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Background: Bromodomains are a structurally conserved epigenetic reader

domain that bind to acetylated lysine residues in both histone and non-histone

proteins. Bromodomain-containing proteins (BRD proteins) often function as

scaffolding proteins in the assembly of multi-protein complexes to regulate

diverse biological processes. BRD proteins have been classified based on

biological and functional similarity, however the functions of many BRD

proteins remains unknown. PPI network analysis is useful for revealing

organizational roles, identifying functional clusters, and predicting function

for BRD proteins.

Results: We used available data to construct protein-protein interaction

networks (PPINs) to study the properties of the human bromodomain

protein family. The network properties of the BRD PPIN establishes that the

BRD proteins serve as hub proteins that are enriched near the global center to

form an inter-connected PPIN. We identified dense subgraphs formed by BRD

proteins and find that different BRD proteins share topological similarity and

functional associations. We explored the functional relationships through

clustering and Hallmark pathway gene set enrichment analysis and identify

potential biological roles for different BRD proteins.

Conclusion: In our network analysis we confirmed that BRD proteins are

conserved central nodes in the human PPI network and function as

scaffolds to form distinctive functional clusters. Overall, this study provides

detailed insight into the predictive functions of BRD proteins in the context of

functional complexes and biological pathways.
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Introduction

Post-translational modifications (PTMs) are fundamental to

the dynamic control of protein structure and function. In

particular, the acetylation of lysine is an abundant PTM found

on both histone and non-histone proteins that is well-known to

regulate a variety of biological processes, including transcription,

chromatin compaction, protein–protein interactions, cell cycle

control, cell metabolism, nuclear transport and actin nucleation

(Sterner and Berger, 2000; Choudhary et al., 2009). Lysine

acetylation is reversibly generated by the coordinated actions

of both lysine acetyltransferases (KATs) and lysine deacetylases

(KDACs) (Shahbazian and Grunstein, 2007; Downey and Baetz,

2016). Bromodomains are epigenetic reader domains found in a

diverse set of chromatin-associated proteins that bind to

acetylated lysine residues on histone proteins and non-histone

proteins (Fujisawa and Filippakopoulos, 2017). The recognition

of acetyl-lysine by bromodomain-containing proteins (BRD

proteins) and the formation of specific protein-protein and

protein-nucleic acid complexes at loci-specific regulatory

complexes at functional elements marked by acetyl lysine

represents a central mechanism for epigenetic control.

The human proteome encodes 61 BRD domains that are

encoded by 42 distinct genes. Each bromodomain is an

approximately 110 amino acid structural motif that adopts a

4-alpha-helix barrel structure that forms a binding pocket for

acetylated lysine on histones and other proteins (Zeng and Zhou,

2002). Most BRD proteins also possess several other conserved

functional domains, including other protein-protein interaction

or enzymatic domains. Bromodomains can therefore be

functionally grouped into 9 distinct classes, including the

bromodomain and extra-terminal motif (BET) family, histone

modifying factors that either possess intrinsic histone

acetyltransferases (HAT), histone methyltransferase (HMT)

activities, or belong to subunits of HAT complexes, chromatin

remodelling factors, the TRIM/RBCC family, Speckled Proteins

(SP), AAA-type ATPase and ZYMND transcriptional repressors

(Zaware and Zhou, 2019; Boyson et al., 2021). Although BET

proteins and other bromodomain-containing proteins have

characterized roles in gene transcription, DNA Damage

Repair (DDR) and other chromatin-templated processes, the

functions of many bromodomain proteins remain overall

poorly described.

The analysis of protein–protein interactions (PPIs) has

emerged as a valuable approach to systematically study

protein function. High-throughput PPI mapping

methodologies including yeast two-hybrid (Y2H) and affinity

purification-mass spectrometry (AP-MS) have provided large-

scale PPI datasets which are deposited in repositories, including

HIPPE (Alanis-Lobato et al., 2017), IMEx consortium (Orchard

et al., 2014), STRING (von Mering et al., 2003), and BIOGRID

(Oughtred et al., 2021). This collection of PPI data makes it

possible to create PPI networks (PPINs) to study the network

properties based on available graph theory analysis methods that

examine static features such as connectivity and location

(Koutrouli et al., 2020). PPINs can be modelled by undirected

graphs, where the nodes are proteins, and two nodes are

connected by an undirected edge when corresponding

proteins physically interact (Koutrouli et al., 2020). The

representation of PPINs as graphs enables the systematic

examination of the topology and function of networks with

graph-theoretical principles that can be used to predict the

structural properties of the underlying network (Huttlin et al.,

2017; Zahiri et al., 2020). These predictions provide hypotheses

about new interactions from the global network or evidence for

exploring functional roles of individual proteins.

To study the role of BRD proteins in the global human

interactome, in this study we constructed PPINs based on

physical interaction data collected from various resources. We

investigated the topological features of the global human PPIN,

and the sub-network formed by BRD proteins to evaluate the

network characteristics of BRD proteins. We further used

Hallmark pathway enrichment analysis and clustering with

gene ontology to predict the functional characteristics of

subnetworks formed by individual BRD proteins. Our results

provide confirmation that PPI networks can predict the

biological roles of BRD proteins and provide insights on

characterizing BRD proteins.

Materials and methods

Data description

We collected physical interaction data from BioGRID

(Oughtred et al., 2021) and HIPPIE (Alanis-Lobato et al.,

2017), then constructed a comprehensive human PPIN (global

PPIN), and a sub-network focused on interactions of BRD

proteins (BRD PPIN). To evaluate BRD proteins in terms of

their relationships, we also constructed a sub-network focused on

interactions between BRD proteins (BRD-BRD PPIN).

The BioGRID database collects physical interactions

extracted from literature that have been detected using various

experimental methods (Oughtred et al., 2021). We downloaded

the version 4.3.194, and extracted all the human physical

interactions. These include low and high throughput affinity

purification methods, yeast two-hybrid, co-localization, etc.

Approximately 80% of interaction data used in the network

data were derived from high-throughput experiments. For the

BRD PPI network, 57% interactions were curated from high-

throughput techniques. HIPPIE is a human protein-protein

interaction network database (Alanis-Lobato et al., 2017)

comprised of high-confidence interaction data from 10 source

databases, including BioGRID, IMEx (such as IntAct (Orchard

et al., 2014)) and MINT (Chatr-aryamontri et al., 2007; Orchard

et al., 2014), as well as curated interaction data from other
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11 studies (that have not been fully covered by the other

databases). The physical interaction data included in HIPPIE

is classified as association, physical association, direct interaction

and colocalization. A core component of HIPPIE is a confidence

scoring system that provides a score calculated from the weighted

sum of the number of studies in which an interaction was

detected, the number and quality of experimental techniques

used to measure an interaction and the number of non-human

organisms in which an interaction was reproduced (Alanis-

Lobato et al., 2017). We downloaded the February

2021 release of HIPPIE data. The confidence value histograms

of protein-protein for the global and BRD PPIN are shown in

Supplementary Figures 1A,B, respectively. Among the total

391,410 interactions derived from HIPPIE in the global PPIN,

66,711 (~16%) interactions did not pass the suggested confidence

value threshold of 0.63. For BRD proteins, 566 out of a total of

3,591 interactions (~16%) did not pass the suggested confidence

threshold of HIPPIE. Although HIPPIE contains BioGRID data,

due to confidence filtering, HIPPIE contains less than 2% of PPI

data for BRD proteins and lacks data for several of the less well-

studied BRD proteins such as TRIM66 and ATAD2B. We

therefore included all of the human PPI data from BioGRID

and HIPPIE without filtering on evidence level. In addition, we

also included data from a recent publication (Lambert et al.,

2019) focused on the interactome of BET proteins. This study

revealed non-redundant PPI of BRD2, BRD3 and BRD4 in the

native state before addition of JQ1, not yet covered by the HIPPIE

or BIOGRID databases. The researchers also used reciprocal

methods to explore the interaction between BRD4 and the poorly

characterized BRD9 protein and identified new interactors for

BRD9 (Lambert et al., 2019). The newly identified interactions

for BRD2/3/4 and BRD9 are summarized in Supplementary

Figure 2. In total, the combined all PPI data from HIPPIE

and BioGRID and this publication resulted in 559,183 unique

interactions.

The global PPIN and BRD PPIN are both unweighted and

undirected networks without self-loops. We also examined the

relationship between the number of publications and BRD

protein interaction (degrees) since the representation of

interactions in a corresponding PPIN is influenced by the

number of publications and the type of study used to report

physical interactions (i.e., high throughput assays). Overall,

p300 and CBP have the highest number of reported

publications (Supplementary Figure 3). There seems a

positive correlation between the number of publications and

degrees in the global and BRD PPINs. Therefore, BRD-BRD

PPIN is undirected and weighted by the number of publications

and/or techniques, with self-loops indicate the potential

formation of homogeneous polymers. Cytoscape (Shannon

et al., 2003) is used to visualize these networks, BRD

proteins are grouped together using group attribute layout

(BRD versus non-BRD proteins) and then visualized by

degree sorted circle layout.

Graph analysis on the global PPIN and BRD
PPIN

The R graph package igraph (Csardi and Nepusz, 2006) was

used to analyze the topological features of PPINs. Parameters are

set to analyze the unweighted and undirected networks. The

graph topological features as well as degree, centrality

measurements and K-core decomposition for each protein in

the global PPIN are computed in this way using the according

functions. For graph compactness, if a graph has E ≃ Vk, 2 > k >
1, then this graph is considered as dense, whereas when a graph

has E≃V or E≃Vk, k ≤ 1, it is considered as sparse (Koutrouli

et al., 2020).

For clique analysis, we aimed to investigate how BRD

proteins form functional complexes based the clique

prediction. To reduce computation time, we used the

according function in igraph package (Csardi and Nepusz,

2006) (limiting size≥3) and identify cliques of BRD proteins

in BRD PPIN only formed by BRD proteins. The maximal cliques

(Eppstein et al., 2010) are detected using the function

max_cliques in igraph with minimal clique size set to 3.

Table 4 is generated based on the maximal cliques results to

show how many BRD proteins in each maximal clique and what

they are. We extracted the distance matrix of BRD proteins by

applying the distance function in igraph to the global human

PPI network and extract the BRD proteins subset. Then the

heatmap is plotted using heatmap.2 function in gplots package

(Warnes et al., 2009). The similarity function in igraph package

calculates similarity scores for vertices based on their

connection patterns and two nodes can be found to be

functionally similar if they share common neighbors

(reviewed in (Koutrouli et al., 2020)).

To extend the similarity measurements beyond the direct

neighbors of each node, we analyzed the distance matrix from the

global PPIN and obtained the indirect interaction partners list for

each BRD proteins in the global human PPI network if the

partners are away from the BRD proteins with the shortest path

of 2 and 3 (denotes as SP = 2 and SP = 3), respectively. Then we

use the modified mathematical definition:

Sij(modified) � Σ distinct commonneighbors (SP � 2 or 3)
Σ total number of neighbors for i and j(SP � 2 or 3)

(1)

i and j denote different BRD proteins to calculate the extended

similarity of each pair of BRD proteins and compare the indirect

interaction profiles of two BRD proteins.

Statistical analysis

Direct comparisons of topological features between BRD

proteins and non-BRD proteins were performed by two-tailed

Wilcoxon rank sum test (nonparametric text). Chi-Square test is
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performed based on degree mean in the global PPIN and also for

the K scores. We used the fit_power_law function in igraph

package to check whether we can fit a power-law distribution to

the degree distribution in the global human PPI network (Csardi

and Nepusz, 2006). The ‘plfit’ implementation is used for this

function attempting to find the optimal value of the fitted power

law distribution for which the p-value of a Kolmogorov-Smirnov

test between the fitted distribution and the original sample is the

largest. Under this setting, we checked the p-values that is based

on the hypothesis that the original data could have been drawn

from the fitted power-law distribution.

Pathway enrichment analysis and
functional clustering

Pathway enrichment analysis was performed on BRD proteins

and their non-BRD interaction partners using hypeR bioconductor

package (Federico andMonti, 2020). Hallmark gene sets are obtained

from the Molecular Signatures Database v7.4 (MSigDB) (Liberzon

et al., 2015). For the pathway enrichment on non-BRD interacting

proteins, we extracted the top 25 Hallmark pathways which are

sorted by FDR (<0.05) and the overlapped non-BRD proteins for

each top enriched pathway. Then we generated interaction profile for

each BRD proteins in each top enriched pathway by computing the

number of interacting non-BRD proteins for the specific BRD

proteins and also participating in the specific biological pathway.

For individual pathway subnetworks, we extracted the interactions of

BRD proteins involved in DNA repair, MTORC1 signaling pathway

and oxidative phosphorylation process, then used Cytoscape

(Shannon et al., 2003) to visualize the pathway-focused interaction

networks. MTGO was used to combine graph topology and gene

ontology (Vella et al., 2018). We obtained the gene annotation and

files fromGeneOntology (GO) database (Ashburner et al., 2000) and

extracted the GO term file fromGo. db package (Carlson, 2017) in R.

MTGO generates topological modules denoted as set G based on the

graph topology, and functional modules, set T, in which each set

member correspondent to one GO term. We extracted the GO IDs

and gene symbols corresponding to each protein as input forMTGO

using minSize of 8 and maxSize of 300. Then we combine the

optimized clustering file with GO description and extracted the

clusters in which BRD proteins are the cluster members.

Results

Construction of a bromodomain protein
interaction network

To study the global interaction properties of BRD

proteins, we constructed a network of the physical

interactions of all 42 members of the bromodomain

protein family (see methods). The bromodomain protein

family protein-protein interaction network (BRD PPIN) is

comprised of 4,054 unique interacting proteins (nodes) and

192,785 non-redundant edges (Table 1). In comparison, the

complete human PPIN (global PPIN) contains a total of

19,843 nodes and 559,183 edges. The data used to

construct the global PPIN were collected from different

sources that compile physical interaction data from

different methods.

Among BRD proteins, TRIM28, BRD4, CBP and

p300 have the highest number of interactions, whereas

SP140, SP140L and ATAD2B have the lowest number of

interactions in the BRD PPIN (Figure 1). Combined with

the publication numbers for each BRD protein, BRD1, BRD2,

BRD3, BRD4, BRD7, and TRIM28 have a higher number of

degrees, even with a relatively smaller number of publications

compared to its highest degree. SMARCA4, KAT2B and

p300 show a consistent number of degrees compared to

the number of publications, whereas SMARCA2, BRD2,

and TRIM28 have higher degrees and moderate number of

publications.

The BRD PPIN is a connected scale-free
network

Protein interaction networks exhibit specific topological features

that depict the biological properties of the network. The global PPIN

can be divided into 18 distinct components based on the connected

components analysis and eccentricity, whereas the BRDPPIN forms

a single connected component (Table 1). The BRD PPIN exhibited a

smaller radius, diameter and average shortest path compared to the

global PPIN, suggesting that BRD proteins form a tighter network

and are inter-connected. The edge density of BRD PPIN is 0.02,

indicating that only 2% of the total possible number of edges are

observed, possibly due to the fact that many physical interactions

remain to be discovered, especially for less studied BRD proteins.

The clustering coefficient (cliques, or the formation of complete

subnetworks) is a measure of whether a node has the tendency to

form clusters or tightly connected communities (e.g., protein clusters

in a protein-protein interaction network) (Koutrouli et al., 2020).

While the probability of forming cliques consisting of three or more

nodes is low in the BRD PPIN, it is considerably higher than that of

the global PPIN (clustering coefficient 0.14 versus 0.22, respectively).

The degree distribution of nodes and the cumulative frequency

curve in BRD PPIN and the global PPIN indicates that a small

number of nodes have high degrees (Figure 2). The degree

distribution suggests these are scale-free networks. A biological

network that is scale-free is stable and tolerant to perturbations

and is also venerable to loss of hub proteins in the overall networks.

On the other hand, these networks are also vulnerable to targeted

attack, specifically hub proteins. If few major hubs are lost, the

network cold turned into a set isolated graphs and the graph

structure is destroyed (Koutrouli et al., 2020). We further
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confirmed that BRD PPIN and the global PPIN are both scale-free

networks by carrying out Kolmogorov-Smirnov (KS) statistical test

(p-value = 0.91 and KS = 0.022 for the global PPIN; p-value =

0.643 and KS = 0.033 for BRD PPIN). Taken together, these results

indicate that BRD proteins form a densely connected network with

their interaction partners.

TABLE 1 General topological features of the interaction networks formed by BRD proteins’ interaction profile (BRD PPIN) and all of the human
protein-protein interactions (Global PPIN).

BRD PPIN BRD-BRD PPIN Global PPIN

Nodes 4054 37/42 19,843

Edges 192,785 121 559,183

Density 0.02 0.182 0.003

Radius 3 2 4

Diameter 4 4 8

Average shortest paths 2.21 2.123 2.87

Average clustering coefficients 0.22 0.475 0.14

Connected component 1 6 18

FIGURE 1
Protein-protein interaction network of bromodomain-containing proteins (BRD proteins) and their interactions. The protein-protein
interaction network of the human bromodomain-containing proteins (BRD PPIN) colored by their functional groups. The size of highlighted BRD
proteins indicate their number of interactions (degrees).
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Bromodomain proteins serve as central
nodes in the global human PPI network

We next focused on BRD protein at node level and

determined specific topological properties for each node

including degree, centrality measurements and K-core

decomposition in the global human PPIN. We investigated

the role of BRD proteins as hubs in the PPIN. Hub proteins

are proteins that form a high number of interactions in the

network and are important for the formation of PPI clusters

(Barabasi, 2012). We assessed whether BRD proteins have more

interactions than non-BRD proteins. The mean degree of BRD

proteins is 207.93, compared to 56.08 for non-BRD proteins, and

the degrees for BRD proteins is significantly higher than that of

non-BRD proteins by performing non-parametric test (Table 2,

p-value< 0.01). We calculated the mean degree of all nodes in the

global PPIN and defined proteins with a higher degree than the

mean degree as hub proteins. We then compared the percentage

of hub proteins between BRD protein family to non-BRD protein

family. This analysis showed that BRD proteins are more likely to

serve as hubs in the entire human network (Chi-Square test,

p-value<0.01; see methods). BRD2, BRD3, BRD4, CBP,

SMARCA2 and SMARCA4 are among the top hub BRD

proteins (Figure 1; Supplementary Figure 3).

To further evaluate the importance of BRD proteins in the

robustness of the network (tolerance to perturbations) and their

role in bridging different PPI communities, we examined other

centrality measurements of BRD proteins in the global PPIN.

Statistical inference indicates that BRD proteins have a

significantly higher betweenness centrality than that of non-

BRD proteins (Table 2, p-value<0.05). The eigenvector

centrality is a measure of the influence of a node in a

FIGURE 2
Degree distribution of proteins in BRD PPIN and the global PPIN (A) The histogram of degree distribution for proteins in BRD PPIN. (B) The
degree distribution for all proteins (4054 proteins) in BRD PPIN, the curve is confirmed to follow power-law distribution. (C) The histogram of degree
distribution for proteins in the global PPIN. (D) The degree distribution for all of the proteins (19843 proteins) in the global PPIN, the curve is
confirmed to follow power-law distribution.
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network, and higher eigenvector centrality scores indicate this

node is connected to other high influential nodes (Chen et al.,

2019; Koutrouli et al., 2020). BRD proteins exhibit a significantly

higher closeness centrality and smaller eccentricity as well as

higher eigenvector centrality (Table 2, p-value< 0.05). These

results suggest that BRD proteins are influential members in

the global PPIN.

Proteins are hierarchically located in the PPIN, and those

with high degrees are more likely to be located near or at the

center of the entire network (Wuchty and Almaas, 2005).

However, the degree numbers alone do not reflect the

hierarchies and the locations of proteins within the network

(Jeong et al., 2001; Zou et al., 2018). We therefore performed

K-core decomposition process to split the network into different

layers from outside to inside in order to understand BRD protein

functions in the network organization (Alvarez-Hamelin et al.,

2005). Hub nodes with higher K-core values are referred as a

global center in the whole network, and hubs with relatively

lower K-core values are the local centers to forming the periphery

connected clusters. The global PPIN is split into 102 layers and

the K-core for BRD proteins ranges from 4 to 102. As the

percentage of BRD proteins in most layers keep zero since

there are many layers not including BRD proteins, there is no

clear relationship between BRD proteins percentage in each layer

and K-core numbers. We compared the K-core means between

BRD proteins and non-BRD proteins and found that the K-core

for BRD proteins is significantly higher than that of non-BRD

proteins (3-fold over non-BRD proteins, Table 2). In the global

PPI network, BRD proteins are more likely to be located near the

global center of the network topological organization. As it has

been demonstrated that proteins near the global center in the

yeast PPIN tend to be essential and conserved in evolution

(Wuchty and Almaas, 2005), this information also provides

support that BRD proteins tend to be essential and conserved

in evolution across different organisms. The human BRD

proteins shared conserved structure to read acetylation code

tailed on histones or non-histones (C ho et al., 2019) and

some homologs for BRD proteins, especially BETs have been

found in other species, such as mice and yeast [reviewed in

(Zhang et al., 2021)], as well as buffalo (Zahiri et al., 2013).

Among BRD proteins, BRD4, TRIM28, p300 and BRD7 have the

highest K-core values with highest degrees. Taken together the

result of this topological analysis indicates BRD proteins perform

important organizational functions for the global PPIN and their

roles may be evolutionary conserved.

Bromodomain-containing proteins
cooperate and exhibit functional
similarities

Connected proteins within the PPINmay share similar functions

and studying the relationships between BRD proteins will be helpful

to predict the function of less-well characterized BRD proteins. To

investigate the interactions among BRD protein family members we

constructed a subnetwork based on the interactions between BRD

proteins (BRD-BRD PPIN). Several BRD proteins exhibited no less

than 10 non-redundant interactions with other family members,

including BRD2, BRD3, BRD4, SMARCA2, SMARCA4, TAF1, CBP,

and TRIM33 (Figure 3). Self-loops measure the potential of proteins

to formdimers or oligomers. For example, ATAD2 subunits has been

reported to form hexamers (C ho et al., 2019). Among BRD proteins,

17members form self-loops (Figure 3). Among these, the self-loop of

p300 has the largest width, and this protein has also been reported to

homo-oligomerize (Zhang et al., 2021). The self-loops do not seem

related to degrees in the entire human network, or in BRD-

BRD PPIN.

Cliques in PPI networks are related to protein complexes and

functional modules that have a biological significance (Zahiri

et al., 2013), and components in protein complexes or functional

modules are prone to interacting with each other (Zahiri et al.,

2013). We performed clique detection on the BRD-BRD PPIN

(Zahiri et al., 2013). We identified 273 cliques formed by BRD

proteins with size greater or equal to 3 nodes. Smaller cliques can

be merged to form maximal cliques that cannot be extended

by including one more adjacent vertex. In total,

we identified 39 maximal cliques in the BRD-BRD PPIN

(Table 3).

TABLE 2 Statistical summary of centrality and K-core measurements for BRD proteins vs. non-BRD proteins in the global PPIN. The significance level
is 0.05.

Topology BRD proteins parameters mean Non-BRD proteins parameters
mean

p Value (wilcoxon
rank sum test)

Degree 207.93 56.08 1.906e-10, *

Betweenness Centrality 97567.05 18327.97 8.763e-09, *

Closeness Centrality 2.24e-06 2.20e-06 1.625e-12, *

Eccentricity 5.048 5.383 9.748e-06, *

Eigenvector Centrality 0.103 0.028 5.403e-13, *

Clustering coefficients 0.133 0.141 0.4772, ns

K-core 60.02 28.75 2.016e-10, * Chi-square (>49); 7.662e-12
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We also used shortest path and similarity measurements

from the global human PPI network to the relationship between

BRD proteins. Hierarchical clustering of the shortest paths for

each BRD protein reveals a cluster of BRD proteins that tend to

interact with each other or form complexes (Figure 4A). The

shortest paths between different BRD proteins ranged from 1 to

3. Most BRD protein pairs exhibited a shortest path of 2 and are

connected by another protein (BRD protein or non-BRD

protein). For example, there is no direct link between

TRIM66 and ATAD2B, but they are connected by one non-

BRD interacting proteins (Figure 4B). We further compared the

shortest paths between BRD proteins and between BRD proteins

and the non-BRD proteins using nonparametric test and found

the distances between BRD proteins are significantly shorter than

that between BRD proteins and non-BRD proteins (p-value <
0.05). This analysis shows that BRD proteins have significantly

higher percentage of BRD protein interactors than that for non-

BRD proteins using Chi-square test (p-value < 0.05). These

shorter distances between different proteins and the

percentage of BRD protein interactors, as well as the “six

degrees of separation” concept, indicates that the cellular

interactome between BRD proteins is relatively small, and

suggests BRD proteins tend to be connected closely together

allowing for fast communication with each other.

The close connection of BRD proteins is a result of the

PPIN topology and likely their functional relationships. The

similarity interaction heatmap shows the similarity scores of

adjacent neighbors for each pair of BRD proteins (Figure 4C).

FIGURE 3
Protein-protein interaction network of bromodomain-containing proteins (BRD-BRD PPIN). This sub-network is formed by protein-protein
interactions between BRD proteins. Color refers to different functional groups. Size of nodes indicate the number of interactions for BRD proteins
derived from the global PPIN. BRD proteins are sorted and ordered based on degrees. Width of edges is determined based on the number of
publications/techniques used to define an interaction.
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Most BRD protein pairs harbor low similarity values. There

are 4 pairs of nodes with relatively higher similarity values

including, CBP and P300, SMARCA2 and SMARCA4,

KAT2A and KAT2B, and BRD2 and BRD3. This similarity

score measurement only accounts for neighboring

interactions (shortest path = 1) but failed to reveal

similarities beyond these pairs of proteins, which share

structural similarity, and belong to similar functional

groups. We therefore modified the similarity score to show

the ratio of common indirect interacting partners with

distances of 2 and 3 (denoted as modified similarity). The

similarity score within different BRD proteins increases

dramatically after extending the shortest paths to 2 or

3 and the mean similarity score increases by about five-

fold (Figure 4D). Most pairs of BRD proteins have a

modified similarity score greater than 0.5 (Figures 4E,F).

TABLE 3 Maximal cliques in the interaction profile between BRD proteins.

Clique index BRDs Number of nodes

1 BRDT, BRD2, BRD4 3

2 BRD1, PBRM1, TRIM33 3

3 BPTF, BRD2, BRD3, BRD4 4

4 ZMYND11, BRD4, SMARCA2 3

5 ZMYND11, BRD4, BRPF3 3

6 BAZ2A, BAZ1B, BRD2 3

7 BAZ2A, BAZ1B, TRIM33 3

8 KMT2A, SMARCA2, BRD4, TAF1 4

9 KMT2A, SMARCA2, BRD4, CBP 4

10 BRPF1, BRPF3, TAF1 3

11 BRPF1, BRD2, TAF1 3

12 BRPF1, BRD2, ZMYND8 3

13 BRPF1, BRD2, TRIM24 3

14 KAT2B, CBP, P300, SMARCA2 4

15 KAT2B, CBP, P300, KAT2A 4

16 KAT2A, CBP, BRD4, P300 4

17 P300, SMARCA2, BRD7 3

18 P300, SMARCA2, BRD4, CBP 4

19 BAZ1A, BRD4, BRD3, SMARCA2 4

20 BAZ1A, BRD4, BRD3, BAZ1B 4

21 BRD8, TAF1, BRPF3, SP110, BRD4 5

22 ZMYND8, SMARCA4, BRD4, TRIM28 4

23 ZMYND8, SMARCA4, BRD4, BRD3, BRD2 5

24 CBP, TRIM28, TRIM24 3

25 CBP, TRIM28, BRD4, SMARCA4, SMARCA2 5

26 PHIP, BRD2, BRD3, BRD4, TAF1 5

27 PHIP, BRD2, BRD3, BRD4, PBRM1, SMARCA4 6

28 TRIM24, BRD2, BRD7 3

29 TRIM24, TRIM28, BRD7 3

30 TRIM24, TRIM28, TRIM33 3

31 TAF1, SMARCA2, BRD3, BRD4, BRD2 5

32 BRD9, SMARCA2, BRD3, BRD4, BRD2, SMARCA4 6

33 PBRM1, SMARCA2, SMARCA4, TRIM33, BRD4 5

34 PBRM1, SMARCA2, SMARCA4, BRD3, BRD2, BRD7 6

35 PBRM1, SMARCA2, SMARCA4, BRD3, BRD2, BRD4 6

36 SMARCA2, SMARCA4, TRIM28, BRD7 4

37 SMARCA2, SMARCA4, TRIM28, TRIM33, BRD4 5

38 SMARCA4, BAZ1B, BRD4, TRIM28, TRIM33 5

39 SMARCA4, BAZ1B, BRD4, BRD3, BRD2 5
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FIGURE 4
Distance and functional similarity heatmap of bromodomain-containing proteins. (A) Hierarchical clustering of the distance heatmap showing
the interactions between pairs of BRD proteins. The shortest path lengths between BRD proteins were calculated based on the global PPIN. Colors in
heatmap indicate different shortest path lengths. (B) Example interactions for ATAD2B and TRIM33 (C) A heatmap of similarity scores of BRD protein
interaction profiles. Similarity scores are calculated based on interacting proteins in the global PPIN (shortest path = 1). (D) Distribution of
similarity scores between BRD protein pairs with increasing shortest path (from 1 to 3). The red squares are the mean of similarity scores for a given
shortest path. (E) Similarity Heatmap of BRD proteins (shortest path = 2). (F) Similarity Heatmap of BRD proteins (shortest path = 3).
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Bromodomain-containing proteins are
enriched in various Hallmark and Gene
Ontology pathways

Several BRD proteins have been functionally characterized or

classified into functional groups based on the presences of conserved

protein domains outside of the bromodomain. We next investigated

the roles of BRD proteins based on node level to examined which

BRD proteins are members of Hallmark pathway gene sets from

Molecular Signatures Database (MSigDB) (Liberzon et al., 2015)

(Table 4). Approximately one-quarter of all BRD proteins (10/42) are

curated as members of Hallmark pathways from Molecular

Signatures Database (MSigDB) (Liberzon et al., 2015) (Table 4).

Among these, only KAT2A and SP110 belong to more than one

Hallmark pathway. However, without available data for the less well-

studied BRD proteins a systematic analysis of PPIs is needed to

predict their functional roles. We therefore performed pathway

enrichment analysis using the 4,012 non-BRD interacting proteins

in the BRD PPIN to examine the global roles of BRD proteins.

Among the 50 Hallmark pathways, 42 of have a significance level less

than 0.05 (FDR, false discovery rate), indicating these non-BRD

interactors are significantly enriched in a variety of Hallmark

pathways (Figure 5A). The gene sets of transcriptional factors,

such MYC and E2F targets, as well DNA repair and cell cycle

checkpoints gene sets are among the most highly enriched pathways.

Interestingly, many BRD members are associated with a given

pathway. For example, a total of 32 BRD proteins are involved in

DNA repair response via interaction with members of this pathway

(Figure 5B).

We further investigated the level of each BRD protein

involved into the top 25 significantly enriched Hallmark

pathways. Overall, the inter-action partners of BRD4 and

TRIM28 are the most enriched BRD proteins among these

different Hallmark pathways (Figure 6A). BRD4 interactions

are highly enriched in mTORC1 signaling and glycolysis

(Figure 6B). The inhibitory function of the mTOR complex 1

(mTORC1) in autophagy is well established [reviewed in (Jung

et al., 2010)] and BRD4 has been characterized as a

transcriptional repressor of autophagy and lysosomal function

(Sakamaki et al., 2017). The function of BRD4 as gene

transcriptional regulator to modulate glycolysis has been

studied (Xu et al., 2021). All these findings give support to the

importance of BRD4 in mTORC1 signaling and glycolysis. A

sub-network focus on the interaction betweenmTORC1 pathway

members and BRD proteins show that 28 BRD proteins also

interact with this pathway. These results indicate that a large

proportion of BRD proteins potentially play roles in the

mTORC1 signalling pathway, but the exact mechanistic roles

of these BRD proteins are yet to be discovered.

TRIM28 interactions showed the highest enrichment with

the Hall-mark oxidative phosphorylation pathway. TRIM28 was

previously shown to form a cancer-specific E3 ubiquitin ligase

together with MAGE-A3/6 proteins (Pineda and Potts, 2015) for

proteasomal degradation of AMPK, a master regulator of

metabolic/energy homeostasis and mitochondrial biogenesis in

cancer cells (Chaube and Bhat, 2016). Consistent with this,

enrichment analysis shows a relatively higher significance of

TRIM28 interactions associated with glycolysis. 21 BRD

proteins also interact with the oxidative phosphorylation

pathway, including other TRIM proteins (Figure 6C). In this

sub-network, BRD4 and BRD7 have relatively more interactions

with oxidative phosphorylation pathway members.

We used MTGO (Vella et al., 2018) to further investigate the

clustering profile of BRD proteins in BRD PPIN based on gene

ontology, as well as the topological features. MTGO clustering

identified 70 functional modules, with 16 of them containing

BRD proteins (Table 5 and Supplementary Table S1). The cluster

containing the most BRD proteins are annotated as transcription

factor binding, and this cluster includes 18 BRD proteins: ATAD2,

BAZ1A, BAZ1B, BPTF, BRD2, BRD7, BRD9, BRWD1, CBP, P300,

TABLE 4 Involvement of 42 BRD proteins in Hallmark pathway gene sets.

Hallmark gene sets Size Overlap Hits p-value

HALLMARK_NOTCH_SIGNALING 32 1 KAT2A 0.056

HALLMARK_WNT_BETA_CATENIN_SIGNALING 42 1 KAT2A 0.073

HALLMARK_TGF_BETA_SIGNALING 54 1 TRIM33 0.092

HALLMARK_INTERFERON_ALPHA_RESPONSE 97 1 SP110 0.16

HALLMARK_APOPTOSIS 161 1 CBP 0.25

HALLMARK_ADIPOGENESIS 200 1 BAZ2A 0.3

HALLMARK_COMPLEMENT 200 1 BRPF3 0.3

HALLMARK_E2F_TARGETS 200 1 ATAD2 0.3

HALLMARK_HEME_METABOLISM 200 1 KAT2B 0.3

HALLMARK_INTERFERON_GAMMA_RESPONSE 200 1 SP110 0.3

HALLMARK_KRAS_SIGNALING_DN 200 1 BRDT 0.3

HALLMARK_MYC_TARGETS_V1 200 1 TRIM28 0.3
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FIGURE 5
Pathway enrichment analysis of BRD protein interaction partners. (A) Hallmark pathway enrichment analysis of non-BRD interactors from the
BRD PPIN. Y-axis is different Hallmark pathways; X-axis indicates FDR (False discovery rate) of each pathway. The red dotted line indicates the
significance level (0.05) of FDR. The size of dots shows the number of non-BRD proteins overlappedwith each pathway gene set. (B) Sub-network of
BRD protein interactions within the Hallmark DNA Repair pathway (M5898). BRD proteins are grouped and colored according to their
funcitional groups, the left nodes are the non-BRD proteins included in this pathway gene set, the right circle proteins are BRD-proteins that are
represented in this pathway gene set.
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KAT2A, KAT2B, MLL, PBRM1, SMARCA4, TAF1, TRIM24,

TRIM33. The second largest cluster contains 4 BRD proteins:

BRD3, BRD4, BAZ2B and ZMYND11. BRD4 is previously

reported to contribute to the regulation of alternative splicing via

co-localizing and interacting with the splicing regulators (Uppal et al.,

2019). ZMYND11 is reported to regulate RNA splicing via

connecting with histone H3.3K36me3 and then interacting with

RNA splicing regulators, including theU5 snRNP components of the

spliceosome, such as EFTUD2 (Guo et al., 2014). But the roles of

BRD3 and BAZ2B in RNA splicing are unclear. There are BRD

proteins not included into any the Gene Ontology terms, so their

clustering attributes are largely dependent on the interaction profiles.

Interestingly, some BRD proteins with medium degrees

cluster with similar ontological functions, such as BRPF1,

BRPF3 and TRIM66 in the neurotrophin TRK receptor

signalling pathway, CECR2 and PHIP to RNA helicase

activity, and BRD1 and TRIM28 in mitochondrial

translational termination via interactions. The clustering

results show some potential functions for these poorly studied

BRD proteins. Based on MTGO cluster results, ATAD2B is

possibly associated with protein N-linked glycosylation. It is

unclear if BRD proteins have any role in N-linked

glycosylation and the functional role of ATAD2B needs

further investigation. Taken together, the interaction network

of BRD proteins demonstrates that BRD proteins perform

important roles in the context of cellular and biological

pathways, and the network topology of BRD proteins provide

new insights into their potential functions.

Discussion

Bromodomain proteins have versatile roles of recognizing

acetylated histone and non-histone proteins and forming

FIGURE 6
The involvement of BRD protein interactions in Hallmark Pathways. (A) Involvement of individual BRD protein interaction partners in the top
25 significantly enriched Hallmark pathways. X-axis is the IDs for the 25 top Hallmark pathways ordered by FDR (Figure 5), and pathway labels are
shown in the bottom table. Color and size of the dots indicate the relative number of interactions associated with each pathway gene set for each
BRD protein. The number of interactions of each BRD protein for each pathway are normalized by the total number of interactions across the
25 top Hallmark pathways. (B) Subnetwork showing the BRD protein interaction Hallmark MTORC1 signaling pathway. BRD proteins are colored
green and pathway members are yellow. The size of nodes corresponds to the number of interactions. (C) Subnetwork showing the BRD protein
interaction with the Hallmark oxidative phosphorylation pathway.
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protein-protein interactions at chromatin to regulate diverse

biological processes. Despite a growing number of systematic

proteomic studies and a wealth of physical protein interaction

data deposited into databases, the role of BRD proteins as

mediators of protein complexes in the human PPI network

remains unclear. Overall, different BRD proteins have a large

number of reported interactions across many studies. Some have

a large number of PPIs despite a relatively smaller number of

publications. This can be attributed to the use of high-throughput

techniques, such as Affinity PurificationMass Spectrometry (AP-

MS). For example, TRIM66 interactions were missing in the

databases until a single publication in 2018 revealed 200 various

interactions for TRIM66 involved in DNA repair response (Kim

et al., 2019). Still there is a deficiency of interaction data for a

subset BRD proteins, including BRDT, SP140, SP140L and

ATAD2B. The cell-specific expression restrictions and/or the

relatively low expression levels may contribute to the insufficient

studies to these BRD proteins with poorly characterized

functions. Thus, several BRD family members remain

uncharacterized and systematic analysis of available protein

interaction data is needed to predict their functional roles.

In this study, we constructed a network of all BRD proteins

and their interactions and applied graph analysis to examine

their topological characteristics in the human PPI network. A

caveat in our study is that merging protein interaction data

detected by different methods and in different settings can

introduce biases in the analysis. We also analysed HuRI

Union (Luck et al., 2020) and BioPlex HEK293T (Huttlin

et al., 2017) (Supplementary Table S2) to investigate the role

of BRD proteins in data collected from systematic screens using

single technique in a specific cell type, and are less biased. However,

the graph analysis on these two networks (data not shown) did not

support our conclusion that BRD proteins are hubs in PPI

networks. However, these specific networks did not include

many of the BRD proteins and largely lack sufficient interaction

data for BRD proteins. These specific resources are still collecting

data to cover more protein-protein interaction in these systems,

and wemay havemore comprehensive insight about BRD proteins

TABLE 5 MTGO clustering results for BRD Proteins.

Module
index

GO ID Description BRD proteins
frequency

BRD proteins

8 GO:
0008134

Transcription factor binding 18 ATAD2, BAZ1A, BAZ1B, BPTF, BRD2, BRD7, BRD9,
BRWD1, CBP, P300, KAT2A, KAT2B, MLL, PBRM1,
SMARCA4, TAF1, TRIM24, TRIM33

34 GO:
0000398

mRNA splicing, via spliceosome 4 BAZ2B, BRD3, BRD4, ZMYND11

4 GO:
0006355

Regulation of transcription, DNA-templated 3 BAZ2A, BRDT, SMARCA2

30 GO:
0048011

Neurotrophin TRK receptor signaling pathway 3 BRPF1, BRPF3, TRIM66

59 GO:
0004386

Helicase activity 2 CECR2, PHIP

69 GO:
0070126

Mitochondrial translational termination 2 BRD1, TRIM28

9 GO:
0006487

Protein N-linked glycosylation 1 ATAD2B

53 GO:
0006978

DNA damage response, signal transduction by p53 class
mediator resulting in transcription of p21 class mediator

1 SP100

7 GO:
0008023

Transcription elongation factor complex 1 SP110

13 GO:
0008198

Ferrous iron binding 1 SP140

14 GO:
0016581

NuRD complex 1 ZMYND8

2 GO:
0031011

Ino80 complex 1 BRD8

63 GO:
0031461

Cullin-RING ubiquitin ligase complex 1 BRWD3

33 GO:
0033276

Transcription factor TFTC complex 1 TAF1L

35 GO:
0046974

Histone methyltransferase activity (H3-K9 specific) 1 ASH1L

68 GO:
0090557

Establishment of endothelial intestinal barrier 1 SP140L
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from these un-biased networks when we revisit them in the future.

The global human PPIN we constructed is not un-biased, but it

supports comprehensive and useful information for us to

characterize the functional roles of BRD proteins, particularly

those that are less well-characterized.

Our systematic analysis provides understanding the global

roles of BRD proteins as mediators of protein interactions.

Consistent with their role as molecular scaffolds, we found

that BRD proteins are hub proteins and form functional

protein complexes to shape the human PPI network. Analysis

of topological network features support the important

organizational roles for BRD proteins in the global protein-

protein interaction network. BRD proteins are positioned at

the global center, a characteristic that supports their essential

and evolutionary conserved functions.

Analysis of the BRD PPI network further highlighted the

relationships between BRD proteins. The similarity scores

calculated for interactions formed by different BRD proteins

provides insight into the shared functions among different BRD

proteins, including the less well-characterized BRD proteins. We

first determined similarity scores using a distance of 1 and identified

four related BRD protein pairs; CBP and P300, SMARCA2 and

SMARCA4, KAT2A and KAT2B, BRD2 and BRD3. These BRD

proteins all share structural and functional similarities. The cliques

formed byCBP, p300 andKAT2B expand to 4-nodes cliquewith the

addition of KAT2A. Since these 4 proteins are all the members of

BRD proteins with intrinsic histone acetyltransferase activities, they

may work with other non-BRD proteins to form chromatin-

modifying complexes, such as the SAGA complex (Soffers and

Workman, 2020). CBP and p300 form cliques with other BRD

functional group members from other functional clusters, including

SMARCA2, SMARCA4 and BRD7. In the 25th maximal clique,

CBP interacts with SMARCA2, SMARCA4, TRIM28 and BRD4.

CBP/p300 and SMARCA2/4 have been reported to formp300-CBP-

p270-SWI/SNF complex (Dallas et al., 1998) to remodel the

chromatin structure and thereby regulate gene transcription. In

addition, BRD4 interacts with CBP/p300 and SMARCA4 to regulate

histone H3 acetylation and chromatin remodeling (Wu et al., 2018).

But more study is required to investigate the collective functions of

the protein complex predicted by 25th complex.

We modified the similarity score to find similar BRD pairs

with distances of 2 and 3, and we found that majority of BRD

proteins are inter-connected. Several pairs of BRD proteins have

common interactions, indicating functional similarity between

different BRD protein members. As expected, hub BRD proteins

in the global human PPI network exhibit overall higher similarity

scores with BRD proteins, partly due to the extensive studies

available. BRD proteins are also more likely to have similar

interactome profiles with the other BRD proteins falling in the

same functional groups. Interestingly, some proteins belong to

different functional groups also have higher similarities (greater

than 0.5). This indicates BRD proteins from these similar

functional groups are related to each other and potentially

form protein complexes via common interactors to perform

similar biological functions. Examples include the BRD7-CBP-

SWI-SNF complex consisting of BRD7, SMARCA2,

SMARCA4 and CBP and/or the ALL-1 super complex formed

by MLL, TAF1 and SMARCA2 (Giurgiu et al., 2019).

We used enrichment analysis with Hallmark and Gene

Ontology pathways to examine the functional roles of BRD

protein interactors. Among the top enriched pathways, a large

set of BRD proteins (32/42) and their interactions are associated

with DNA damage repair responses. The DNA damage repair

response (DDR) is carried out by a network of factors that sense

DNA damage and signal the recruitment of chromatin remodeling

and DNA repair machinery to sites of DNA damage. The BRD

proteins are integral to DNA repair responses and participate

recognition of acetylation signals, recruiting DDR and

transcriptional factors, regulating transcription and remodeling

chromatin activities, and triggering DSB repair (Chiu et al., 2017).

The mammalian SWI/SNF (mSWI/SNF) complexes are ATP

dependent chromatin remodeling complexes that contain a

bromodomain module and regulates the accessibility of

genomic elements for DNA damage repair (Hargreaves and

Crabtree, 2011). SMARCA2 (also known as BRM for brahma

homologue), SMARCA4 (BRG1, for Brahma-related gene-1),

BRD7 and PBRM1 (BAF180) (Kadoch et al., 2013; Kumar

et al., 2016) are members of these chromatin remodeling

complexes. Interestingly, these and 28 other BRD proteins also

participate in DDR via interacting with this pathway members

(Figure 5B). The DNA-repair associated BRD proteins belong to

8 functional groups, with only AAA-ATPase BRD proteins

(ATAD2 and ATAD2B) are not encompassed. However, Kim,

et al. have suggested ATAD2B is involved in homologous

recombination by performing DSB repair assay after knocking

downATAD2B by siRNA (Kadoch et al., 2013; Kumar et al., 2016).

Functional characteristics of proteins can be predicted via

PPI clusters that share similar interactions, so we therefore

performed functional clustering analysis with gene ontology

and identified potential functions for poorly characterized

BRD proteins. Speckled proteins tend to be expressed in blood

cells and have been related to immune cell functions reviewed in

(Fraschilla and Jeffrey, 2020)]. As expected, SP100, SP140 and

SP140L BRD proteins have been assigned to immune-related

clusters in MTGO results (Table 5). Similarly, BRD3, BRD4,

BAZ2B and ZMYND11 formed a functional cluster of BRD

proteins with potential roles in RNA splicing and thus

predicted potential functions for less studied BRD proteins.

Whether they have functional roles underlying these biological

process needs to be further studied.

Advances in systems biology, including an ever-expanding

catalog of protein-protein interactions and the development of

modern methods for topological and functional prediction have

significantly enhanced our ability to study the structure and

function of biological networks. In this work, we constructed a

PPIN to provide a global view of the protein interactome in
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humans for the study of the family of BRD proteins. BRD proteins

have emerged as central factors in diverse biological processes, yet

many BRD proteins remain poorly characterized. Identifying the

relationships between BRD protein interactions and functional

modules in gene interaction networks is a critical step towards

understanding their biological roles. Distinctive hallmark pathways

and GO terms were identified in our BRD protein sub-network,

and this functional annotation offers new insight for investigation

of BRD protein function for both well-studied and unclassified

BRD proteins. Prospective analysis will be useful to exploit the

topological and functional modules to define disease modules. A

particularly interesting goal is to integrate PPI modules with co-

expression networks in specific physiological/pathological

contexts. In this way, the comparison of BRD protein

functional and topological sets can be compared between

disease versus healthy networks to uncover network rewiring

events to characterize the detailed events particular disease and

to help pinpoint biologically and therapeutically relevant proteins.
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