drive/
1UH0BIuHUJFjF_hXtO3rwdOLTl45LkzLz or https://github.com/
Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S5), we correct the chromatic aberration by
comparing data with identical ground-truth positions
emitted at two different wavelengths. For the data-pairs, an

affine 2-dimensional transform matrix is estimated. For
microscopes with more than two color channels, such a
matrix has to be estimated for all channels in relation to one
reference channel. These transformation matrices can then be
used to correct the chromatic aberration from all datasets
measured with the same microscope and color channels.

As mentioned, a requirement for chromatic aberration correction
is a sample that is identical for multiple emission wavelengths. In this
module, we have used a so-called “DNA-PAINT nanoruler” which
has identical “docking positions” for both, ATTO542 and ATTO655
fluorophore DNA oligos used as reporters (emission peaks at 561 nm
(“green”) and 680 nm (“red”), respectively). Those reporters can
repeatedly bind and unbind during the SMLM acquisition. The
chromatic aberrations in our microscope results in green positions
that are localized slightly further to the outside of the image than the
red positions (Figure 5B, left). We then hand-picked green and red
DNA-PAINT position pairs, and used their relative positional shifts
to calculate the affine transformation matrix (Figure 5B, middle).
This transformation is then applied on either the image created from
the red localizations, or directly on the red localizations. This
effectively reduces the experienced chromatic aberration
(Figure 5B, right). We note that this analysis method can also be
applied for translational offsets, introduced in e.g. dual-view camera
systems.

Module 6: Image Generation
Amain goal of SMLM, but especially of structural super-resolution
imaging, is the generation of super-resolved images from the
localization data. However, this is not as straightforward as it
may sound, since ultimately the dataset of SMLM localizations are
essentially 0-dimensional points. While plotting these localizations
as a scatter plot may provide some information (Rust et al., 2006),
the symbol size and shape can be arbitrary and the scatter plot does
not adequately visualise local emitter density (Figure 6A). Thus, it
should normally not be used. Generally, it must be noted that all
forms of image visualisation decrease the resolution (as every
pixelation variant, even when adjusted to the experimental
localization precision of the data, ultimately sorts the data in
bins), but are often very useful for human interpretation. It is
therefore recommended that downstream quantitative efforts are
focused on the localization list rather than generated images.

One could reason that each localization can be visualised as the
central point of a 2-dimensional Gaussian function with a full-
width half maximum determined by the localization precision.

FIGURE 5 | Chromatic aberration correction. (A) Optical elements in any microscope will refract light of different wavelengths differently, causing chromatic
aberrations. (B)Chromatic aberrations can be corrected by calculating a transformation matrix based on pairwise positions of fluorescent markers measured at different
wavelengths. This transformation can be used to correct the instrument-specific chromatic aberration.
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This procedure would be conceptually very similar to the physical
representation of regular brightfield microscopy, which can be
interpreted as many simultaneous localizations generating PSFs
with a width determined by the optical resolution. However, this
methodology actually results in a loss of visual resolution, as it
effectively blurs the original structure by the visualization method
in addition to blurring caused by the localization error, resulting
in a √2 resolution loss (Baddeley et al., 2010). Moreover, the
rendering of several thousands to millions of 2-dimensional
Gaussian functions is computationally expensive and thus
unrealistic via a computation processing unit (CPU) only (and
instead requires e.g. using a graphical processing unit (GPU) that
works in a highly parallelized and optimized manner), unless
well-optimized code and functions are used (Ries, 2020).

A quantitatively better way for localization visualisation is to
place the localizations in user-defined sub-pixel bins, normally
∼10–15 sub-bins per original imaging pixel in each dimension
(Figure 6C) (Nieuwenhuizen et al., 2013). It is important to choose
this sub-bin value cautiously, as the super-resolution image pixel
size should be in the range of the localization precision (Nyquist-
Shannon sampling theorem) (Nyquist, 1928; Shannon, 1949),
also see Module 9 to determine the localization precision. If a
smaller sub-bin value is chosen, it could lead to visualisation of

non-existing details, hindering correct interpretation. This can
additionally be subject to a pseudo-Gaussian kernel to spread the
intensity to surrounding pixels, which is especially valuable on
datasets with sparse signals. This is the approach taken in our
module, but is also used standard in e.g. the ThunderSTORM
software (Ovesny et al., 2014).

Amore sophisticatedmethod, also shown in ourmodule and first
published with the software Rapidstorm, is to linearly interpolate the
localizations on a sub-pixel raster (Figure 6D) (Wolter et al., 2010).
In the basis, this method is similar to localization binning in sub-
pixel bins, but additionally, neighbouring pixels are also populated
based on the distance from the localization to the center of the main
sub-pixel bin, preventing discretization errors.

Our module (https://colab.research.google.com/drive/
14OCvRUAUFp9JXK6HVyj18fndGY92-Dsx or https://github.
com/Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S6) implements all three methods. Regular 2-
dimensional histogram visualisation is straightforward in Python
and MATLAB, since this is a built-in function in both languages.
For linearly interpolated histograms, for every localization, the
correct sub-pixel bin is found, as well as the distance to the
center of the sub-pixel bin. This distance in x and y is used to
calculate the relative intensity in the neighbouring pixels. Image

FIGURE 6 | Image generation methods. The simplest way for image generation is a scatter plot, although this does not reflect the localization density accurately (A).
The localizations (red crosses) can also be placed on a sub-pixel grid (B), and the bin intensities can be increased based on the position of the localizations. The methods
described in this manuscript are the creation of a 2D histogram (C), a linearly interpolated 2D histogram (D), or individually rendered Gaussians (E). Note the regions with
lower density (66% lower density compared to the surrounding) and the different intensity between the two horizontal lines (30% lower density) that are more clearly
interpreted by histogram images compared to a scatter visualisation.

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 1 | Article 81725410

Martens et al. Hands-On Introduction into Computational Analysis for SMLM

https://colab.research.google.com/drive/14OCvRUAUFp9JXK6HVyj18fndGY92-Dsx
https://colab.research.google.com/drive/14OCvRUAUFp9JXK6HVyj18fndGY92-Dsx
https://github.com/Endesfelder-Lab/SMLMComputational
https://github.com/Endesfelder-Lab/SMLMComputational
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


generation based on individual Gaussian reconstruction is done by
looping over every emitter and over every sub-pixel in the
reconstructed image, and increasing this value based on the
distance to the emitter position.

More involvedmethods are investigated by Baddeley et al. (2010),
and show that adaptive quad-tree histograms and visualisation based
on Delaunay triangulation have distinct advantages for SMLM
image generation, at the cost of computational complexity.

Module 7: Single-Particle Tracking (spt)
In contrast to structural SMLM imaging, spt is a methodology in
which moving fluorescently-labeled objects are tracked over time.
Rather than generating an image, assessing and interpreting this
movement is the goal of spt. Computational efforts are therefore
fundamentally different in spt from those in structural imaging
(Chenouard et al., 2014). Analysis consists of three main
computational efforts: 1) localizing moving PSFs, 2) linking
the localizations of single particles from consecutive imaging
frames into trajectories and 3) analysis of the dynamics and
diffusional states of the particles from their trajectories.

Localization
Localization efforts required in spt are largely similar to localization
efforts required in structural SMLM (Module 2). However, the
inherent movement of fluorophores in spt causes deviations of the
measured PSF from a theoretical PSF. Software explicitly designed
to localize static PSFs can therefore fail when localizing moving
PSFs. Downstream processing of spt also dictates that there is a
higher priority on detecting the fluorescent emissions than there is
on localization precision: because statistics from the fluorophore
trajectories are averaged over many linkages, this effectively lessens
the influence of localization errors. This results in localization
efforts designed for spt to be robust (i.e. high accuracy on
fluorophore detection) rather than precise, e.g. as implemented
in Trackmate (Tinevez et al., 2017).

Linking of single Fluorescent Emissions Into
Particle Trajectories
Linking single fluorescent emissions into particle trajectories is a
conceptually simple problem: localizations in subsequent frames
possibly belong to the same emitter, and these should be linked
together to obtain a trajectory through time, which can be further
analysed. In its easiest form, tracking can be performed by
determining the nearest localization in the next frame for each
localization. Then, as long as the jump distance (JD) between
these localizations is lower than a user-defined value, the
localizations are linked together and form a track. This
methodology is commonly known as nearest-neighbour tracking.

However, nearest-neighbour tracking is not a final method due
to several reasons. First, there could be several localizations within
the search radius and the closer one could simply be the wrong
choice (i.e. two trajectories are crossing each other, or localizations
are found due to autofluorescence). Second, fluorophores can blink
for one ormultiple frames, which effectivelymeans that a “gap” can
be present in the trajectory, which should be accounted for. Third,
since Brownian diffusion results in a noncentral chi (Rayleigh)

distribution of jump distances, there is no well-defined maximum
jump distance. Fourth, a population can consist of more than one
diffusive state, meaning that the user-chosen maximum jump
distance is even less well-defined. Last, nearest-neighbour
tracking is prone to introduce artifacts as there is no way to
end a trajectory if any localization is present within the defined
radius. This will introduce false linkages within the trajectories (e.g.
caused by autofluorescence or another molecule appearing in close
proximity, e.g. in molecular clusters). These artifacts can be
lessened by reducing the search radius, but this will lead to
many truncated trajectories (see third and fourth argument). All
that being said, nearest neighbor tracking in low density and low
noise datasets will experience a neglectable effect from all these
criticisms. Meanwhile, it does not introduce any algorithmic bias
which easily happens the more a priori knowledge and
assumptions are taken into account usingmore advancedmethods.

FIGURE 7 | Single-particle tracking computational approaches. Left:
Individual emitters have to be linked to create trajectories. Individual emitters
have been localized at multiple frames (A), and the nearest neighbour
localization in frame n+1 is determined for every localization at frame n,
and a linkage is created between these localizations (B,C). This creates
trajectories that can be further analysed (D). Right: quantification analysis of
trajectory data. See the main text for details on the methods.
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Still, solutions for more dense or background-intense spt are a
field of on-going method development (Chenouard et al., 2014).
All of those algorithms incorporate a priori knowledge. E.g. the
Icy software (de Chaumont et al., 2012) uses a Bayesian model
with multiple hypothesis tracking (MHT) that yields more
accurate results especially for weak fluorescent signals
(Chenouard et al., 2013). Or alternatively, in TrackMate
(Tinevez et al., 2017), tracking is formulated as a linear
assignment problem (LAP) (Jaqaman et al., 2008), in which a
computational cost factor balances localization-to-localization
linkages and track initialisation and termination (i.e.
minimizing wrong linkages). Also, localization and tracking
steps can be combined, e.g. alternatingly performing
localization and tracking to verify each other, as implemented
in multiple-target tracking (MTT) (Sergé et al., 2008).

Quantitative Analysis of Trajectories
After the localizations are linked into trajectories, the underlying
dynamics can be analysed to interpret the data (Figure 7, right).
The simplest method is to create a JD histogram, and fitting this
histogram with one or multiple diffusive populations from which
apparent diffusion coefficients (D*) can be extracted (Schütz et al.,
1997; Vrljic et al., 2002). However, analysis of a JD histogram does
not have sufficient resolving power if two ormore populations with
small differences are present; in this case, the mean jump distance
(mJD) of every trajectory can be determined, which provides
stronger differences, i.e. separated maxima, between populations
(Turkowyd et al., 2019; Martens et al., 2020). An analytical correct
solution of mJD histograms is impossible, as the underlying data
has different statistical origins due to varying trajectory length.
However, for sufficiently long trajectories, mJD values will
approach, and thus can be well-approximated by, a Gaussian
(central limit theorem) from which the diffusion coefficient can
be extracted. In our module, we implemented both analyses.

In our module (https://colab.research.google.com/drive/
1v4N6os8cdHqilDLguYUGrKmlRM8vcG_8 or https://github.
com/Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S7), we implemented nearest-neighbour tracking while
taking blinking into account. This is identical code to the tracking
performed in Module 3, albeit with a larger maximum jump
distance. Next, the script loops over every trajectory, and
consecutively over every localization in the trajectory, except for
the last one. The Euclidean distance between this localization and
the next localization is calculated and stored if there is 1 frame
temporal distance between these localizations. Localizations that do
not have a jump distance calculated like this get a value of −1 to
easily filter out in later steps. Next, the mean jump distance for the
complete trajectory is calculated for every trajectory. The jump
distances ormean jump distances are then extracted and plotted in a
histogram, after which a non-central chi distribution (JD) or
Gaussian approximation (mJD) is fitted to the histogram. This
analysis routine is performed on free diffusion of two populations of
beads with different sizes, and we show that fitting the data with a
single population does not provide satisfactory results. Please also
note that the number of bins in the histogram can have an effect on
the fitting procedure, and care should be taken to assure that fitting
is robust with respect to the bin size.

Another popular method involves calculating the mean
squared displacement (MSD) of the trajectories, by taking the
squared displacements over time (at Δt � 1, 2. . . n-1 for a
trajectory with length n), averaged over all possible starting
positions of the trajectory per Δt (Qian et al., 1991). These
displacements are then plotted as a function of Δt, and yield 1)
the diffusion coefficient D by the MSD curve slope; 2) the
localization uncertainty by the intersection with the y-axis;
and 3) the type of diffusion (i.e. pure diffusion, confined
diffusion, directed motion, relatively) by the shape of the
curve (i.e. linear, curved downwards, curved upwards) (Lee
et al., 2017). However, the MSD is sensitive to noise in the case
of short trajectories commonly obtained via sptPALM.

So far, these analysis methods assume that the diffusive state of
the underlying trajectory does not change. However, this is
commonly not the case in biological situations, e.g. in the case
of DNA-binding proteins, where the proteins can be diffusing or
be stably bound to the DNA. There are several software packages
available that quantify transient states and their state-changing
kinetics: (a)DDA [(analytical) diffusion distribution analysis]
allows for analysis with a temporal resolution faster than the
frametime (Martens et al., 2019; Vink et al., 2020a, 2020b), while
vbSPT (Persson et al., 2013) and SMAUG (Karslake et al., 2021)
specifically assume state-changing slower or on the same
timescale as the frametime.

Module 8: Clustering
By cluster analysis methods, localizations are grouped into
coherent structures which helps to visualize and interpret
structural data. There are several clustering approaches which
can be categorized by their clustering model, e.g. connectivity-
based (hierarchical), centroid-based, distribution-based, or
density-based methods. Generally, clustering algorithms can be
extended to colocalization algorithms when taking a second color
channel in consideration (Malkusch et al., 2012; Rossy et al., 2014).

A simple approach is Ripley’s K-functions and its normalized
variants (i.e. L- and H-functions), which measure the data density
as a function of radius around every point in the dataset and
compares it to random spatial distribution at same density (Ripley,
1977; Owen et al., 2010; Endesfelder et al., 2011). It does not require
initial parameters but can only reveal whether clusters are formed
and does not report cluster size accurately (Malkusch et al., 2013).
Since the Ripley’s functions provide a value that is non-
straightforward to interpret, it is normally compared against a
differing biological condition (Rossy et al., 2013).

A common clustering algorithm that defines individual clusters
is the K-means algorithm (Hartigan and Wong, 1979). It is a
centroid-based and unsupervised method that finds the centroids
of clusters by minimizing the summed distance of all localizations
to the nearest clusters’ centroids. However, this approach requires
the user to pre-determine how many clusters are expected, and is
based on a spherical cluster model without considering noise.

Density-based algorithms can account for irregular shapes and
noise. The most known algorithm of this kind in SMLM analyses
is DBSCAN (Density-based spatial clustering of applications with
noise), which is used in Module 8 (Figure 8) (Ester et al., 1996;
Endesfelder et al., 2013). DBSCAN requires two parameters: 1)
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the radius in which adjacent localizations are considered as
neighbours, and 2) the minimum number of points in this
neighborhood required to initiate the cluster formation. Based
on these criteria each point is labeled as a “core point”, “edge
point” or “noise point”. Core and edge points belong to clusters,
while noise points do not. This classification is then used to
uniquely define the individual clusters.

Note that clustering methods require care (Khater et al., 2020),
as all clustering algorithms tend to quantify clusters, even if these
do not exist in the dataset, i.e. most methods lack a quality control
and fail silently. Moreover, if blinking is not adequately corrected
for (Module 2), this could influence clustering results. Next, non-
spatially resolved clustering methods (i.e. Ripley’s functions) can
be influenced by edge effects, e.g. where a uniform distribution
inside a single cell can be quantified as non-uniform, because
higher localization density inside the cell is contrasting with lower
density outside the cell. Finally, DBSCAN could provide
quantitatively poor results when directional heterogeneity
exists on a same scale as the search radius.

Our module (https://colab.research.google.com/drive/
1ruLv02SWFtlEAlZTkWSgHnucoGAZPDcF or https://github.
com/Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S8) implements DBSCAN. The script loops over all
localizations, and first finds, counts, and stores the neighbouring
localizations (over all frames) in a table. Afterwards, the core and
cluster localizations are found based on the procedure described
earlier. Finally, a recursion algorithm is employed to determine the
individual clusters. Briefly, a loop is started over all core or cluster
points, which is set to the current label-id. Next, the same loop is
started over all neighbouring core and cluster points, if the original
point was a core point. Only if no more neighbours without an
assigned label-id can be found, the label-id is increased.

DBSCAN is widely used in SMLM analysis (Endesfelder et al.,
2013; Khater et al., 2020). However, as its input is a fixed density
[given by the two user-defined parameters (minimal number of
points) per (area defined by the input radius)] it is insensitive to
different densities of data points and it is not possible to perform

hierarchical clustering (e.g. identifying several dense clusters
grouping together to form some larger, higher-order clusters).
Data with varying cluster densities can be analysed by OPTICS
(Ordering Points to Identify the Clustering Structure) (Ankerst
et al., 1999) which returns clusters within their hierarchical
structure. Compared to DBSCAN however, OPTICS is
computationally demanding, especially for large datasets.
These clustering algorithms are implemented in the software
suites LAMA and PALMSiever (Pengo et al., 2015; Malkusch and
Heilemann, 2016).

Alternatively, clustering can be based on Voronoi polygons
(Levet et al., 2015; Voronoi, 1908a, 1908b). Based on the user-
defined maximal area of polygons (i.e. dependent on the local
density), localizations are assigned to clusters.

Module 9: Localization Precision and Image
Resolution
SMLM imaging is sensitive to experimental conditions, such as the
background noise, thermal drift of the sample, labeling strategy
(e.g. movement of fluorophore with respect to the target) and
imaging procedure (e.g. read-out intensities, camera settings,
optics). As a result, the experimental localization precision is
normally lower than the theoretically achievable localization
precision, which itself scales with the square root of the number
of photons emitted by the fluorophore (Mortensen et al., 2010;
Turkowyd et al., 2016). Therefore, quantification of the
experimental localization precision provides more accurate
results, especially concerning the best achievable resolution (i.e.
the optimum image resolution is at best twice the localization
precision (Nyquist-Shannon sampling theorem) (Nyquist, 1928;
Shannon, 1949). Two methods to compute either image resolution
or localization precision are described here: Fourier-ring
correlation (FRC) (Saxton and Baumeister, 1982; Van Heel
et al., 1982; Unser et al., 1987; Banterle et al., 2013;
Nieuwenhuizen et al., 2013) and nearest neighbor based analysis
(NeNA) (Endesfelder et al., 2014).

FIGURE 8 |Computational approach of the clustering method DBSCAN. (A): DBSCAN explanation. For every localization in a given FoV, the number of neighbours
in a user-defined radius are counted. If there are more neighboring points than a (by the user) set minimal number of points (left), these points are considered core points
(blue). All localizations that are not core points, but have a neighbour that is a core point, are considered an edge point (orange, second panel). Localizations that have
neither enough neighbours nor proximal core localizations are considered noise points (red, third panel). The core and edge localizations together are considered to
form a cluster. The identified clusters can be visualised and characterized (right). In this example, at least 3 neighbours are required for a localization to be considered a
core point in the radius indicated by the circle. (B): Application of the DBSCAN steps on an E. coli cell with fluorescently-labeled RNA polymerase.
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Module 9a: Fourier Ring Correlation (FRC)
FRC is a method used to calculate image resolution by comparing
two images taken from the same structure (Saxton and Baumeister,
1982; Van Heel et al., 1982). It can be reasonably applied to SMLM
data by splitting the dataset into two halves and assuming that a
structure rather thanmobile fluorophores are imaged (Banterle et al.,
2013; Nieuwenhuizen et al., 2013). The spatial frequency domain
spectra of these images are computed via a Fourier transform and are
correlated with each other at different distances from the frequency
center of the image (Figure 9A). The image resolution is estimated
by determining where the FRC value crosses a user-defined value,
typically 1/7≈ 0.143 (Rosenthal andHenderson, 2003; Banterle et al.,
2013; Nieuwenhuizen et al., 2013).

In our module (https://colab.research.google.com/drive/
1svyAqyjpdo_hIG8FSCjAmhNznqDq2sFm or https://github.com/
Endesfelder-Lab/SMLMComputational, also Supplementary
Pseudocode S9), a localization list is randomly split into two
arrays, and two images are created (see Module 6). Next, a
“distance map” is created with the same size as the two images,
which stores the distance to the center of the image. Three required
Fourier-transform-based images are then calculated from the two
generated images. Finally, the code loops over all distances found in
the distance map, and extracts the pixels in the distance map that
match this distance. The values in the Fourier-transform-based
images belonging to these pixels are then extracted, and the FRC

value at this distance is calculated. These distances are plotted in a
graph, and the intersection with 1/7 is calculated.

Due to its simplicity, FRC is a widely implemented and used
approach (Ovesny et al., 2014; Ries, 2020; Herbert, 2021).
However, it can only be used on structural data, as it
measures the image similarities via correlation. Also, FRC is
sensitive to the non-random division of the data into two bins,
e.g. splitting SMLM data into two sub-datasets with only odd or
even frames is typically overestimating image resolution as
fluorophores commonly fluoresce for more than one
consecutive frame. Such effects can be counterbalanced by a
correction factor (Nieuwenhuizen et al., 2013). Finally, FRC is
affected by the image pixel size used for the visualization and
Fourier transform, and additionally requires a structural density
that is higher than the localization precision.

Module 9b: Nearest Neighbor Analysis
(NeNA)
The localization precision of a SMLM (sub)dataset can be estimated
directly from the localization data using NeNA (Figure 9B)
(Endesfelder et al., 2014). As most nearest neighbor events in
adjacent frames from non-merged localization data are
originating from the same fluorophore which emits photons over
several frames, the true distance between these events is zero

FIGURE 9 | Computational methods to determine resolution in SMLM. (A) In FRC, the localization data is split randomly in two subsets, and the correlation of the
Fourier transforms of these images at rings with increasing radius is calculated. The resolution of the dataset can then be calculated by determining where the FRC
crosses the value of 1/7. (B) In NeNA, positions of identical emitters localized in subsequent frames are compared with each other, and the distribution of these distances
is fitted with a non-central chi distribution. This fit provides a measure for localization resolution.
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(assuming a static dataset). To estimate the localization precision,
NeNA estimates the apparent jump distances (and thus localization
precision) with a non-central chi distribution for two or three
dimensions, or a Gaussian for one dimension.

NeNA will only fail if the average lifetime of single
fluorophores is (much) less than a single frame, but this is a
setting that should be avoided in SMLM experiments to obtain
optimal data (Diekmann et al., 2020).

In our module (https://colab.research.google.com/drive/
1JbmbEL1XsF6ab4WmL96iLUijN8Tx0LCU or https://github.
com/Endesfelder-Lab/SMLMComputational, also
Supplementary Pseudocode S9), a two-dimensional
localization dataset is loaded, and the distance to the nearest-
neighbor in the next frame is calculated (see Module 3). Since the
data contains fiducial markers (see Module 4a) and PALM
localizations, the localizations are split by their emission
intensity. Finally, the jump distance calculated via nearest-
neighbor tracking for both PALM- and fiducial marker-
localizations are plotted as a histogram, and the distributions
are fitted.

DISCUSSION AND PERSPECTIVE

In the previous modules, we covered the most common
computational analysis procedures. However, there are other
approaches which can improve the efficiency of the analysis
and the quality of results or provide new insights into SMLM
data, but are not shown here, either due to their highly specific
implementation, niche usage, or computational complexity.

A possibility for any SMLMdata analysis is to confine the analysis
to user-defined ROIs, i.e. only performing analysis in specific
regions, or separating analysis based on these regions (e.g. per
cell). This ROI selection can be performed on a variety of
measures, but we will exemplify ROI selection via single-cell data
analysis, where an outline of the cell is used to separate data analysis.
This naturally requires (brightfield or phase-contrast) image data of
the cells in addition to SMLM data. Additionally, the cells need to be
segmented, either manually or via algorithms incorporated in e.g.
MorphoLibJ, SplineDist, or Oufti (Legland et al., 2016; Paintdakhi
et al., 2016; Berg et al., 2019; Mandal and Uhlmann, 2021). Recently,
machine-learning approaches have been created to perform cell
segmentation (Ronneberger et al., 2015; Berg et al., 2019; Falk et al.,
2019). Machine-learning approaches can be especially powerful,
considering it often provides good segmentation performance,
and its fast computation could allow for real-time (on-line)
segmentation. This opens up avenues for e.g. capturing only
subsets of the FoV where cells are present, reducing storage size
and downstream computational efforts.

If a structure of interest needs to be resolved with a resolution
higher than normally achievable in SMLM, particle averaging is
an interesting avenue. In particle averaging, the same structure
(e.g. nuclear pore complexes Thevathasan et al., 2019) are
visualised many times throughout the FoV. Then, their data is
combined, traditionally by mapping the repeated structure to a
template structure. Mapping onto a template nevertheless is
biased towards the template (e.g. rare but biologically

important deviations from the consensus structure will be not
detected), is sensitive to insufficient labeling, and requires image
generation rather than using the localization data directly
(Henderson, 2013). Recently, new particle averaging
approaches, namely “all-to-all” registrations and comparing
relative localization distances to a model description, have
arisen that circumvent these downsides (Curd et al., 2021;
Heydarian et al., 2018; Heydarian et al., 2021).

An improvement that concerns all computational analysis
procedures is to apply these in real-time; i.e. during the SMLM
acquisition rather than during post-processing. However, rapid
computations and feedback for online microscope control are
non-trivial to achieve. Nonetheless, an increasing number of tools
approaches real-time SMLM data analysis and online microscopic
feedback (Henriques et al., 2010; Kechkar et al., 2013; Holden et al.,
2014; Štefko et al., 2018; Li et al., 2019). These advancements can
eventually pave the way for intelligent and fully autonomous live-
cell, single-molecule microscopy.
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