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Epigenomics is the branch of biology concerned with the phenotype

modifications that do not induce any change in the cell DNA sequence.

Epigenetic modifications apply changes to the properties of DNA, which

ultimately prevents such DNA actions from being executed. These

alterations arise in the cancer cells, which is the only cause of cancer.

The liver is the metabolic cleansing center of the human body and the

only organ, which can regenerate itself, but liver cancer can stop the

cleansing of the body. Machine learning techniques are used in this

research to predict the gene expression of the liver cells for the liver

hepatocellular carcinoma (LIHC), which is the third biggest reason of

death by cancer and affects five hundred thousand people per year. The

data for LIHC include four different types, namely, methylation, histone, the

human genome, and RNA sequences. The data were accessed through

open-source technologies in R programming languages for The Cancer

Genome Atlas (TCGA). The proposed method considers 1,000 features

across the four types of data. Nine different feature selection methods

were used and eight different classification methods were compared to

select the best model over 5-fold cross-validation and different training-to-

test ratios. The best model was obtained for 140 features for ReliefF feature

selection and XGBoost classification method with an AUC of 1.0 and an

accuracy of 99.67% to predict the liver cancer.
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1 Introduction

The pathogenesis of cancer stems from gene regulations responsible for unwanted

cellular growth and division, which undergoes changes and mutations. Gene sets

called oncogenes transform normal cell types into cancerous ones. Individual cancers

have specific genetic anomalies ranging from epigenetic alterations, copy numbers

(CNs), somatic mutations, and profiles. Disruption of gene expression (GE) can arise

from a genotypic inheritance, cellular division, or environmental factors. GE changes

lead to protein derangements that alter standard cellular behavior. Transformed cells
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begin abnormal proliferation, increasing in size to a tumor.

Subsequently, certain tumors evolve to become cancers, and

unique profile molecules identify individual types.

1.1 Identification of cancer

The advent of next-generation sequencing has paved the

way for mapping out of entire genome data that single out

variations and mutations specific to individual tumors. Copy

number variations (CNVs) identify regions on genes that

appear in different numbers in various individuals or

separate cells in the same individual. A significant

percentage of phenotypic variation is attributable to CNVs.

Gene expression is altered by distorting code sequences,

disrupting long-range regulations, or breaking gene dosages.

Liver cancer growth is the second most regular reason for

disease-related cancer around the world. It is one of the only

neoplasms with a steadily increasing incidence and mortality

(Llovet et al., 2009). Liver cancer comprises a heterogeneous

group, with an unfavorable prognosis that ranges from

hepatocellular carcinoma (HCC) and intrahepatic

cholangiocarcinoma (iCCA) to mixed hepatocellular

cholangiocarcinoma (HCC-CCA), fibrolamellar HCC (FLC),

and the pediatric neoplasm hepatoblastoma (Torre et al.,

2015).

1.2 Liver hepatocellular carcinoma

Liver hepatocellular carcinoma is touted as the most

aggressive form of liver cancer with etiologies ranging from

chronic infections (HBV and HCV), diabetes, and metabolic

diseases to autoimmune hepatitis (Mavilia and Wu, 2018).

Genomic profiling studies show deviation of DNA. CNs play

a pivotal regulatory role in the progression, and the subsequent

transcriptional deregulation is a likely driver in advance.

Chemotherapy, radiotherapy, and surgeries have only been

able to limit the tumor mass. Further relapse has been seen

after the completion of therapy. The last decade has seen a

significant increase in the execution of cancer stem cells that have

led to significant progression in hepatocellular carcinoma.

Cancer stem cells are found in many hematological and solid

human tumors. The dual role of embryonic stem cell

development and tumor suppression, significant surface

markers, and pathways to modulate stem cells were found in

a recent study (Mishra et al., 2009). Cancer cell carcinoma studies

have shown that a population apart from self-renewing/

differentiating capacity also increases resistance to radiation

and chemotherapy. They are the leading cause of tumor

relapse. Liver cancer stem cells (CSCs) are considered a

master regulator of hepatocellular carcinoma initiation and

hepatic progenitor cells could form the basis of LIHC.

1.3 Gene expression and research

The latest computation techniques and novel

bioinformatics have been continuously used in new

oncogenic research studies, and high-throughput

technologies (microarray analysis and RNA sequencing) are

playing a major role in identifying novel tumor markers by the

researchers for cancer diagnostics and targeted treatment.

Yang et al. (2017) studied (using data from 50 paired

samples on other bioinformatics platforms) dysregulated

genes and signaling pathways in LIHC. Machine learning

(ML), deep learning (DL), and natural language processing

(NLP) are used to accelerate these types of research and

studies. NLP uses the interaction between computers and

natural language to gather sporadic laboratory and clinical

data to speed up the scientific clinical practice. Machine

learning and deep learning methods can build accurate

models that can predict the diseases in the patients on the

processed features from gene expressions and various data

based on methylation, histone, RNA sequences, etc. LIHC

refers to the malignant tumor of liver cells. It accounts for 85%

of all hepatic cancers (Sherman, 2019). Epidemiological

analysis indicates that the high fatality rate is due to late

diagnosis and poor prognosis. In the United States, liver

cancer is increasing briskly among both men and women.

From 2006 to 2015, a steep increase of 3% is observed every

year in HCC incidences. The American Cancer Society (ACS)

had predicted that in 2020, there will be 42,810 new incidents

of liver cancer, among which almost three-fourths will be of

HCC (Cicalese, 2020). People with chronic hepatitis B,

hepatitis C, alcohol addiction, or who have been exposed to

toxins such as aflatoxin, are usually suspected of HCC (Yang

et al., 2019).

Distinct epigenetic signatures catalyzed by various epigenetic

modifiers control developmental regulation of gene expression.

Epigenetic control of chronic liver diseases advances our

understanding of critical roles of DNA methylation/

demethylation, histone acetylation/deacetylation, histone

phosphorylation and mRNA, and micro RNA involved in

these alternative pathways.

1.4 Wnt signaling pathway

In tumor development and differentiation, theWnt signaling

pathway exhibits a vital role. Accumulation of β-catenin in HCC

patients indicates the activation of the Wnt signaling pathway.

Almost 62% of HCC patients displayed an excessive collection of

β-catenin (Inagawa et al., 2002). β-Catenin mutations also

demonstrate the enhancement of HCC. Due to the disruption

of the adenoma polyposis coli (APC) gene in mice, the Wnt β-
catenin pathway was activated, which led to the development of

HCC (Colnot et al., 2004).
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2 Materials and methods

To represent the cycle of information investigation of a

cellular breakdown in the liver, we constructed a stream scorch

to decipher the means of this investigation. Four distinct kinds

of datasets of epigenomics data incorporate CpG methylation

data, histone modification data, human genome data, and

RNA-Seq data are utilized for information examination.

The datasets were downloaded from the RTCGA library,

and a few preprocessing steps were performed by R and

necktie programming (Kosinski and Biecek, 2022). By using

the record ID of each dataset, all the datasets were joined and a

model was created utilizing R. The data were pre-processed to

reduce the dimensionality and extract the most relevant

features by applying nine feature selection methods,

namely, principal component analysis (PCA), correlation-

based feature selection (CFS), chi-squared, MI-score

(mutual information), recursive feature elimination (RFE),

SelectK, embedded method with logistic regression (EMLR),

embedded method with random forest (EMRF), and ReliefF.

The data were split into different ratios for training and testing

with 90:10, 80:20, 70:30, and 60:40. The data were validated

using 5-fold cross-validation to avoid overfitting.

Additionally, statistical analysis was used to ensure that the

results were distinct and not obtained by chance. Eight unique

classifiers were applied, namely, radial SVM, linear SVM,

XGBoost, naïve Bayes, random forest, K-nearest neighbor

(KNN), multilayer perceptron (MLP), and decision tree.

Data processing is performed by developing custom R

Script whereas classification, as well as feature selection, is

performed using data mining software—Weka (Frank et al.,

2016).

2.1 Dataset selection

We used the R and open-source library RTCGA to

download all the necessary datasets from The Cancer

Genome Atlas (TCGA) Data Portal. TCGA data portal

provides a platform for academic researchers and scientists

to search, download, and analyze datasets generated by TCGA.

It contains clinical information, genomic characterization

data, and high-level sequence analysis of the tumor

genomes from DNA methylation, RNA, and mRNA

sequences to histone modification data with epigenomics,

human genome data, and clinical information of the

patients for the integration of all the data. The key is to

understand genomics to improve cancer care. RTCGA is an

open-source R package which is available and provided

through Bioconductor. It also works as an interface for the

integrative analysis of RNA-seq or microarray-based gene

transcription and histone modification data obtained by

ChIP-seq. The package provides methods for data

preprocessing. Other packages were also used, such as

TCGAbiolonks and SummarizedExperiments, ShortRead,

Rsubread, BSgenome.Hsapiens. UCSC.hg19,

EnsDb.Hsapiens.v75, and DESeq2 (Colaprico et al., 2015)

(Morgan et al., 2022) (Morgan et al., 2009) (Liao et al.,

2019) (Team, 2020) (Rainer, 2017) (Love et al., 2014). The

RTCGA package, apart from an interface to the TCGA in R,

allows researchers to transform TCGS data into a form that is

convenient to use in the R statistical package.

2.1.1 DNA methylation data
From TCGA, methylation data from Illumina’s Infinium

HumanMethylation450 Bead Chip (Illumina 450 k) were

obtained. The addition of a methyl group to the fifth

position of genomic cytosine forms 5-methylcytosine

(5 mC), often called the fifth base and is a widely studied

epigenetic mark. In mammals, 5 mC predominantly occurs in

the CpG context. Still, in other organisms, it can occur in CHG

and CHH contexts where H is an A, C, or T. Also, 5 mC is

prevalent throughout various tissues with 60%–80% of CpGs

being methylated. CPG’s genomic instructions and coding of

exons were acquired from the code provided by Li et al. (2015).

We re-noted the protein-coding properties using the exons,

coding DNA structures (CDS), and gradually deleted the

exhaustive data from different transcript areas. The

transcript areas include all introns (with uncommon first

and last intron classes), only non-translated positions in the

5′ and 3′ headings (5′ UTR and 3′ UTR, individually), as first

and last exons and a “single exon” or “single intron”

designation for transcripts which only had one exon or

one-half exon A intron.

2.1.2 Histone data
HpeG2 cell line was considered for three schemes of

histone ChIP-seq data, which were H3k4me3, H3k27me3,

and H3k36me3 from hepatocellular carcinoma tissue (0.2%

EtOH therapy). The data were chosen from the UCSC genome

browser, which is a joint effort of the ENCODE project

through the UCSC Chrome genome to http:/genome.ucsc.

edu. Data from the large were downloaded from Raw ChIP-

seq. The data were processed using R efficiently to ensure the

accuracy of all system standardization using a custom R script.

After the arrangement of crude histone marker information,

the adjusted histone marker peruses were converged with the

portions of every record utilizing the multicov work from the

BEDTools bundle (Quinlan and Hall, 2010). The histone

peruses were then standardized per 1,000 bp length of each

fragment per 1 million adjusted read library. Similar to the

CpG methylation, the histone marker adjustment highlights

were extricated on a fragment by-section basic. The numbers

addressing particular histone H3 methylation markers are four

for H3k4me3, 27 for H3k27me3, and 36 for H3k36me3.

Accordingly, highlights are named as a segment cell type
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and histone change type (for example, first_exon_A4). To

analyze histone adjustment between the disease and non-

malignant growth cell types, the distinctions of the peruses

between them were isolated by the normal of the two (for

example, an element named first_exon_A4_minus_S4_

divavg).

2.1.3 Human genome data
We extracted the nucleotide composition data from the

hg19 genome through Bioconductor’s

BSgenome.Hsapiens.UCSC.hg19 open-source library (Team,

2020), which was initially decided and selected from the study

of the UCSC genome browser, which is produced by clinicians

having three classes of species: vertebrates, primates, and

placental. A custom R script was used to process the data

using Rsubreads and other open-source packages (Liao et al.,

2019).

2.1.4 RNA-seq data
RNA-Seq gene expression data from liver cancer samples

with coupled CpG methylation data were already downloaded

from TCGA Research Network using RTCGA for

hepatocellular carcinoma. The data are selected from

TCGA, which is produced by clinicians. Differential

expression analysis was performed with the

DESeq2 package in R (Love et al., 2014). The expression of

a gene was taken as binary outcomes: either up-regulated or

down-regulated, once it passed two thresholds: 1) having an

adjusted p-value < 0.05, FDR cut off of 0.01 after having

an absolute value of log2 fold change or logFC <0.5. As a

result, 6,794 genes were selected as “differentially expressed”

genes.

2.2 Feature extraction

In the last decade, feature selection has received a

tremendous amount of attention from machine learning

researchers. Feature selection or feature engineering aims at

finding the best subset of features from the total number of

features that can represent the input data efficiently and can

still provide good prediction results for machine learning

modelling. Feature selection uses a search algorithm to find

one or more informative subsets of features that indicate to

predefined criteria. Feature selection should be able to extract

the important or relevant features (i.e., the features relevant to

the given prediction task). If a problem has N features, the

number of all subsets of features is equal to 2 N. Therefore, the

optimal set of features is one (or could be more) of an

exponential number of possible subsets and comparing all

of these subsets will locate the best intractable for N > 20

(Colaprico et al., 2015). Feature selection determines the

feature relevance according to an evaluation criterion

associated with the given method. In general, feature

selection methods can be divided into three types: filter

methods, wrapper methods, and embedded methods.

(a) Filter methods involve the methods that perform feature

selection before building the classifier and do not incorporate

learning.

(b) Wrapper methods incorporate machine learning in

measuring the quality of the subsets of features without

incorporating knowledge about the particular structure of

the classification or regression function.

(c) Embedded methods are different from filter and wrapper

methods in that the learning part and the feature selection

part cannot be separated in the embedded methods.

Figure 1 shows the three categories of feature extraction

methods.

2.2.1 CpG methylation features
Differential articulation of the methylated CpG locales was

prepared utilizing the limma library in R (Smyth, 2005). In

particular, the work top table was utilized to decide the log

overlap change (logFC) between the malignant growth and

typical tissues as well as the normal methylation (avgMval) of

each CpG site over the two kinds of tissues. A positive logFC

demonstrates hypermethylation and a negative logFC

demonstrates hypomethylation. Extra section-based

highlights were additionally considered. These incorporate

the number of hypermethylated (numHyper) and

hypomethylated tests (numHypo) on a section of a given

record. For instance, first_exon_numHyper alludes to the

number of hypermethylated tests on the principal exon.

Two other kinds of highlights are normal of logFC

and avgMval of all CpG tests on a fragment of the

record, for example, the normal logFC of all tests on

the primary exon of the guaranteed record

(first_exon_avglogFC).

Extraordinary exertion was paid to process separations of

CpG tests to exon-intersections. Given that at least one CpG

destination may exist on the individual exon fragments of a

record (counting the first and last exons), transcript-level most

extreme, least and normal separations of any hyper/hypo-

methylated test to the closest 5′ or 3′ exon-exon intersection

were processed (maxHypoTo5, min- HypoTo5, avgHypoTo5,

maxHypoTo3, minHypoTo3, avgHypoTo3, maxHyperTo5,

minHyperTo5, avgHyperTo5, maxHyperTo3, minHyperTo3,

and avgHyperTo3).

2.2.2 Histone marker change feature
The histone peruses were then standardized per 1,000 bp

length of each fragment per 1 million adjusted read library.

Similar to the CpG methylation, the histone marker

adjustment highlights were extricated on a fragment by-
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section basic. The numbers addressing particular histone

H3 methylation markers are four for H3k4me3, 27 for

H3k27me3, and 36 for H3k36me3. Accordingly, highlights

are named as a segment cell type and histone change type (for

example, first_exon_A4). To analyze histone adjustment

between the disease and non-malignant growth cell types,

the distinctions of the peruses between them were isolated

by the normal of the two (for example, an element named

first_exon_A4_minus_S4_divavg).

2.3 Feature selection

In the last decade, feature selection has received a

tremendous amount of attention from machine learning

researchers. Feature selection or feature engineering aims at

finding the best subset of features from the total number of

features that can represent the input data efficiently and can still

provide good prediction results for machine learning modeling.

Feature selection uses a search algorithm to find one or more

informative subsets of features that indicate to predefined

criteria. One significant issue while applying a massive

epigenetic dataset onto the unmistakable classifier is excess

features.

A couple of sorts of examinations exhibited that the use of a

component choice procedure can somehow improve the

precision and besides decline the excess. In this research,

feature selection methods were applied to reduce the features

and include the following: PCA (principal component analysis),

CFS (correlation-based feature selection), chi-squared, ReliefF,

MI score (mutual information), RFE (recursive feature

elimination), EMLR (embedded method with logistic

regression), EMRF (embedded method with random forest),

and SelectK.

2.3.1 Chi-squared

Chi-squared χ2 is a filter method that evaluates features

individually by measuring their chi-squared statistic with

respect to the classes. In statistics, the χ2 test is applied to test

the independence of two events, where two events A and B are

defined to be independent if (AB) = (A) (B) or, equivalently, P (A|

B) = P(A) and P(B|A) = P(B). In feature selection, the two events

are the occurrence of the term and circumstance of the class. We

then rank terms with respect to the following quantity:

x2 � ∑ (Oi − Ei)2
Ei

, (1)

where O is the observed value, and E is the expected value. χ2 is a
measure of how much expected counts E and observed counts O

deviate from each other. A high value of χ2 indicates that the

hypothesis of independence, which implies that expected and

observed counts are similar is incorrect (Liao et al., 2019).

2.3.2 Mutual information
Mutual information (MI) is another filter-based method that

measures the amount of information that one random variable

has about another variable. MI between two random variables is a

non-negative value, which measures the dependency between the

FIGURE 1
(A) Filter methods, (B) wrapper methods, and (C) embedded methods (Naqvi, 2011; Morgan et al., 2022).
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variables. It is equal to zero if and only if two random variables

are independent, and higher values mean a strong dependency/

association. Mutual information “is not concerned”with whether

the univariate association is linear or not.

2.3.3 Recursive feature elimination
Recursive feature elimination (RFE), a wrapper method, is

used to select features by recursively considering smaller and

smaller sets of features based on an external estimator that

assigns weights to features (i.e., the coefficients of a linear

model). First, the estimator is trained on the initial set of

features, and the importance of each feature is obtained either

through a coefficient attribute or through feature importance

attribute. Then, the least important features are pruned from the

current set of features. That procedure is recursively repeated on

the pruned set until the desired number of features to select is

eventually reached (Team, 2020).

2.3.4 Embedded methods–variable importance-
based methods

Algorithms such as logistics regression-based SelectKBest

features or decision trees and random forest tree-based

algorithms can also be used to extract the features from

high dimensional features. The methods are usually based

on the following approaches. Permutation-based variable

importance: this algorithm consists of permuting the

variables at test time and looking at the accuracy loss. This

technique is part of the wrapper algorithms. It can thus be used

with any learning algorithm.

2.3.5 Dimensionality reduction with principal
component analysis

Dimensionality reduction is the process of reducing the

number of features used in machine learning algorithms. This

can be used to increase the accuracy and the performance of

machine learning algorithms. One form is to perform data

compression. For example, transform 3D data into 2D data

and eliminate a feature or dimension. It can also be used to

reduce dimensions to be able to visualize data efficiently.

Dimensionality reduction can be used to speed up the time it

takes for other learning algorithms to learn. By using

dimensionality reduction, the number of features or the

amount of training samples is reduced, which reduces the

running time of the training, but the compressed data still

retain the same information as the uncompressed data. The

algorithm is formulated as a minimalization problem. When

given N-dimensional data and N-1 dimensional data are

preferred, the algorithm tries to find the correct N-1

dimensional value so that the projection is the closest to the

original data. Before this algorithm is run, the features of the data

should be scaled so that all features are on a similar scale. This can

be carried out by using mean normalization. In order to reduce

the dimension from n to k, the covariance matrix should be

computed. From this matrix, the eigenvectors need to be

computed using singular value decomposition. From these

values, only the first k values are going to be used and be

multiplied with the training data.

2.4 Classifiers

After applying feature selection for dimensionality

reduction, classification algorithms are applied to quantify

and look at the qualification between different feature

selections. Any grouping methodology uses a ton of

parameters to portray each object. These highlights are

noteworthy to the information being inspected.

Classification is a supervised learning technique where

labels are present on the information and the classification

model predicts the gene expression of the dataset. In this

research, eight classifiers were applied and their performance

was evaluated, XGBoost (XG), random forest (RF), naïve

Bayes (NB), K-nearest neighbor (KNN), multilayer

perceptron (MLP), Decision tree (DT), and radial and

linear support vector machines (SVMs).

2.4.1 XGBoost
XGBoost is a choice tree-based gathering machine learning

calculation that utilizes a slope boosting system. In expectation

issues including unstructured information (pictures, text, and so

on), artificial neural organizations will, in general, beat any

remaining calculations or systems. In any case, with regards

to little-to-medium organized/plain information, decision tree-

based calculations are viewed as top tier at this moment.

2.4.2 Random forest

Random forests are utilized for grouping and relapse by

developing decision trees during preparations. It in this way

settles on the choice tree dependent on the subsets that are

chosen randomly from the dataset.

2.4.3 Naïve Bayes

Naïve Bayes classifiers are the probabilistic classifiers that work

on Bayes’ theorem principle. The algorithm has independent

assumptions among the features. On an abstract level, given a

vector representing some features, the naive Bayes will assign a

probability to all possible outcomes (also called classes) given this

vector. It is a conditional probability model. Based on Bayes’

theorem, a reliable and computable model can be constructed for

all the possibilities that need to be generated. From the naive Bayes

probability model, we can then construct a classifier. The naive

Bayes classifier usually combines the probability model with a
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decision rule. This rule will define which hypothesis is to be picked.

A common rule is simply picking the one with the highest

probability, which is also called the “maximum posterior” (MAP)

decision rule (Liao et al., 2019) (Rainer, 2017).

2.4.4 K-nearest neighbor

It is a non-parametric model of classification, which can,

likewise, be utilized for regression. It stores all the potential cases

and uses them to order the new cases dependent on the

comparability record. The K-nearest neighbors or the KNN

algorithm is a supervised learning algorithm that computes

the classification by looking at the classes of the training

data’s K-nearest neighbors. When training the algorithm, the

input data and classes are stored. There are multiple methods to

compute the distance between data. Euclidean distance can be

used for continuous data. For discrete variables, another metric

can be used, such as the Hamming distance. There are many

different methods for computing the distance. A significant

drawback of the KNN algorithm is the weakness of skewed

data. Skewed data are data that belong to a class that is

underrepresented in the complete dataset. Since the class is

chosen based on the most popular nearest class, these popular

classes may dominate the prediction. A straightforward solution

is to gather more data. The problem can be overcome more

realistically by taking the distance between the input data and the

neighbors into account. If this does not work, it is possible to use

learning algorithms to select the best data from the dataset so that

no class is underrepresented. These methods are far more

advanced and have a higher computational cost.

2.4.5 Multilayer perceptron

Amultilayer perceptron (MLP) is a feedforward artificial neural

organization that creates a bunch of yields from a bunch of data

sources. An MLP is described by a few layers of information hubs

associated with a coordinated diagram between the information and

yield layers. MLP utilizes backpropagation for preparing the

organization. MLP is a deep learning method. Artificial neural

networks work on a simplified model of how human brains

work. They generate layers of nodes, each having certain input

and output values. An activation function triggers the nodes (also

called neurons). This function can take many shapes and be

triggered by a combination or a series of inputs of a neuron.

Once the activation function has been triggered, the neuron will

send its output signal throughout the outgoing channels.

2.4.6 Decision tree

A decision tree is a simple representation for classifying

examples. It is supervised machine learning where the

information is continuously part as per a specific parameter.

A decision tree consists of nodes: test for the estimation of a

specific trait. Edges/branch: correspond to the result of a test and

interface with the following hub or leaf. Leaf hubs: terminal hubs

that foresee the result (speak to class names or class circulation).

2.4.7 Radial and linear SVMs

Linear SVM is a quick data mining calculation for managing

multiclass classification issues out of an incredibly enormous

arrangement of data. The arrangement of numerical capacities

called kernel is applied to achieve the cycle. Normally support

vector machines, as well as general logistic regression work with

linear classifiers. A classifier can be linear or non-linear. A linear

classifier has a decision boundary, which is a linear function. This

can be seen by visualizing that there is a straight line drawn

through the data. On one side of this line, the data belong to one

class and the data on the other side of this line belongs to another

class (Love et al., 2014).

2.5 Cross-validation

Cross-validation is a statistical method of evaluating and

comparing learning algorithms by repeatedly partitioning the

given dataset into two disjoint subsets: the training and the test

subsets. The training subset is used to build the classifier model,

and then the samples belonging to the test subset are used to test

the trained model. The process is repeated with several partitions

and gives an estimate of the classification performance. The most

common form of cross-validation is k-fold cross-validation.

K-fold cross-validation: the k-fold cross-validation partitions

the given dataset into k equally sized subsets. Then, training is

performed on k−1 subsets and testing is performed on the

remaining subset. This process is repeated k times (folds) with

each subset taken as a test set in turn (Morgan et al., 2009).

Leave-one-out cross-validation: in this method, we use k-fold

cross-validation, where k is equal to the number of samples in the

dataset. In each “fold,” n−1 samples are used as a training set, and

a single sample is used for testing. This procedure is repeated for

all samples. This method is computationally expensive as it

requires the construction of n different classifiers. However, it

is more suitable for smaller datasets (Morgan et al., 2009).
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3 Results

The training and testing of the models were conducted on

various assumptions. There were total nine methods of the feature

selection. The models were trained on 5-fold cross-validation as

there are lesser observations in the data, the 5-fold cross-validation

will allow the models to train on all data as well as testing on all

data utilizing the all datasets and providing us the average results

for each fold. The models were trained with 5-fold cross-validation

to ensure overfitting does not happen. The evaluation metrics used

to evaluate the performance of the classifiers include accuracy,

sensitivity, specificity, and area under receiver operating

characteristics (AUC). We considered the accuracy score,

confusion matrix, sensitivity score, and specificity score as the

evaluation metrics for all the machine learning models. The

percentage ratio for feature selection is raw, 95%, 90%, 85%,

80%, 75%, 70%, 65%, 60%, 55%, and 50%. Furthermore, the

results are concluded using eight different classifiers. Also, 5-

Fold cross validations are performed for different training and

testing ratios (90:10, 80:20, 70:30, and 60:40). The epigenomics

data were compiled using four sources, namely, methylation data,

histoneH3marker ChIP-seq data, human genome data, and RNA-

Seq gene expression data. In total, 1,000 features were calculated.

Nine feature selection methods from the three categories of feature

selection algorithms (filter, wrapper, and embedded methods)

were applied.

FIGURE 2
Accuracy value of feature selection.

TABLE 1 Summary table for best performance of each selection method.

Feature selection Classifier AUC Accuracy Number of features

ReliefF XGBoost 1 0.9967 140

CFS XGBoost 0.9974 0.9854 110

EMLR XGBoost 1 0.9899 140

MI-score XGBoost 1 0.9893 140

Chi-squared XGBoost 1 0.9892 140

RFS RSVM 1 0.9892 140

EMRF Random forest 1 0.9891 140

PCA RSVM 0.9961 0.9873 140

SelectK XGBoost 1 0.9871 140
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As it can be seen from Figure 2, the accuracy results of all

feature selection methods, six out of eight models perform well

across the variousmachine learning algorithms. KNN, SVM linear,

andMLP have higher error rates in many cases. XGBoost, random

forest, decision tree, naïve Bayes, and SVM radial are found to be

the best models across the various feature selection methods. In

order to look into the accuracy scores in more detail and sort the

models and feature selection methods based on mean accuracy

across the various folds, custom python scripts were written for

reading the saved outputs which were stored in different sub-

directories and a table was created containing the model, feature

selectionmethod,median accuracy, mean accuracy, andminimum

and maximum accuracy which is shown in Figure 2.

Table 1 shows the highest accuracy and AUC values for the

eight classifiers. It is evident that the ReliefF feature

selection gives the best performance with 100% AUC,

whereas XGBoost is selected to be the best classifier with

140 features. After trying out different models, the accuracy

was obtained by median, mean, minimum, and maximum.

EMLR also gives the best AUC of 100% and 0.9899 accuracy

with 140 features with the XGBoost classifier. Table 2 shows

the list of best features that help to obtain best AUC and

Accuracy.

As per aforementioned Figure 3, the database with different

ratios and feature ratios as well as XGBoost is selected as the best

classifier, along with random forest and radial SVM, while

multilayer perceptron has low AUC and accuracy compared

to other classifiers.

As per aforementioned Figure 4, the XGBoost classifier is

selected as a best classifier with chi-squared, CFS, EMLR, MI-

score, ReliefF, SelectK feature selection and EMRF and RFS with

the random forest classifier also give the best AUC and accuracy

with specificity and sensitivity where blue color indicates AUC,

orange color as accuracy, yellow color as sensitivity, and purple

color as specificity. Among nine out eight give best AUC with

almost 95% and 80% ratio. All four types of data (CpG

methylation, histone modification, human genome, and RNA-

seq data) included 1,000 features (558 DNA methylation data,

207 histone modification data, and 235 nucleotide composition)

from 14,899 features. They all provide relevant information that

contributes to better prediction of the gene expression.

Overviewing the best number of features with feature

selection and classifiers, which were obtained with AUC and

accuracy.

FIGURE 3
Highest values of each classifier.

TABLE 2 List of best features that help to obtain best AUC and
accuracy.

1TSS1500 24

UTR5 11

TSS200 19

UTR3 09

CDS 10

FIRST EXON 12

LAST EXON 07

FULL TRANSCRIPT 15

HYPERMETHYLATED 16

SINGLE EXON 09

SINGLE INTRON 08

TOTAL 140

Bold values shows the total number of features.
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3.1 Grid-search based hyper-parameter
tuning of the models

The next step with model building and evaluation was to use

grid-search-based hyper-parameter tuning for finding the best

combination of parameters to find the best model. For this

approach, a custom R script was written. The training was

conducted using 80% data and 20% data were used for testing of

the model. SMOTE oversampling was also used in this

approach, which was also used with the model comparison

strategy. SMOTE balances the data and the imbalanced classes.

The best hyper-parameter corresponds to the best model of

same kind with a number of different values supplied for the

respective model.

3.1.1 Correlation-based feature selection

The following best parameters were found for different

models for the CFS method.

• KNN: (K = 9)

• XGBoost: (Alpha = 1e-04, lambda = 50)

• MLP: (n = 10)

FIGURE 4
Highest AUC and accuracy among feature selection.
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• Naive Bayes: (use_kernel = False)

• Random forest: (m_try = 10, 200)

• Decision tree: (max depth = 1)

• SVM linear: (L2 and C = 1)

• SVM radial: (sigma = 1)

3.1.2 Chi-squared-based feature selection
The following best parameters were found for different

models for the chi-squared method.

• KNN: (K = 7)

• XGBoost: (Alpha = 1e-02, lambda = 100)

• MLP: (n = 7)

• Naive Bayes: (use_kernel = True/False)

• Random forest: (m_try = 200)

• Decision tree: (max depth = 1/2)

• SVM linear: (L and C = 200)

• SVM radial: (sigma = 1/2/3/4)

3.1.3 Mutual information-based feature
selection

The following best parameters were found for different

models for the CFS method.

• KNN: (K = 9)

• XGBoost: (Alpha = 1e-04, lambda = 50)

• MLP: (n = 1)

• Naive Bayes: (use_kernel = False)

• Random forest: (m_try = 200)

• Decision tree: (max depth = 1)

• SVM linear: (L2 and C = 2)

• SVM radial: (sigma = 0.5)

3.1.4 Principal component analysis
The following best parameters were found for the different

models for the PCA method.

• KNN: (K = 5)

• XGBoost: (Alpha = 1e-04, lambda = 50)

• MLP: (n = 10)

• Naive Bayes: (use_kernel = False)

• Random forest: (m_try = 40)

•Decision tree: (max depth = 3)

• SVM linear: (L1 and C = 0)

• SVM radial: (sigma = 0.5/1)

3.1.5 ReliefF
The following best parameters were found for different

models for the Relief method.

• KNN: (K = 4)

• XGBoost: (Alpha = 1e-02, lambda = 100)

• MLP: (n = 7)

• Naive Bayes: (use_kernel = False)

• Random forest: (m_try = 200)

• Decision tree: (max depth = 1/2)

• SVM linear: (L1 and C = 1)

• SVM radial: (sigma = 1)

3.1.6 Recursive feature elimination
The following best parameters were found for different

models for the RFE method.

• KNN: (K = 5)

• XGBoost: (Alpha = 1e-02, lambda = 100)

• MLP: (n = 7)

• Naive Bayes: (use_kernel = False)

• Random forest: (m_try = 0)

• Decision tree: (max depth = 1/2)

• SVM linear: (L1 and C = 2)

• SVM radial: (sigma = 0)

3.1.7 Embedded method with logistic regression
The following best parameters were found for different

models for the EMLR method.

• KNN: (K = 5)

• XGBoost: (Alpha = 1e-02, lambda = 100)

• MLP: (n = 7)

• Naive Bayes: (use_kernel = False)

• Random forest: (m_try = 100)

• Decision tree: (max depth = 1/2)

• SVM linear: (L1 and C = 4)

• SVM radial: (sigma = 0)

3.1.8 Embedded method with random forest
The following best parameters were found for different

models for the EMRF method.

• KNN: (K = 5)

• XGBoost: (Alpha = 1e-02, lambda = 100)

• MLP: (n = 1)

• Naive Bayes: (use_kernel = False)

• Random forest: (m_try = 0)

• Decision tree: (max depth = 1/2)

• SVM linear: (L1 and C = 2)

• SVM radial: (sigma = 1)

3.1.9 Embedded method with SelectKBest
The following best parameters were found for different

models for the SelectK method.

• KNN: (K = 8)

• XGBoost: (Alpha = 1e-02, lambda = 100)

• MLP: (n = 8)

• Naive Bayes: (use_kernel = False)
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• Random forest: (m_try = 200)

• Decision tree: (max depth = 1,2)

• SVM linear: (L2 and C = 1)

• SVM radial: (sigma = 4)

3.2 Statistical analysis

Machine learning models are statistical and probabilistic

which work on the basis of calculations and statistical methods

and identifying patterns in the data to make predictions. There

are chances that observations which consist of drawing samples

from a population indicates an effect which can occur because

of sampling errors. If the observed effect indicates a p-value <
0.05 (95% confidence interval (CI)), a conclusion can be made

out of the assumptions that the observed effect reflects the

characteristics of the entire population, on the other hand, if the

p-value is greater than 0.05, the observed effect does not reflects

the characteristics of the entire population.

However, to perform this analysis, the data should satisfy the

following assumptions: 1) normal distribution, 2) homogenous

variance, 3) absence of significant outliers, and 4) independence

of observations (Li et al., 2015). Shapiro–Wilk normality analysis

(Quinlan and Hall, 2010) was performed to investigate for data

normality and Levene’s analysis (Frank et al., 2016; Kim and

Cribbie, 2018) to check for homogeneous variances. The

alternate hypothesis (H1) is accepted and H0 is rejected if a

statistically significant performance difference (p < 0.05) is found

to exist. One-way ANOVA is an omnibus test and needs a post

hoc study to identify the specific ensemble methods

demonstrating these statistically significant performance

differences. In this study, a Tukey post hoc test (Quinlan and

Hall, 2010) was also performed to identify the models

demonstrating these statistically significant performance

differences. An R custom script was developed to perform

statistical analyses.

The normality check was conducted on the AUC scores

represented in the Table 1. It cannot be said that “the sample

does not have a normal distribution,” but only “we can reject the

hypothesis that the sample comes from a population which does

not have a normal distribution.” But the sample does not have a

fair normal distribution looking at the qqplot as shown in

Figure 5, but we would not expect it to, as it is only a sample.

The results below show the output of the Bartlett’s test.

Bartlett test of homogeneity of variances.

Data: AUC by model.

Bartlett’s K-squared = 207.82, df = 7, p-value < 2.2e-16.

From the output we can see that the p-value is less than the

significance level of 0.05. This means we can reject the null

hypothesis that the variance is the same for all models. This

means that there is good evidence to suggest that the variance in

AUC is different for the different models. The following results

show the output for the Shapiro’s test.

Shapiro–Wilk normality test.

Data: df$AUC.

W = 0.46391, p-value = 8.91e-15.

From the output, the p-value which is less than 0.05 implying

that the distribution of the data is quite different from normal

distribution. We also performed the Levene’s test. In this test again,

the null hypothesis H0 is that all variances are equal.

FIGURE 5
QQ plot normality check for the distribution.
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The following output shows the one-way ANOVA for

models and feature selection methods. One-way ANOVA for

models and AUC is shown in the results below.

Df Sum Sq Mean Sq F value Pr (>F).
Model 7 0.9147 0.13067 29.56 <2e-16 ***.

Residuals 64 0.2829 0.00442.

---

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1

The p-value is lower than the usual threshold of 0.05. So, we

are confident to say that there is a statistical difference between

the models. One-way ANOVA for the feature selection method

and AUC is shown in the results below.

Df Sum Sq Mean Sq F value Pr (>F)
Feature.Selection.Method 8 0.0348 0.004344 0.235 0.983.

Residuals 63 1.1628 0.018457.

The p-value is greater than the usual threshold of 0.05. So, we

are confident to say that there are no statistical differences

between the feature selection methods.

4 Conclusion and future work

In this research, a methodology was proposed to predict liver

cancer using epigenomics data, feature extraction methods, and

machine learning methods. Using the Illumina Infinium

HumanMethylation450 K Bead chip CpG methylation range, this

technique utilizes information from combined pulmonary disease

and neighboring ordinary organs in the Cancer Genome Atlas

(TCGA) and histone alteration marker ChIP-seq from the

ENCODE initiative. It sees a comprehensive list of characteristics

covering the four classes of CpG methylation, histone

H3 methylation alteration, human genome, and RNA-Seq data.

Different techniques and choices of features selection methods (chi-

squared, CFS, MI-score, RFE, EMLR, ReliefF, SelectK, PCA, and

EMRF) and eight different classifiers (XGBoost, radial SVM, naïve

Bayes, random forest, decision tree, linear SVM, KNN, and MLP)

were implemented, and classification was contrasted in the training-

to-testing ratios and cross-validation methods to select the best

model. The results show that a selection of 140 features gave the best

model. XGBoost with ReliefF feature selection methods performed

as the bestmodel with 100% ofAUC and 99.67% of accuracy toward

the correct prediction of liver cancer.

As a future work, other cancer cell diagnoses such as breast

cancer, bone cancer, blood cancer, and oral cancer can be used

for predicting the gene expression. The accuracy level and

methodology of this research and analysis results can help to

work more on such datasets. More profound choices can be made

on merging the datasets, using all histone modifications, and

collecting and building capacity to harness more data for more

patients and develop a predictive model that is highly accurate as

this model and can be used in real-time predictions. A predictive

model can be built with multiple types of epigenomics data

obtained from the same samples in the ideal setting.
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