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The human upper respiratory tract is the reservoir of a diverse community of commensals
and potential pathogens (pathobionts), including Streptococcus pneumoniae
(pneumococcus), Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus
aureus, which occasionally turn into pathogens causing infectious diseases, while the
contribution of many nasal microorganisms to human health remains undiscovered. To
better understand the composition of the nasal microbiome community, we create a
workflow of the community model, which mimics the human nasal environment. To
address this challenge, constraint-based reconstruction of biochemically accurate
genome-scale metabolic models (GEMs) networks of microorganisms is mandatory.
Our workflow applies constraint-based modeling (CBM), simulates the metabolism
between species in a given microbiome, and facilitates generating novel hypotheses
on microbial interactions. Utilizing this workflow, we hope to gain a better understanding of
interactions from the metabolic modeling perspective. This article presents nasal
community modeling workflow (NCMW)—a python package based on GEMs of
species as a starting point for understanding the composition of the nasal microbiome
community. The package is constructed as a step-by-step mathematical framework for
metabolic modeling and analysis of the nasal microbial community. Using constraint-
based models reduces the need for culturing species in vitro, a process that is not
convenient in the environment of human noses.

Availability: NCMW is freely available on the Python Package Index (PIP) via pip install
NCMW. The source code, documentation, and usage examples (Jupyter Notebook and
example files) are available at https://github.com/manuelgloeckler/ncmw.

Keywords: microbial communities, nasal microbiome, computational biology, genome-scale modeling, constraint-
based modeling

1 INTRODUCTION

The human nose community is far more than a convenient model system, while it plays vital roles in
human health and global nutrient cycles (Widder et al., 2016). The previous work focusing on
ecological interactions can identify whether the interacting partners promote or hinder each other’s
growth (Carrara et al., 2015). Studying these interactions on their own does not reveal the
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mechanistic details of the nasal microbiome community or its
composition and structure. The interaction mechanisms, either
potential competition or cooperation of species in the
community, can determine the species assembly processes in
the community. Understanding the pair-wise or multispecies
interactions in the human nose community is a starting point
for manipulating microbiomes for therapeutic and prophylactic
purposes. However, this is often made difficult due to the inability
to culture and co-culture the various species of human nasal
microbiota in vitro.

The study on human gut microorganisms and their community
has receivedmuch attention compared to that on other communities.
Different approaches such as high-throughput studies, modeling
methodologies such as GEMs (Klitgord and Segrè, 2010; Freilich
et al., 2011; Zomorrodi and Maranas, 2012; Seif et al., 2019; Diener
et al., 2020), AGORA (Levy and Borenstein, 2013), community and
systems-level interactive optimization (CASINO) (Levy and
Borenstein, 2014), BacArena (Bauer et al., 2017), and GutLogo
(Lin et al., 2018), and databases such as virtual metabolic human
database (VMH) (Noronha et al., 2019), have been developed on
microbial communities mainly focusing on the four human sites,
such as gut, oral, skin, and vaginal. Although resources on human
nose research have been limited, a direct application of existing
modeling pipelines available for the gut is consequently difficult due
to both aerobic and anaerobic living conditions for human nose
bacteria (Man et al., 2017; Proctor and Relman, 2017). Some
researches represent the role of nasal microbial inhabitants in
inhibiting the pathogens or turning commensal into a pathogen
(Yan et al., 2013; Liu et al., 2015; Bomar et al., 2018). However, factors
that influence pathogens have not been defined yet. A synthetic nasal
medium (SNM3) has been developed by Krismer et al. (2014) that
permits consistent growth of S. aureus isolates. Yet, there are still
members of the nasal microbiome that remain unculturable even in
this medium. Using this medium simulates the bacterial growth
within the human nose. In addition, GEMs and constraint-based
modeling are used to biochemically and physicochemically predict
the phenotype from genotype without the need for a bacterial culture
of species in the lab (Shoaie et al., 2013; Cook and Nielsen, 2017; van
der Ark et al., 2017).

Here, we developed a workflow to construct a predictive
computational model of the human nose microbial
community and its interactions. The workflow is highly
flexible and can adapt to changes or updates whenever yet
unexplored or modified models are added. This can be used
for pair-wise interactions and a more extensive system with more
species. However, the computational complexity increases with
the number of species. In particular, this is the first time a
comprehensive flux balance analysis workflow has been
created for the nasal human microbial community. The
workflow relies on a multilevel and multi-objective
optimization problem to grasp commensal, competitive, or
further interactions. Like OptCom (Zomorrodi and Maranas,
2012), a multilevel optimization framework for the metabolic
modeling, we also considered species-level and community-level
criteria in defining the objective function. Therefore, the optimal
growth of each species in the community and the optimal growth
of the entire community have been taken into account.

Additionally, we explicitly included different weights in the
definition of the objective function of the community based on
the growth ratio of species in the community to estimate more
realistic and quantitative metabolic predictions.

In NCMW, we integrate diverse types of available definitions
for media those are subsets of the leading preferred media, e.g.,
SNM3. They may simulate environmental conditions that favor
commensal or competitive interactions (Carrara et al., 2015).
These different media definitions facilitate knowledge
interchange within the theoretical, experimental, and
computational definition of the human nose environment.
This example demonstrates that systematic model-based
analysis has the ability to detect such potential nutrients in a
muchmore efficient way in adoption between wet and dry labs. In
addition, adding any newly defined media to our workflow is
feasible. Hence, the aforementioned one represents the
compatibility of our package for different communities such as
the gastrointestinal tract, skin, and vagina, in the case of the
definition of respected media. This strategy is entirely
implemented as a Python package and available as an open-
source software package named NCMW. It facilitates integrating
genome-scale metabolic models in the human nose environment
for understanding the complexity of this community.

To validate our work and demonstrate the ability of NCMW, it
was applied on the nasal microbial community involving
Staphylococcus aureus and Dolosigranulum pigrum
(Mostolizadeh et al., 2022). Next, NCMW is also employed to
model the more complex system of the five abundant nasal
microbial to show different applications of the package on a
large community and documented as an example to the package.

Researchers can easily incorporate, access, modify, and extend
our tool to develop their research protocols for scientific analysis
on the community. The workflow discussed here lays the
foundation for future testing of human nasal species as
potential probiotics to prevent or antagonize colonization of
the nares by pathogens, especially Staphylococcus aureus. We
believe that NCMW can unravel some biological questions on
how the nasal community shapes and the members can have
widely different effects on each other.

2 MATERIALS AND METHODS

The workflow’s essential methods and approaches depend on
computational models for inferring fluxes in biochemical
networks. In order to estimate the metabolic fluxes of the
model organism, we use GEMs. The approach used here is
therefore based on high-quality genome-scale models
generated for species within the community, which we will
discuss in more detail later.

2.1 Flux Balance Analysis and Flux
Variability Analysis
Flux balance analysis (FBA) is a linear optimization method that
maximizes a biologically motivated objective function. Biomass
production, for instance, is a widely used objective that facilitates
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calculations of an organism’s growth rate. Other examples
include the production rate of a biotechnologically relevant
metabolite. A meaningful objective function enables flux
balance analysis (FBA) to predict the flow of matter through
the network (Orth et al., 2010).

Flux variability analysis (FVA) calculates the minimal and
maximal possible flux through a reaction channel in the model.
Simultaneously, flux variability analysis (FVA) maintains a
specific network state. For instance, it might sustain 90% of
the maximal possible biomass production rate. Such analysis is
particularly useful for analyzing the robustness of metabolic
models (Gudmundsson and Thiele, 2010).

2.2 Community Approaches
There are different approaches for creating a community model.
They are categorized as compartmentalized, pooled reactions,
and nested analysis methods.

2.2.1 Pooled Community
This approach combines metabolic reactions and metabolites
from all members of a species in one shared compartment. In
cases where more than one species catalyzes the reaction, only
one reaction is assigned. Although this community minimizes the
computational burden, it has the weakness of not specifying
which species use or produce a particular enzyme or
metabolite (Taffs et al., 2009). As a result, the model can be
used to investigate the community’s growth but not to analyze the
interaction between community members.

2.2.2 Shuttle Community
In this approach, each exists in a separate compartment.
Individual species then interact in an additional “external”
compartment, representing the extracellular space. This shared
external space allows for interspecies interaction through “shuttle
reactions.” Thus, we can explicitly evaluate how bacterial species
will interact with other community members as well as the
surrounding environment. Furthermore, the shuttle reactions
that identify shared reactions between species can also be
defined based on our interests (Klitgord and Segrè, 2010).

2.2.3 Community Optimization
As standard, we interpret community growth as a linear
combination of individual’s growth, i.e.,

maxG � ∑
i

wigi

Subject to :
∀i: Si]i � 0

Ssh+ex]sh+exi � 0
Sex]ex � 0,

(1)

where Si, S
sh and Sex denote the stoichiometry matrices to ensure

mass-balance within any reaction. We denote a vector of reaction
fluxes by ].

The internal reactions ]i are essentially unbounded. We use a
lower bound of −1,000 mmol/(gDW·h) and an upper bound of
1,000 mmol/(gDW·h) as default. The lower bounds for the
community exchange reactions ]ex are defined by the medium,

e.g., typically −10 mmol/(gDW·h). For exchange reactions, we
add an associated shuttle reaction that mediates the uptake from
the external medium under mass balance constraints, i.e., the sum
of individual fluxes must equal the community exchange flux.
These reactions allow interaction between community members,
i.e., model i can produce metabolites for model j. We assign each
of them a lower bound of −50 mmol/(gDW·h) and an upper
bound of 1,000 mmol/(gDW·h). As default for any metabolite
that a model can uptake or secrete, we add associated shuttles.
Nevertheless, we also specify the set of reactions for which
shuttle reactions should be added (all others are modeled as
regular exchanges). This kind of community is also employed
in SteadyCom or MICOM (Chan et al., 2017; Diener et al.,
2020).

Notice that ifwigi = 0, we consider the community member i as
“dead” and thus would be expected that all associated fluxes are
zero, especially all shuttle reactions should have zero flux, as a
“dead” community member should not be able to produce or
consume metabolites into the external environment.
Unfortunately, this behavior is not guaranteed by the
constraints imposed. If wigi = 0, any pathway that does not
provide biomass gi can be used to produce metabolites to
increase the biomass of other models. This is unrealistic and
should be prevented. To do so, we add an additional linear
constraint to each shuttle reaction. We impose that
−Cwigi ≤ ]shi ≤Cwigi, whereas C is a positive constant which
can be interpreted to regularize the effect of this constraint. This
clearly ensures that if wi = 0 or gi = 0 also ]shi � 0. The constraint
ensures that the uptakes or secretions of any model must be
proportional to their growth, whereas C is proportionally
constant. If we choose C as a large number, i.e., C = 10,000,
then this constraint has almost no effect if wigi > 0.

Consistently with Diener et al. (Diener et al., 2020), we
observed that optimizing this objective can lead to solutions
where only a few taxa grew with high growth rates, and all the
other community members had growth near zero. Naively, we
could enforce all growth gi ≥ gmin, yet if a single model is unable to
obtain gmin, then there will be no feasible solution. We
alternatively ensure that each community member must reach
a certain percentage of the total community growth, i.e., wigi ≥ αG
with α ∈ [0, 1]. Diener et al. (Diener et al., 2020) proposed the
cooperative trade-off method, which first maximizes the
community objective to obtain Gmax. For a given trade-off α ∈
[0, 1], the solution is then obtained byminimizing∑ig

2
i under the

constraint that G ≥ αGmax. This ℓ2 regularization promoted a
non-sparse solution and was shown to yield more accurate
growth estimates for metabolic models in the human gut
(Diener et al., 2020).

In addition, by defining different weights in the optimization
function for each species, an abundant profile for each species is
scaled to predict requirements for inhibiting the pathogens (Chan
et al., 2017; Mostolizadeh et al., 2019). This indeed enables the
determination of the range of allowable fluxes to impose
conditions for increasing or decreasing the commensal or
pathogenic species’ growth rate and infers a reasonable
presupposition for the experimental test (Chan et al., 2017;
Mostolizadeh et al., 2019).
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2.3 Media
A growth medium is a list of nutrients designed to support the
growth of microorganisms. There are different types of media
suitable for growing different types of cells. Here, we use a
different type of media for growing microbial communities.

2.3.1 The Synthetic Nasal Medium
Krismer et al. (Krismer et al., 2014) developed a unique SNM3,
which has been shown to provide all requirements for a variety of
different nasal bacteria. SNM3 is an essential step toward an
in vitro testing system for the human nose and is defined as the
default medium in our Python package.

2.3.2 Competition-Inducing Medium and
Cooperation-Inducing Medium
First, all exchange metabolites are provided at the minimal required
amount computed by FVA. Then, the competition-inducingmedium
(COMPM) is defined as the ranges of fluxes of the exchange reactions
that support its maximal biomass rate (MBR) while they are in the
minimal amount (Freilich et al., 2011). Therefore, in this medium,
each species is allowed for reaching its maximum biomass rate.
However, within a community, any resource overlap should reduce
the individual biomass rate.

Although, a cooperation-inducing Medium (COOPM) is
defined as a set of metabolites that support only a small
positive growth rate such that the removal of any metabolite
from the set would force the system to have no such solution
(Freilich et al., 2011). These twomedia are determined as rich and
poor media, which are a subset of any main media of interest
(based on our default setting, they are a subset of SNM3).

2.4 Similarity and Consistency
The nasal microbial community comprises various species living
together and plays an essential role in human health. To identify
the interaction of members, we would first focus on how the GEMs of
species are qualitatively consistent and how similar they are. To detect
the consistent part of a network or blocked reactions, an algorithm
called FastCC is applied (Vlassis et al., 2014). FastCC is based on
standardMatLAB (Vlassis et al., 2014), although this was also adjusted
based on a pure LP implementation for cobra users1. In addition, the
Jaccard coefficient can be used to measure the similarity between the
two sets, in comparing the overlap of reactions andmetabolites between
species (Jaccard, 1912). The Jaccard coefficient can be defined as the size
of the intersection of the two sets divided by the size of the union of the
two sets (Tan et al., 2016). Therefore, if the Jaccard coefficient equals
one, two sets are identical, while zero indicates two disjoint sets.

3 RESULTS

3.1 Implementation
The core capabilities of NCMW are set up by the installation of
the package via pip. All dependencies are installed as the Python

package NCMW. The only requirement that is not installed
(despite obvious ones such as Python) is some solver that can
minimize quadratic objectives and is supported by pycobra
(Ebrahim et al., 2013) (but also just for some operations).

The entire folder NCMW is shown in Figure 1 and is as
follows:

NCMW: < Data.
This folder includes four sub folders, namely configs, hydra,

medium, and models.
NCMW: < Data < Configs.
These are used for the default setting of maximum lower and

upper bound of reactions −1,000 mmol/(gDW·h) to 1,000 mmol/
(gDW·h).

NCMW: < Data < Hydra.
We use hydra (Yadan, 2019) to support, e.g., parameter

overriding. This folder contains all default parameters for the
scripts. All can be overwritten in the console or by modification of
the file.

NCMW: < Data < Medium.
This folder contains the default SNM3. Any medium of user

interest can be placed here, to the server as a new default medium.
All derived media will then be based on the medium specified
within the parameters.

NCMW: < Data < Models.
All models of participating species in the community must be

accessible in this folder. One can either add additional models to
the workflow or create a new folder and properly overwrite the
corresponding parameters.

NCMW: < Docs.
This folder contains all documents related to how to work with

the workflow. The documents are readable via https://
manuelgloeckler.github.io/ncmw/as well.

NCMW: < NCMW.
The main folder is organized into five parts: setup, analysis,

community, utils, and visualization.
NCMW: < NCMW <setup.
This is used to set the default bounds as specified in data/

configs and the medium as specified in data/medium. It is also
used to gap-fill the model with reactions or the medium with
metabolites, such that all models obtain growth on the specified
medium.

NCMW: < NCMW < analysis.
Analysis performs flux variability analysis and visualizes

results on all exchange reactions, as shown in Figure 2. This
also shows the scaled growth behavior as shown in Figure 3. In
addition, the uptake/secretion overlap between models is
reanalyzed as shown in Figure 4. The similarity of models
based on the number of shared metabolites/reactions as shown
in Figure 5 is computed as well. COMPM, the medium in which
all models are able to obtain their MBR, is computed.

NCMW: < NCMW < community.
Community creates several kinds of community models,

which all are based on Ebrahim et al., (2013). This also
computes the COOPM, which is the smallest medium such
that the community achieves 10% of the MBR, which induces
cooperation. In addition, it visualizes the observed interactions
between models, for instance, in Figure 6 and investigates the

1https://cobrapy.readthedocs.io/en/devel/autoapi/cobra/flux_analysis/fastcc/
index.html.
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dependence of community weight and observed growth. This
visualizes how the community looks like and visualizes the
similarity between species in the community in consumption
or production of metabolites as shown in Figure 7. In addition, it
shows the growth of each species in the community.

NCMW: < Output.
This folder contains all log files of each time run. A new

folder that entitled the run date is automatically created and

shows which command was applied while representing the
log file.

NCMW: < Results.
The results folder is automatically created with the default name

defined. This is included in three main folders as setup, analysis, and
community. Each contains the final results associated with the
commands ncmw_setup, ncmw_analysis, and
ncmw_community. Since the scripts automatically produce

FIGURE 1 | Entire nasal community modeling workflow (NCMW). In the first layer, the package includes seven folders. In the second layer, the tasks which each
folder can do are represented. In the last layer, the sub-folders included in each folder are shown. The highlighted part, as the red part, is the main folder of the package.
To run the package and get the results, we use command ncmw setup, ncmw analysis, and ncmw community in the command line.

FIGURE 2 | FVA results for non-zero exchange reactions in species Dolosigranulum pigrum. This analysis only takes non-zero exchange reactions into account
based on the definition of the SNM3. The x-axis in this plot shows the associatedmetabolites to consider exchange reactions, and the y-axis shows the respective flux for
the related exchange reaction.
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FIGURE 3 | Effect of growth behavior on an increase of metabolites. Different models show how the growth scales are affected with abundance of metabolites.
Panel (A) is species Dolosigranulum pigrum. Panel (B), Haemophilus influenzae. Panel (C), Staphylococcus aureus. Panel (D), Staphylococcus epidermidis. Panel (E),
Moraxella catarrhalis. Panel (F), growth comparison.
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some results, NCMW,Data,Hydra helps the users to set up any block
for each part of running scripts out of their interest.

NCMW: < Tests.
Test folder includes test scripts related to commands

ncmw_setup, ncmw_analysis, and ncmw_community.

3.2 Workflow
The NCMW scripts implement a series of tasks to carry out
typical analysis procedures without any programming. We will
discuss each component slightly based on the example of a five-
member community consisting of D. pigrum, S. aureus, M.

FIGURE 4 |Major player within a community is what a model must uptake and what it can produce. Produced metabolites can benefit other community members,
namely Dolosigranulum pigrum, Haemophilus influenzae, Staphylococcus aureus, Staphylococcus epidermidis, and Moraxella catarrhalis. However, too many shared
uptakes can lead to competition within the community (resource overlap).

FIGURE 5 | Similarity of different models of species Dolosigranulum pigrum, Haemophilus influenzae, Staphylococcus aureus, Staphylococcus epidermidis, and
Moraxella catarrhalis based on the Jaccard distance.

FIGURE 6 | Growth of each model, given the weight α. This shows, e.g., at which weight the community is balanced between two species. For instance, the pair-
wise interaction between speciesMoraxella catarrhalis and Dolosigranulum pigrum, Haemophilus influenzae, Staphylococcus aureus, and Staphylococcus epidermidis
is plotted.

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 8270247

Glöckler et al. NCMW: Nasal Community Modeling Workflow

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


catarrhalis, S. epidermidis, and H. influenzae on the SNM3. To
create the community of five members, the already existing
GEMs of D. pigrum (Renz et al., 2021a) and S. aureus (Seif
et al., 2019) were used. In addition, auto-generated GEMs of S.
epidermidis, H. influenzae, and M. catarrhalis by CarveMe
(Machado et al., 2018) version 1.2.2 in combination with
DIAMOND (Buchfink et al., 2021) aligner version
0.9.26.127 were made. The information related to genome
sequences of S. epidermidis, H. influenzae, and M. catarrhalis
found in NCBI (Pruitt et al., 2005) is as follows:

1) S. epidermidis: The annotated genome sequence of S.
epidermidis ATCC 12 228 (Zhang et al., 2003) included a
NCBI Reference Sequence NC_004461.1 with the reference
GCF_000007645.12 and a total sequence length of
2,564,615.

2) H. influenzae: The annotated genome sequence of H.
influenzae Rd KW 20 (Fleischmann et al., 1995; Tatusov
et al., 1996) included a NCBI Reference Sequence
NC_000907.1 with the reference GCF_000027305.13

and a total sequence length of 1,830,138.
3) M. catarrhalis: The annotated genome sequence of M.

catarrhalis BBH 18 (de Vries et al., 2013) included a NCBI
Reference Sequence NC_014147.1 with the reference
GCA_000092265.14 and a total sequence length of
1,863,286.

3.2.1 Setup of the Models
This part of the workflow considers two main parts: to check the
quality of genome-scale metabolic models and the growth on the
given SNM3. Most genome scale models are developed for the gut
environment; thus, they often do not grow on a nasal medium.

3.2.1.1 Quality Report of Genome-Scale Metabolic Models
The workflow starts with genome-scale metabolic models of the
organism of interest, which have been already reconstructed,
manually curated, and refined. The first step in the workflow is to
check the quality of models. The models have been curated using
the FastCC algorithm implemented in COBRApy (Vlassis et al.,
2014). We further use MEMOTE to create a quality report for each
model (Lieven et al., 2020). A single improper model can strongly
influence the community, i.e., a model that can produce much
glucose out of nothing can enormously increase the biomass rates
of all members to infinity [i.e., 1,000 mmol/(gDW·h)] within the
community. Hence, this problematic behavior will become the
dominant source of interaction and render the community
useless for analysis. As a result, bad-quality models should be
removed. The genome-scale metabolic models used here were all
well curated and thus were kept for further analysis.

3.2.1.2 The Growth Report of Models on SNM3
It has been reported whether the models are able to grow on
SNM3, a medium mimicking the environment of the human
nose. The exchange bounds of those metabolites defined for
SNM3 can be set to a lower and upper bound. The default
setting would be −10 mmol/(gDW·h) to 1,000 mmol/(gDW·h)
for all metabolites defined in SNM3 except for oxygen and iron,
which were set at −20 mmol/(gDW·h) to 1,000 mmol/(gDW·h)
and −0.1 mmol/(gDW·h) to 1,000 mmol/(gDW·h), respectively.
As explained in implementation of configs, the setting for bounds

FIGURE 7 |Howmuch concentration of eachmetabolites are consumed or produced by eachmodel when they are in the community for rich SNM3 [panel (A)], the
COMPM [panel (C)], and the COOPM [panel (D)]. In panel (B), we show the individual biomass rates obtained.

2https://www.ncbi.nlm.nih.gov/assembly/GCF_000007645.1.
3https://www.ncbi.nlm.nih.gov/assembly/GCF_000027305.1.
4https://www.ncbi.nlm.nih.gov/assembly/GCA_000092265.1.
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can be changed to the user’s interest. In addition, the default
medium is SNM3, as the main focus of the workflow is the human
nose community. However, implementation of the medium
makes the possibility for defining any new medium based on
the user’s interest.

The growth/no growth on SNM3 is reported in this step. In
case of no growth, the workflow search for the missing
metabolites that can be supplemented to the media allowed
the organism’s growth on SNM3. This step is called the gap-
filled step. The models with growth on SNM3 will be saved as an
XML file. This makes their usage for further steps in the workflow
smoother.

Alternatively, instead of supplementing the medium, we can
add new reactions to the models to achieve growth. This
alternative gap-filling strategy leaves the medium unchanged,
yet one should typically check if the added reactions have
supporting biological evidence.

Indeed, the workflow detected that H. influenzae, D. pigrum,
and M. catarrhalis did not grow on the default SNM3. However,
the gap-filling strategy succeeded. M. catarrhalis achieved a
reasonable biomass rate of 1.2 mmol/(gDW·h) if we substitute
EX_fe3_e in the medium.H. influenzae requires EX_uri_e to
obtain a reasonable biomass rate of 1.7 mmol/(gDW·h). Our
workflow shows that D. pigrum requires three new metabolites
within the medium such as EX_LalaDgluMdap_e,
EX_ile__L_e, and EX_metox_e. Renz et al. (2021a)
identified L-isoleucine and L-methionine as well as 2,6-
diaminoheptanedioate, which is required for peptidoglycan
metabolism of D. pigrum. Our result consists of some similar
chemical derivatives. The solution obtained by the workflow is
not unique; both solutions are optimal (minimal number of
metabolites), yet there may exist other combinations of
metabolites to obtain growth.

3.2.2 Analysis
This part majorly analyzes the models independently. This can
give unique insights and understandings about the behavior
within the community. The analysis focuses on exchange
reactions, as internal reactions are less relevant for the
community.

3.2.2.1 Flux Analysis
For each model, the FBA and FVA are implemented to mimic the
environment of the human nose. The FVA results in the range of
values for which a specific model has a MBR. We show an
example in Figure 2. In addition, the flux boundary for each
species is computed by FVA and saved as tables and plots to show
all non-zero exchange fluxes. FVA yields the upper and lower
bounds for the fluxes through every reaction. With this, FVA can
estimate the optimal solution when paired with the right
combination of other fluxes as almost 100% of the maximum
growth rate is achieved. The reactions sustaining low flux
variability are presumably of higher priority to an organism.
Consequently, FVA is a suitable method for identifying crucial
reactions.

3.2.2.2 Secretion Uptake
Using the FVA results, we can identify non-zero secreted and
taken-up metabolites for each species, i.e., exchange reactions
with strictly positive or negative flux. This step, as a starting point,
helps the user determine how interactions can be. If we know
what each model uptakes or secretes independently, we can draw
certain conclusions about interactions within the community. If
certain species have a similar set of uptake reactions, it may be
reasonable to assume that they compete for common uptakes
within the community. Alternatively, if one species secretes
metabolites taken up by another, this may indicate a
commensal interaction. To draw this conclusion, we must
know if a particular metabolite, either added or removed,
actually harms or benefits the growth rate of a species. This is
shown in Figure 3, for each identified uptake reaction, we show
the effect on the growth by changing the corresponding
metabolite concentration within the medium. Figure 3 reveals
that D. pigrum is highly glucose-dependent but requires many
metabolites in small concentrations to obtain any growth. All
other models admit more complex profiles, e.g., S. aureus also
majorly depends on glucose, but growth can also be improved by,
e.g., EX_pyr_e. Similarly, the growth of H. influenzae can be
strongly improved by EX_glu__L_e, EX_fum_e, and
EX_uri_e next to glucose.

3.2.2.3 Growth
The default setting for exchange bounds is between −10 mmol/
(gDW·h) and 1,000 mmol/(gDW·h) except for oxygen and iron.
We scale this value by a factor k ∈ {1, . . . , 110} to see how the
growth changes, and the results are reported as a plot. This
compares the growth rate of all species to find their potential
growth on an increasingly rich medium. The result is shown in
Figure 3 F. Clearly, S. aureus has the largest growth potential and
is thus expected to outcompete other species within the
community.

3.2.2.4 Similarity
These steps are ended by calculating the Jaccard index between
species to find the similarity between reactions and metabolites of
all species in one glance. Interestingly, all models are somewhat
similar to each other, except S. aureus. This may explain the
difference within the potential growths. Additionally, it shows the
resource overlap, i.e., the Jaccard similarity of exchange reactions,
e.g., D. pigrum and S. aureus have high similarity. Thus, we may
expect that they compete for similar resources.

3.2.2.5 Medium
To design a community, we need to define which metabolites
should be shared in the community since the interaction analysis
would be feasible for experimental validation if not taking all the
significant number of union metabolites into account. To this
end, the COMPM defined in the Materials and Methods part is
computed as a minimum of min FVA fluxes for those exchange
reactions that are common and only take the corresponding min
FVA flux for uncommon ones and are saved as a JavaScript
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Object Notation (JSON) file. This medium is a subset of the
default medium, based on our setting, which is SNM3.

3.2.3 Community
Last but not least, we create a community model to analyze the
interaction between species as a pooled or compartmentalized
community with the shuttle reaction. Here, we focus on the
compartmentalized community as it allows detailed investigation
into metabolite exchange.

3.2.3.1 Computation of the Maximal Biomass Rate of the
Communities
The computation of the MBR for the community is possible by
setting which approach for construction of the community is used
and which defined medium is applied. Additionally, due to
different growth between species, the weights used to compute
objective functions in the community can be set manually. The
weights can represent the (relative) abundances of each species
within the community, yet this assumes that the biomass rate of
each model is well calibrated concerning each other.
Alternatively, we can see them as free parameters which can
be set to achieve a realistic community behavior. Analyzing the
community with uniform weights can be challenging if a single
species can achieve a comparably high biomass rate. Thus, the
community solution will only allow this community member to
have growth. Hence, the workflow implements several methods
to counteract this problem. First, we can set “fair” weights, which
are inversely proportional to the individual biomass rates.
Therefore, the growth within the community is not only
majorly determined by individual biomass rates but also how
good or bad the interaction with other community members is.
Alternatively, we can change the community objective to either
ensure that community members must reach a certain percentage
of community growth or use cooperative trade-off (Diener et al.,
2020).

3.2.3.2 Community Summary
The community summary report contains all exchanges between
community members or the medium. To show how the
community summary works, for instance, a community
summary of five species is visualized in Figure 7, while
uniform weights are applied. On the rich SNM3, the model
predicts that S. aureus and H. influenzae admit significant
growth rates, whereas all other community members are close
to zero. As glucose majorly affects the growth of S. aureus, it
indeed uptakes the majority of glucose within the medium as
visualized in Figure 7. Glucose is only shared with D. pigrum, the
second major glucose-dependent species. However, this glucose
deficit seems to be compensated by S. aureus through the uptake
of EX_pyr_e (which we identified previously as beneficial for
growth (Mostolizadeh et al., 2022) and experimentally observed
that pyruvate was consumed instead of glucose to produce lactate
for balancing the reducing equivalents (NAD+) (Carvalho et al.,
2017)). This excess amount is not provided by the medium but by
M. catarrhalis. On the other hand, M. catarrhalis and D. pigrum
provide EX_fum_e, which is the major contributor to the
growth of H. influenzae, which then provides outstanding

amounts of EX_succ_e for M. catarrhalis and S. aureus.
This serves as one example of a complex commensal
interaction cycle that can be revealed by metabolic community
modeling.

The COMPM induces more competition for resources as
indeed the standard community objective only supports the
growth of S. aureus, which outcompetes all other species due
to its high individual growth rate (see Figure 7).

The COOPM represents the smallest medium in which all
community members can (slightly) grow. Notice that themedium
does not contain any glucose.M. catarrhalis is now the dominant
community member as it can achieve comparably high biomass
rates even without any glucose.

3.2.3.3 Prediction of Pair-Wise Interaction
Freilich et al. (Freilich et al., 2011) designed two different
formulas as a potential competition score (PCMS) and a
potential cooperation score (PCPS), to quantify the level of
competition and cooperation predicted among the species.

PCMSAB � 1

− VBM,COMPM,AB −max VBM,COMPM,A, VBM,COMPM,B( )
VBM,COMPM,A + VBM,COMPM,B −max VBM,COMPM,A, VBM,COMPM,B( )

;

(2)
PCPSAB � 1 − VBM,COOPM,A + VBM,COOPM,B

VBM,COOPM,AB
, (3)

where VBM,x,y represents the MBR of species y in the community
x. If the PCMS value equals 0, then this denotes no competition,
while one indicates maximal competition. In addition, the
negative PCMS values and positive PCPS values stand for
cooperation, while negative PCPS values indicate competition.
Therefore, the workflow determines the level of competition and
cooperation between species by comparing their individual and
combined biomass rates across simulated communities in the
COMPM and COOPM.

These two equations Eq. 2 and Eq. 3 are applied to
computationally predict the pair-wise interaction between species
and compare our results with experimental ones. In Figure 8, we
show the computationally obtained values. Notice that on the
COMPM, only S. aureus achieved growth. Thus, no interactions
can be determined. Nevertheless, by using cooperative trade-off, we
obtain a less sparse solution as shown in Figure 8. Clearly, the
competition among species increased. Here, the negative interaction
of D. pigrum to S. aureus becomes more apparent. However, the
interaction of S. aureus to D. pigrum is slightly commensal
(Mostolizadeh et al., 2022). As shown in Mostolizadeh et al.,
(2022), S. aureus can provide relevant metabolites to D. pigrum,
yet D. pigrum is a major competitor for glucose.

3.2.3.4 Ability of the Model to Provide Metabolites for its
Members’ Growth
Genome-scale modeling for each species creates a situation that
rarely occurs in nature because it considers each species isolated.
In real-life environments, species usually thrive in complex
communities in which the growth of a single species depends
on the interactions with other species in the population. Our
workflow makes this analysis possible to find out how species can
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influence each other’s growth. To this end, first, essential
metabolites necessary for the growth of each single species in
SNM3 are found. Second, additional constraints are added to our
community to allow the exchange of those metabolites between
species if they are among the exchange reactions of other species.
Those required metabolites that are not found among the
exchange reactions of other species are manually added to the
community since there are no species to provide it.

3.3 Availability and Requirements
Project name: NCMW.
Project documentary page: https://manuelgloeckler.github.io/ncmw/
Operating systems: MacOS, Windows, Linux.
Programming language: Python (version >3.7).
License: MIT License.

4 DISCUSSION

The open-source package NCMW simulates the
microbe–microbe interactions to show how important their
roles in shaping the composition of human nasal microbiota
are. However, the cultural capability of strains in microbial
communities in the laboratory remains limited. Since this
community research in the human nose provides explicit,
testable hypotheses and potential targets for experimental
verification, it provides a basis to examine the therapeutic
potential of individual species as a typical nasal probiotic and
possible novel discoveries.

We applied a combination of different optimization
approaches to analyze the nasal microbial community to
determine what a well-matched theoretical and experimental
approach would be. Therefore, two stages are taken into
account. One can be the optimization of the objective

functions, and the other is the process of deciding what kind
of trade-offs are appropriate from the decision-maker’s
perspective. These two stages classify the techniques into three
techniques: The decision-maker, the designer, is the set of optimal
compromise solutions that an effective and complete search
procedure must identify to carry out the best choice
(Chiandussi et al., 2012). Therefore, these techniques are
discussed by analyzing some of their advantages and
disadvantages.

1) Priori technique: It takes decisions before searching and
includes those approaches that assume that either a specific
desired achievable goal or a certain preordering of the
objectives can be performed by the decision-maker prior to
the search.

2) Posteriori technique: It searches before making decisions and
does not require prior preference information from the
decision-maker.

3) Progressive technique: It integrates search and decision-
making.

The big advantage of the package is its flexibility in creating the
different types of communities to convey the way for analysis. In
addition, it builds a community in the de facto standard format
SBML Level 3 Version 1 (Hucka et al., 2018; Keating et al., 2020;
Renz et al., 2021b) with flux balance constraints (FBC) extension
version 2 (Olivier and Bergmann, 2018), making any further
analysis on the community smoother. Although the workflowwas
reconstructed for the nasal microbiome community, it is also
possible to apply it for any model in other communities. The
package automatically creates media defined in the input model
and saves it as a JSON file to proceed with the research. As a
disadvantage, when more models are added to the community,
more running time is expected. However, to shorten the running

FIGURE 8 | Predicted community interactions within different media. Panel (A) shows interaction on the rich SNM3. Panel (B) shows the interaction on the COMPM
under cooperative trade-off.
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time, one can use high-quality models to ignore using quality
checks of models. In addition, defining a small medium that
included only a few metabolites makes understanding a complex
community smoother but far from a realistic way.
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