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The nascent field of microbiome science is transitioning from a descriptive approach of
cataloging taxa and functions present in an environment to applying multi-omics methods
to investigate microbiome dynamics and function. A large number of new tools and
algorithms have been designed and used for very specific purposes on samples collected
by individual investigators or groups. While these developments have been quite
instructive, the ability to compare microbiome data generated by many groups of
researchers is impeded by the lack of standardized application of bioinformatics
methods. Additionally, there are few examples of broad biocinformatics workflows that
can process metagenome, metatranscriptome, metaproteome and metabolomic data at
scale, and no central hub that allows processing, or provides varied omics data that are
findable, accessible, interoperable and reusable (FAIR). Here, we review some of the
challenges that exist in analyzing omics data within the microbiome research sphere, and
provide context on how the National Microbiome Data Collaborative has adopted a
standardized and open access approach to address such challenges.

Keywords: microbiome, microbial ecology, omics, bioinformatics, infrastructure

1 INTRODUCTION

The microbiome is defined as a characteristic microbial community occupying a reasonably well-
defined habitat which has distinct physio-chemical properties. It includes both the composition of
the community (e.g., microbiota) and a theatre of activity, which can be measured with various forms
of omics data (Berg et al., 2020). Microbiome research has greatly increased our understanding of the
composition and distribution of microbial communities and has provided us with much insight into
microbiome functioning, and clues into how best to perturb communities as potential solutions to
improve our health and the health of our environment (Donohue and Cogdell 2006; Light et al., 2018;
Lear et al,, 2021).

While our increased knowledge of individual microbiomes has benefited from a growing number
of individual microbiome investigations, the ability to compare data across projects is hampered by
many challenges, due in part to the disparate nature of analysis methods employed to process omics
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data. The ongoing flux in software development and application
of new methods to analyze these data have evolved from tackling
low throughput technologies (e.g., microscopy) to increasingly
high-throughput data, such as metagenomics (Tringe and Rubin
2005), metatranscriptomics  (Carvalhais et al, 2012),
metabolomics (Bundy et al, 2008), and metaproteomics
(Lagier et al., 2018).

Several large-scale microbiome efforts have focused on
generating reference genomic data and other valuable omics
data (Human Microbiome Project Consortium 2012; Gilbert
et al.,, 2014; Li et al., 2015; Proctor et al., 2019; Parks et al.,
2020), yet the velocity at which microbiome data are generated
has outpaced infrastructure resources for collection, processing,
and distribution of these data in an effective, uniform, and
reproducible manner. Given the magnitude of this challenge,
there are limited efforts aimed at closing the analysis gap for
metagenomic and community profiling data across diverse
environments (Gonzalez et al, 2018; Mitchell et al., 2020;
Chen et al., 2021). One such effort developed by the European
Bioinformatics Institute, called MGnify, provides standardized
taxonomic classification of small subunit ribosomal ribonucleic
acid gene amplicon data, while for shotgun metagenomic and
metatranscriptomics  data, MGnify provides assembly,
annotation, and contig binning. Importantly, programmatic
access to the data for cross-database complex queries is also
available via a RESTful application programming interface (API)
(Mitchell et al., 2020), and a free service is available for users to
submit raw metagenomics sequence data and associated metadata
to the European Nucleotide Archive (ENA) followed by analysis
using MGnify pipelines. While this platform does not yet support
metabolomics and proteomics data analysis, it provides an
intuitive ~way to enable cross-project sequence-based
comparisons.

Comparisons across different microbiome studies are of great
interest and would allow us to investigate cross-study patterns in
a systematic manner to potentially enable generalizable principles
to be uncovered. Further, most microbiome studies are
underpowered (Kelly et al., 2015), and thus by combining data
from different studies, one may find correlations or other
associations that cannot be revealed by individual studies
alone. For example, it may enable us to differentiate or find
similarities in response to various environmental stressors among
different microbiomes in different systems. However, several
limitations, most notably the broad spectrum (or lack) of
metadata standards that allow researchers to find the data they
wish to compare, the heterogeneous nature of omics data
generated from different labs, and the various data processing/
bioinformatics methods, impede the further utilization of these
data beyond the scope for which they were originally intended.
For researchers interested in cross-study comparisons, it is thus a
herculean effort to identify the relevant microbiome studies, to
access both the raw omics data and analyzed results, and to re-
analyze them in a standardized fashion with other datasets.

To minimize the effort required to identify reusable
microbiome datasets, the National Microbiome Data
Collaborative (NMDC) was established in 2019 to support
microbiome data exploration and discovery through a
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collaborative, integrative data science ecosystem (Wood-
Charlson et al., 2020; Eloe-Fadrosh et al., 2021; Vangay et al.,
2021). The NMDC aims to both provide an interface that allows
users to search for microbiome samples and omics data based on
sample metadata and omics data results, and also provide
exemplary open-source analytic workflows for processing
petabyte level (10'° bytes) raw multi-omics data in
microbiome research and producing FAIR compliant
(Wilkinson et al., 2016) interoperable and reusable annotated
data products. Compared to a typical microbiome study at
gigabyte (10°) scale, the scope of planned data processing in
NMDC represents a 10° fold increase.

Bioinformatics workflows have their own set of requirements
compared to the more general and increasingly popular data
science practices. For example, the coexistence of different file
format standards, various upstream sample collection and
preparation methods, and often incomplete sample metadata
all require workflow developers to have a comprehensive
understanding of both the biology underpinning the analyses,
as well as the related statistical and computational methods.

In this paper, we provide a perspective and review some
challenges faced since the inception of the NMDC and the
implementation of solutions to support standardization and
cross-study, cross-sample microbiome comparisons. We
believe these challenges and the proposed solutions are
applicable to any large-scale bioinformatics or scientific data
portal development. We focus on challenges in 1) architecture
considerations; 2) microbiome workflow selections; 3) Metadata
to standardize and manage workflow data products.

2 ARCHITECTURE CONSIDERATIONS

There are two major architecture patterns for data portal design,
namely data warehouse (Gardner 1998; Koh and Brusic 2005)
and data federation (Haas et al., 2002). Though both patterns
support multiple sources to submit data, the major difference is
that with data commons all the data storage, analysis, and access
are provided through a single location instead of from different
participating sites. To avoid duplicating data from its submitters,
the NMDC adopts the data federation pattern. The NMDC
participating institutions can serve as satellite sites, which can
be further categorized by its function as experimental site (where
raw experimental data are generated), computing site (where
bioinformatics workflows are executed), storage site (where raw
and/or workflow output data are stored) or any combination.
There is a separate central site that functions as the central
registry to maintain a global catalog of metadata and data and
to link a set of heterogeneous data sources. The central site
implements an application programming interface (API) that
allows search of the data and communication with satellite sites. It
also hosts the web portal (Figure 1). A new institution can join
the NMDC data federation by registering as a satellite site and
implementing protocols that communicate with the NMDC APL
Adopting the data federation pattern allows different sites to
maintain their own computing environment setup indepently,
e.g., using different job management solutions, such as SLURM
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FIGURE 1| Implementation of a data federation model in the NMDC pilot. The central site implements the NMDC Runtime API that orchestrates the data flow with a
database that serves as the data registry. The Runtime validates submitted metadata against the NMDC schema and detects new jobs to be done based on submitted-
data annotations. Source sites submit raw experimental data and sample metadata to the central site. Compute sites poll the Runtime for new workflow jobs to be done,
claim jobs appropriate for their capabilities, and submit workflow job outputs to the central site. Storage sites store raw workflow outputs. The portal site provides a
web-based interface. One site can serve as both a computing site and storage site. Arrows: 1): Portal site gets data object from HTTP server at a storage site; 2): The
HTTP server retrieves data from a database; 3) A compute site deposits workflow run result data to a database at a separate storage site; 4) Compute sites claim
computing jobs and provide job execution updates to the job tracking mechanism at the Central site; 5, 6, 7): A compute site can also serve as a storage site at the same
time; 8) Compute jobs are associated with the sample metadata; 9) A source site submits sample metadata to the Central site; 10) Central site validates submitted
sample metadata; 11) New jobs are created from the submitted samples metadata and become claimable by compute sites; 12) Sample metadata can be queried; 13) A
set of rules define the type of computing jobs that can be claimed by every Compute site; 14) The Portal site queries metadata.

get data object EV server

(Yoo et al., 2003) or Univa Grid Engine (https://www.altair.com/
grid-engine/), which also brought us some additional
considerations for workflow designs. It also provides the
flexibility to bring bioinformatics workflows (gigabytes in size)
to experimental and storage sites, instead of moving raw omics
data (often terabytes or even larger in size) to a compute site. This
model also allows experimental data generation sites to integrate
with local data services used for tracking critical metadata and
automatically submitting data into the central registry. The
current  NMDC sites are tightly coupled through the
development of the NMDC as the original infrastructure
developers, however future NMDC satellite sites can be more
loosely coupled as they will not be responsible for maintaining the
core infrastructure. Instead, these satellite sites will maintain data
processing and exchange services based on their needs to connect
with the NMDC project.

3 MICROBIOME OMICS WORKFLOW
CONSIDERATIONS

As an increasingly varied array of omics data are being generated
for more and more microbiomes, the NMDC team supports
standardized workflows for the consistent analysis of
metagenomics, metatranscriptomics, metaproteomics, and a
suite of metabolomics data. Open-source bioinformatics

workflows for processing raw multi-omics data have been
developed based on production-quality workflows at the two
Department of Energy User Facilities, the Joint Genome Institute
(JGI) at Lawrence Berkeley National Laboratory (LBNL) and the
Environmental Molecular Sciences Laboratory (EMSL) at Pacific
Northwest National Laboratory (PNNL). For any given set of
omics data processing or analysis, there exist many tools that
typically undergo frequent updates as technologies advance. To
accommodate the goals of providing an expanded search
capability for NMDC users, the primary goal was to deliver a
scalable, open source platform that could provide standardized
results independent of the computing platform used, thereby
accelerating and enabling future downstream comparative
microbiome analytics. It is also worth noting that to help
standardize the workflow outputs for cross-study comparisons,
we have specified the parameters used in all the NMDC
workflows. In other words, all the workflows are static to keep
output consistency. Given the various experimental instruments
for generating any of these omics data and the associated
complexities of instrument-specific biases and error models,
we decided to initially focus on the most popular methods
applied to microbiome samples developed and maintained by
the JGI and EMSL, including Illumina sequencing data, bottom-
up proteomics using data-dependent acquisition (Stahl et al,
1996; Kalli et al., 2013), gas chromatography mass spectrometry
(GC-MS) based untargeted metabolomics (Hiller et al., 2009;
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Fiehn 2016) and Fourier transform ion cyclotron resonance mass
spectrometry of complex mixtures (FT-ICR MS) (Kujawinski
2002; Ghaste et al., 2016; Corilo et al., 2021) data, in our initial
workflow implementations and software package releases. A
Liquid chromatography-mass spectrometry (LC-MS) based
workflow is under development and will be available later this
year.

3.1 Common Assumptions in Workflows

Many of the challenges in bioinformatics workflows relate to
various assumptions made by the workflow software developers.
Typically, a bioinformatics workflow tool is developed to solve a
data analysis need for a specific experimental design, as well as
specific data types and volumes generated for a specific project
and to be run within a specific computational infrastructure.
Adaptation of specific bioinformatics tools or workflows for a
broader project such as that embarked upon by the NMDC
requires a more thorough analysis of the workflow
requirements and portability needs. The result is a solution
that cannot readily be separated from the developers’
computing environment with various explicit and implicit
assumptions, such as the availability of specific job scheduler
and compiler, Linux kernel module and even a specific
distribution, instrumentation, file naming conversions, and
storage location and formats of the input and output files. We
have also investigated the memory usage requirements of various
software components, particularly metagenome assemblers,
which are known for their high-memory requirements
(Kleftogiannis et al, 2013; Li et al,, 2015). Another implicit
but common assumption is that workflows are for scientists or
humans to execute manually on a handful of datasets, instead of
being automated for many thousands of datasets, and actively
monitored by software, which is linked to workflow scaling.

3.2 Scaling Workflows

Scaling in bioinformatics workflows means the process of
dynamically adjusting compute, storage, and network services
to meet the data processing demands in an automated fashion in
order to maintain availability and performance as utilization
increases. Scaling is a common design requirement in cloud
applications and has begun to attract attention from the
bioinformatics community. Scaling is usually not a
requirement for workflows designed to serve small to medium
scale studies (with perhaps a few terabytes of raw data) since these
workflows can be started manually and queued in a shared job
environment. However, in large-scale studies, workflows are
being used as a service and must be automatically triggered
based on the detection of the availability of new experimental
data and additional computing resources may need to be added
without interruption to existing workflow executions (Clum et al.,
2021). Also, large-scale studies often involve several experimental
laboratories and data may be processed at different computing
sites, which may run different job schedulers. Thus, it is
important that job schedulers have to be separated from the
workflow implementation and be configurable for each
computing site. For example, based on the raw sequencing
data size and complexity, the de mnovo assembly of
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metagenomic and metatranscriptomic data often requires
access to high memory (>1 terabyte) computing nodes. An
algorithm is needed to estimate the memory and time needed
to process a given sequencing dataset and only allow a data
processing site with available big memory nodes to claim such
jobs. When cloud resources are used, the appropriate virtual
machine instance with sufficient memory and storage must be
instantiated. Within the NMDC, a runtime API (https:/
microbiomedata.github.io/nmdc-runtime/) was implemented
that constantly monitors the raw data availability, raw data
type (which decides which workflow needs to run), and the
computing resources available at each computing site
(Figure 1). The runtime API is based on the Global Alliance
for Genomes and Health GA4GH Data Repository Service (DRS)
standard (Rehm et al., 2021). Some other scaling related issues are
listed in Table 1.

3.3 Selection of Workflows Based on Best

Practices

Based on NMDC expertise and general knowledge of the
bioinformatics landscape for varied omics data analysis
software, no available workflows could accommodate our
design needs, e.g., scalability, portability, and reproducibility.
While there is no ultimate gold standard workflow for
performing environmental microbiome omics analyses, the
metagenomics, metatranscriptomics workflows developed at
the JGI and the metabolomics and metaproteomics workflow
developed at EMSL have been rigorously tested with hundreds
and thousands of datasets in the past decade. These workflows,
though developed with the assumptions about their local
computing environments and not easily portable, do cover a
variety of memory and parallelization requirements and follow
some of the best practices, and were chosen as the foundation of
the NDMC workflows (Piehowski et al., 2013; Li et al., 2017;
Clum et al., 2021; Wu et al., 2021). We have introduced several
enhancements on top of these foundations. Firstly, to make these
workflows fully portable and scalable, we have removed or
abstracted all computing environment dependencies by
containerizing all the software components. Secondly, we
implemented all the workflow logic using the workflow
definition language (WDL) (Voss et al., 2017). We also added
standardized workflow output file formats in a schema to verify
workflow outputs are ready for data ingestion, described further
below in the Workflow Metadata section. To help external users
adopt these workflows and run them within their own
computational environments, we have put all the workflow
definitions with test datasets in the NMDC project Github
organization (https://github.com/microbiomedata). In addition
to this open access software, we further provide detailed
documentation (https://nmdc-workflow-documentation.
readthedocs.io/en/latest/). Additional training materials are
also provided, including video instructions on using the
NMDC portal site to examine processed data, and how to run
the NMDC workflows in the NMDC EDGE web application
(https://nmdc-edge.org), which provides access to all available
NMDC omics workflows and is open for public use.
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TABLE 1 | Scaling related considerations.

Small scale studies
(gigabytes to <10

terabytes)
Workflow Rarely used, typically job scheduler
management
Workflow Limited reproducibility within developers’ specific computing environment, lack of
reproducibility long term support
Metadata Usually at intra-study level and nonstandardized
management
Data Management Spreadsheets
Data Query Manual lookup

3.4 Workflow Manager and Workflow
Definition

Containerizing workflow components and adopting a workflow
definition language alone are not sufficient to separate the
concerns of workflow logic and its execution environment. A
workflow manager is still required to cleanly separate the
concerns of workflow definition and workflow execution.
Compared to traditional pipelines utilizing job schedulers or
scripting  languages,  workflow  managers excel at
reproducibility, data provenance and portability (Di Tommaso
et al,, 2017; Wratten et al., 2021). Each data processing site only
needs to install and configure its own data workflow manager
instance based on its resources, such as memory, CPUs, job
queues, and storage. With detailed information retrievable from
the workflow manager’s database, information about workflow
execution status is no longer limited to the computing system’s
job queue itself (e.g., Slurm). This also provides support for
resuming failed workflow executions from where the workflow
stopped instead of at the beginning of the entire workflow.

For the NMDC, WDL was selected over other workflow
languages primarily based on reusable workflow components
and superior standardization, which has also been reported by
others (Perkel 2019). The Cromwell workflow manager is used
in the NMDC due to its native support for WDL (Voss et al,,
2017). Cromwell also provides a rich set of features including
existing support for a variety of batch systems, native support
for containers, “call-caching” to reuse previously executed
tasks and an API to facilitate automation. Several key best
practices that were adopted by the NMDC for specifying
workflows using WDL with component software packaged
in containers are listed below. Figure 2 displays a snippet
of WDL code from the NMDC metagenomics workflow, to
highlight several key considerations when developing WDL
code.

(1) Utilize the WDL “import” function to break down the
complexity in large workflows to smaller components.
This makes the workflow maintenance easier and increases
components reuse.

(2) All workflow tasks should use containers to improve
portability, consistency and reproducibility.

(3) All container images should have published recipes (e.g.
Dockerfiles). This makes it easier for others to understand

Challenges in Bioinformatics Workflows

Large scale studies
and data portals
(>10 terabytes)

Dedicated workflow manager program

Reproducible independent of the computing environment,
better support
Community standard based and enforced

Databases with API access
Database queries and APIs

how an image was generated and make modifications if
needed.

(4) The WDL files should not include any site specific
implementation. The Cromwell configuration file should
be used to handle site integration. This ensures the WDL
is as portable as possible.

(5) Workflows should avoid doing major pre-processing or post-
processing outside the WDL. All of the major analysis should
be captured in the WDL. This makes the analysis more
transparent. For example, generating gene expression
information has to be part of the WDL.

(6) Container images should be versioned and the version should
be specified in the WDL. This makes the workflow more
transparent and ensures that the tasks specified in the WDL
are in sync with the image contents. For example, if a new
tool version is used that has different command-line options,
the WDL and image version can be changed in sync with one
another.

(7) Reference data should be versioned and the workflow should
specify which version of the reference data is to be used. This
avoids potentially format mismatches and helps with
reproducibility and transparency.

(8) Workflow WDL have to provide a metadata section that
includes the workflow version and author information.

3.5 Workflow Deployment

One of the common challenges in complex bioinformatics
workflows is how to best resolve the conflicting software
dependencies, and managing the versioning of component
software. For NMDC, we addressed this challenge by
separating the workflow definition and its runtime by the
adoption of workflow managers and WDL as described in the
previous section. We also packaged all the runtime requirements
for each workflow in Docker containers (Merkel 2014) and made
them freely available to non-commercial users (https://hub.
docker.com/u/microbiomedata). Some of the runtime
components are developed by third parties and have
restrictions for commercial users. However, researchers can
still use the NMDC workflow WDL definitions by either
acquiring appropriate component software licenses (free and
open to non-profit organizations and universities). Currently,
the NMDC workflows have been deployed to NMDC partner
organizations: the National Energy Research Scientific
Computing Center (NERSC), the Environmental Molecular
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import "rqcfilterwdl" as rqc

. import "jgi_assembly.wdl" as assembly
import "annotation_full.wdl" as awf
import "ReadbasedAnalysis.wdl" as rba
import "mbin_nmdc.wdl" as mags

workflow nmdc_metag {
String container="bfoster1/img-omics:0.1.9"
String proj
String input_file
String outdir
. String database="/refdata/img/"
String resource
String informed_by

String url_base="${url_root}${proj}/annotation/"
Boolean paired = true

. call stage {
input: container=container,

input_file=input_file
}
call rqcjgi_rqcfilter as qc {
input: input_files=[stage.read),
threads=16,
memory="60G"
}
call assembly.jgi_metaASM as asm {
input: input_file=qc.filtered, paired=paired
}
call awf.annotation {
input: imgap_project_id="nmdc_",
imgap_input_fasta=asm.contig,
’ database_location=database
}

if (paired){
call split_interleaved_fastq {
input:
. reads=qc.filtered[0],
container="microbiomedata/bbtools:38.94"
}
}

meta {
. author: "Shane Canon"
email: "scanon@lbl.gov"

version: "1.0.0"
}
}

String? git_url="https//github.com/microbiomedata/mg_annotation/releases/tag/0.1"
String? url_root="https://data.microbiomedata.org/data/"

FIGURE 2| Code snippets of the metagenomic data workflow to illustrate the WDL best practices listed in this paper 1: example use of the “import” function (best
practice point 1); 2-4: examples of using containers in WDL (best practice points 2-4 and 6); 5-8: examples of avoid site specific implementation (best practice point 4); 9:
workflow metadata information (best practice point 8). The full workflow code is available from https://github.com/microbiomedata/metaG.

. import component WDLs and assign a name

. Define which container is used

' Define which container is used

. Call work component tasks and reference files

‘ Use output from other component as input

. Use output from other component as input

. Refer to local files as variables

. Conditional operation

. Workflow metadata information

Sciences Laboratory (EMSL), the San Diego Super Computing
Center (SDSC), and the Los Alamos National Laboratory
(LANL). Adding another data processing site or running it in
a local computing environment only requires installing and
configuring Cromwell and Docker. In high performance
computing (HPC) environments where elevated user privilege
is a concern, the NMDC workflow containers have also been
adapted to other software container solutions that are HPC-
friendly, e.g., Singularity (Kurtzer et al., 2017), Shifter (Jacobsen

and Canon 2015), and Charliecloud (Priedhorsky and Randles
2017).

Through our experience in packaging and testing of these
workflows in different environments, we have learned a few
lessons. One is user privilege management. For example, the
Cromwell user account needs to have access to all the virtual
storage volumes used by the workflow runtime containers. Also,
when packaging tools into WDL, workflow developers should
really avoid writing to the “/tmp” directory in containers since
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default settings of writing to “/tmp” is prohibited in Singularity
and Charliecloud containers, while being allowed in Docker and
Shifter. For testing purposes, we also suggest a minimum of
including two testing data sets for each workflow. One smaller
test data set can be used for rapid workflow logic validation. The
second data set should be complex enough to test memory usage
and allows for benchmarking and estimation of CPU and
memory usages. In addition, when building software in the
containers, chip specific instructions have to be avoided in
order to maintain portability. This can mean trading off
performance for portability. We have evaluated our workflow
containers in both physical and virtual environments running on
Intel and AMD processors. We have tested these workflows in
various HPC facilities (NERSC/DOE, Expanse/San Diego
Supercomputing Center, Texas Advanced Computing Center,
Los Alamos National Laboratory, Environmental Molecular
Sciences Laboratory/DOE). For some workflows that do not
require large memories or databases to run, we have also
tested on laptop computers. The NMDC continues to evaluate
support for non-x86-64 architectures based on support of the
underlying tools and the prevalence of these systems within the
community. Presently, many of the underlying tools have not
been tested or optimized for architectures such as ARM64 or
PPC64 so supporting these is not in any near-term plans.
Likewise, GPU support in most of the tools is limited or non-
existent. We will continue to track any improvements and make
adjustments in the NMDC workflow and images as these tools
and community access evolves.

3.6 Workflow User Interface and

Customization

The intended users include all microbiome researchers, including
both bench scientists and bioinformaticians. To assist bench
scientists to use the NMDC workflow, we have carefully
engineered a web-based user interface (NMDC EDGE) to run
the NMDC workflows interactively (https://nmdc-edge.org).
Since we aim to provide a catalogue of the existing
microbiome data based on unified analysis processes, we made
a design decision to use static workflows with fixed parameters for
all the data that feeds into the NMDC portal. Customized
workflow runs, including changing the default workflow
parameters and even modified the workflow components for
internal analysis needs that are not submitted to the NMDC
portal will be supported through the KBase (https://www.kbase.
us) and future versions of the NMDC EDGE.

4 METADATA

Metadata in the NMDC includes both sample metadata that
describes the origin and environmental attributes of the biological
sample collection, as well as metadata related to the omics
analysis processes employed. The NMDC schema controls
which metadata elements are applicable or required for all
data within the NMDC, whether it is sample data, or data
generated from workflows. The NMDC schema is defined
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using Linked Data Modeling Language (LinkML, https://
linkml.io/linkml/). LinkML is a rich modeling language that is
used to create schemas that define the structure of data, allows for
rich semantic description of data elements, as well as leveraging
JSON-Schema for validation. For example, the relationship
between studies, samples, workflows, and data objects is
described using LinkML, and the metadata dictionary for
samples is described using LinkML.

For sample metadata, our schema leverages the Minimal
Information about any Sequence (MIxS) data dictionary provided
by the (Genomics Standards Consortium (GSC, https://gensc.org/
mixs/) (Yilmaz et al, 2011), as well as environmental descriptors
taken from the Genomes Online Database (GOLD) (Mukherjee et al.,
2021), and OBO Foundry’s Environmental Ontology (EnvO)
(Buttigieg et al., 2013).

The metadata we focus on in this review revolves around
descriptive metadata on the procedures used to generate and
process the data. The NMDC leverages the PROV ontology
standard (https://www.w3.org/TR/prov-o/), which is a well-
established practice in the semantic web community, to
provide provenance information. Instances of workflow runs
are represented as PROV activities. We include distinct
schema classes for workflow executions such as Metagenome
Assembly, Metabolomics Analysis Activity, Metagenome
Annotation Activity, etc. Each of these has generic metadata
associated such as time of execution, site of execution, inputs,
outputs, etc., in addition to metadata specific to each type of
workflow. For example, metabolomics activities have metadata
such as calibrations, metabolite quantifications, instruments use.
Where possible, these descriptors are mapped to existing
standards and vocabularies. An example is provided in
Figure 3. A Uniform Resource Identifier (URI) and associated
workflow activities have been assigned to all the workflow output
files that are ingested to the backend database. In the example for
Figure 3, the URI “nmdc:MAGsAnalysisActivity” is assigned for
the outputs of the metagenome binning workflow. This approach
lays the foundation for checking workflow output integrity and it
also helps to guide the user interface development decisions for
the portal website (e.g., what types of searches will be allowed).

Metadata can also be used to steer the workflow execution. For
example, nucleotide sequencing data generated from the Illumina
platform can be either single-ended (SE) or paired-ended (PE)
and PE reads can be stored either in two separate fastq files or
interleaved in one fastq file, which makes three types of potential
input formats for the NMDC metagenomic and
metatranscriptomic workflows. The NMDC workflow supports
both SE and PE reads. We plan to automate the detection of the
SE/PE reads and leverage the sample preparation and
instrumentation metadata to set parameters to the workflow
and to trigger appropriate workflow component tasks.

5 SUMMARY AND FUTURE

Here, we have outlined some of the challenges and considerations
in implementing disseminable standardized bioinformatics
workflows for microbiome omics data, with the goal of
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{"mags_activity_set":
[
{

"id": "nmdc: f2fc8f5aade3092ea97769f0a892d2a¢
"name': "MAGs activiity 1781_86101",
"was_informed_by": "gold:Gp@115663",
"started_at_time": "2021-01-10",
"ended_at_time": "2021-01-10",
"type": "nmdc:MAGsAnalysisActivity",
"execution_resource": "NERSC - Cori",

"git_url": "https://img.jgi.doe.gov",
“has_input": [

"nmdc:0a3d@0715d01ad7b8f3aee59b674dfe9",
"nmdc:668d207be5ea8441988fbfb2813564cc",
"nmdc:b7e9c8dobffddl3ace6f862a61fa87d2"

1,

"has_output": [
"nmdc:818f5a47d1371295f9313909eal2eb50",
"'nmdc:e0b7421514f976cbh7ad8c343cf3077a9",
"nmdc:a755bb87aded36aefbd8022506a793c7",
“nmdc:1346fe25b6ff22180eb3a51204e0b1fc"

1,

"input_contig_num": 169782,

"too_short_contig_num": 159810,

"lowDepth_contig_num": @,

"unbinned_contig_num": 9483,

"binned_contig_num": 489,

"mags_list": [

{

“bin_name": "bins.1",
“number_of_contig": 52,
“completeness": 11.42,
"contamination": 0.21,
"gene_count": 250,
"bin_quality": "LQ",
"“num_16s": @,
"“num_5s": 1,

0,

"“num_23s"
“num_tRNA":

"bin_name": "bins.2",
"number_of_contig": 426,
"completeness": 51.25,
“contamination": 10.34,
"'gene_count": 2548,

MAGsAnalysisActivity/).

Database NamedThing Activity
WorkflowExecutionActivity MAGBIn
magg list 0..*
mags activity|set 0..*

FIGURE 3 | Example NMDC workflow metadata. Left panel shows an example JSON output snippet of a MAGSAnalysisActivity, which is a record of the
metagenomic assembled genome (MAG) workflow execution. It includes generic workflow metadata (start/end time, execution resource) and MAG-specific metadata
and workflow outputs. The full JSON example is available on-line (https://github.com/microbiomedata/nmdc-metadata/blob/master/examples/MAGs_activity.json).
Right panel shows a visual depiction of the MAGSAnalysisActivity class in the NMDC LinkML schema (https://microbiomedata.github.io/nmdc-schema/

MAGsAnalysisActivity
input_contig_num:integer ?
binned_contig_num:integer ?
too_short_contig_num:integer ?
lowDepth_contig_num:integer ?
unbinned_contig_num:integer ?
execution_resource(i):string
git_url(i):string
type(i):string
started_at_time(i):string
ended_at_time(i):string
id(i):string
name(i):string ?
used(i):string ?

providing microbiome analyses that may be cross-compared
across projects, regardless of the samples, or the
computational environment used to generate the results. The
initial efforts from the NMDC have shown how some of these
challenges can be addressed by adopting workflow managers,
workflow definition language, containerizing workflow runtimes,
and developing a data schema for workflow files and their
contents. The NMDC has also adopted a data federation
model to allow multiple sites (as either data generation,
computing, or data storage sites) to contribute to the NMDC
while minimizing resource challenges on any single site.

While we document progress towards robust and
standardized analyses of various microbiome omics data
types, many challenges remain. For example, the data flow
in the NMDC is not yet entirely automated which would
significantly increase processing capacity. The NMDC is

developing a runtime API to fully automate the processing
of microbiome data and that supports continuous
integration and continuous development. We are also
actively developing and supporting a public-facing NMDC
APIL We have already implemented a set of APIs for satellite
sites to register samples and submit workflow outputs in JSON
to the portal. Currently, this API is used by the NDMC
developers and will be open to external developers. We also
plan to provide a set of APIs for programmatic data access,
such as query and import data from the NMDC (e.g., the KBase
project plans to provide this utility from within the KBase
platform). Concomitantly, the optimization of workflow
parameters based on sample metadata is also being
undertaken, which would then further support automation.
The NMDC data that have been integrated thus far have been
generated from JGI and EMSL, both of which serve as
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experimental data generation sites, compute sites, and storage
sites. Separate omics data processing workflows have been
developed, and the integration for these data happens through
the harmonization of the sample metadata and the functional
annotation information. Specifically, the metagenomics,
metatranscriptomics, and metaproteomics workflows rely on
the same underlying annotations to allow cross-comparisons.
At this time, the integration of metabolomics data is only
available through the sample metadata information. The
workflows and infrastructure envisioned to process future
microbiome data, including all microbiome data stored in the
short read archive (SRA), are envisioned to be deployed as omics
analysis platforms as a service (PaaS) in the cloud for prompt data
processing. The NMDC team will coordinate with the user to
decide the best strategy to process or deposit a large amount
of data.

Lastly, one of the largest and likely ever-present challenges
that remains surrounds the topics of sustainability and
updating results. These must be considered given the
constantly changing landscape of our knowledge of the
biological world, and the tools and technology (both
instruments and  algorithms) used to interrogate
microbiomes. Workflow extensibility and database version
reliance regularly factor into workflow design considerations.
Like almost all bioinformatic workflows, the NMDC workflows
rely on several reference databases for genome annotation,
metagenome-assembled ~ genome  binning,  taxonomy
classification, and protein and metabolome assignments. As
a result, alternative databases, or updates to any of these
databases can lead to differences in workflow outputs, which
engender important considerations: when to reprocess sample
data and how to control the versions of the workflows,
databases, and their outputs. An open question is when it is
necessary to rerun the analysis on all or a subset of microbiome
omics data to update the analysis results. A rerun of the
workflow may be triggered by a major update in either the
database or the workflow itself. For example, a major change in
the NCBI taxonomy database, which is used to identify taxa
within metagenomic and metatranscriptomic data, would
warrant reprocessing samples affected by these changes.
Similarly, newly discovered genomes could enhance both
taxonomy and annotation results, or new discoveries in
protein structure and function or new metabolites may
require reanalysis of metaproteome and metabolomic
datasets as well. In addition, new or improvements in
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