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Feather growth patterns are important anatomical phenotypes for investigating the
underlying genomic regulation of skin and epidermal appendage development.
However, characterization of feather growth patterns previously relied on manual
examination and visual inspection, which are both subjective and practically
prohibitive for large sample sizes. Here, we report a new high-throughput
technique to quantify the location and spatial extent of reversed feathers that
comprise head crests in domestic pigeons. Phenotypic variation in pigeon feather
growth patterns were rendered by computed tomography (CT) scans as point
clouds. We then developed machine learning based, feature extraction
techniques to isolate the feathers, and map the growth patterns on the skin in a
quantitative, automated, and non-invasive way. Results from five test animals were in
excellent agreement with “ground truth” results obtained via visual inspection, which
demonstrates the viability of this method for quantification of feather growth
patterns. Our findings underscore the potential and increasingly indispensable
role of modern computer vision and machine learning techniques at the interface
of organismal biology and genetics.
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1 Introduction

Variations in animal morphology often have a genetic origin. For example, many bird
species exhibit diverse patterns of head crests, which are plumage display structures associated
with communication and courtship (Prum, 1999; Amundsen, 2000; Price, 2002). In domestic
rock pigeons (Columba livia), head crests are characterized by feathers on the back of the head
and neck that are reversed in their growth polarity: the normal dorsal side becomes ventral and
the ventral side is dorsal, resulting in a feather that curves up toward the top of the head instead
of down and away from it (Figure 1). Head crests vary among pigeon breeds in both the size of
the feathers and their spatial extent (Figure 2). A variant in the gene EphB2 appears to be
necessary for head crest formation, but this gene alone does not explain all of the quantitative
and qualitative variation in head crests throughout the species (Shapiro et al., 2013). Therefore,
quantitative assessments of head crest morphologies are essential to discover additional genes
that control crest variation. Identification of these genes, in turn, will broaden our
understanding of the genetic and developmental mechanisms that regulate patterning and
growth of skin appendages in vertebrates (e.g., feathers, hair, scales).

Feathers have a long history in developmental biology as a model for growth, patterning,
and regional skin identity (Boer et al., 2017). However, studies of adult feather patterns and
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morphology largely rely on tedious manual examination and visual
inspection of individual feathers. Measuring large tracts or patches of
feathers can be highly labor-intensive, time-consuming, and error-
prone. These challenges led the authors of one study to conclude that,
“The work of feather counting is tedious and exacting and yields small
result relative to the labor involved” (Wetmore, 1936). The ideal
approach for examining feather patterns should be based on non-
invasive imaging, which allows morphological information to be
captured in situ, without perturbing or removing the feathers.
Moreover, the approach should be quantitative, so that the
measurements can be readily integrated into data science analysis
pipelines for genetic and genomic analyses to map the genes that
control variation. For example, to understand head crest variation in
rock pigeons, the most relevant measurements are the location,
density, and extent of the skin of the head and neck where the
feathers grow with reversed polarity. Genetic mapping projects
typically require large numbers of animals for robust statistical
support, (Hong and Park, 2012) so an analysis of feather
patterning should also be sufficiently fast and fully-automatable.

Here, we present an approach for quantifying feather patterns that
utilizes (a) non-invasive computed tomography (CT) imaging, (b)
basic post-processing to convert the images into point cloud
representations which capture the morphology of the skin and

feathers, (c) cluster and machine learning analyses to isolate and
identify individual feathers, and (d) numerical procedures to quantify
feather curvature and extrapolate the location and area of reversed
feathers. Our results, which are validated by visual inspection,
demonstrate the feasibility and utility of combining imaging and
machine vision to achieve what was once thought to be a
practically impossible analysis. We anticipate our approach will
have broad utility in various fields beyond avian biology.

2 Materials and methods

2.1 Image acquisition

CT captures the density of tissues andmaterials, and has been used
on birds (Jones et al., 2019; Boer et al., 2021), though the scans were
optimized mostly for internal hard-tissue anatomy. Visualization of
feathers was challenging due to their low radiopacity. For the current
study, freshly sacrificed domestic rock pigeons (n = 8) were carefully
handled to preserve the natural conformation of the head and neck
with minimal perturbation to the feathers, and scanned at 50 μm
resolution using a small-animal CT instrument (Inveon, Siemens
Preclinical Imaging). The acquisition settings, which included

FIGURE 1
Schematics of single feathers. In general, a feather (left) consists of the rigid central shaft, called the rachis, which supports the softer fan-shaped vane,
composed of interlocking barbs. The polarity of a feather can be mathematically modeled and determined from the angles α and α′ formed by the tangent
lines at the tip and base of its rachis, respectively, and the plane of the skin surface. A feather can be categorized as having normal (center) or reverse polarity
(right) based on whether Δα = α − α′ is positive or negative.

FIGURE 2
Head crest phenotypes of domestic rock pigeons. In contrast to a pigeonwithout head crest (left), a crested pigeon is characterized by a patch of feathers
with reversed polarity on the skin of the head and neck (right). Credit: TheMacaulay Library at the Cornell Lab ofOrnithology (ML61674401), Sydney Stringham.

Frontiers in Bioinformatics frontiersin.org02

Thompson et al. 10.3389/fbinf.2023.1073918

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1073918


relatively low x-ray energy of 30 kV but high current of 500μA, were
empirically determined to provide maximum contrast between the
feathers and surrounding air. The scans were then reconstructed using
a standard Feldkamp algorithm with Shepp-Logan filtering (Gullberg,
1979), and converted to Houndsfield units (HU).

2.2 Anatomical representation

All post-processing and analysis were conducted on a Linux
workstation equipped with an AMD Ryzen 1900X 4.0 GHZ CPU,
64 GB of RAM, and an NVIDIA GTX 2080-TI graphics card. As the
first step in the post-analysis, the anatomical features in the CT scans
needed to be represented mathematically (e.g., converting into 3D
coordinate points) to facilitate their quantitative characterization.
While this could be accomplished via several different methods, we
rendered the CT volume as isosurfaces using Amira with empirically-
determined intensity ranges, binarizing the data within the intensity
window. We then generated point clouds from the vertices of the
polygons that made up the isosurfaces. The coordinates of the surface
element vertices obtained using a high intensity threshold (−200 HU)
were grouped directly into the point cloud denoting “skin”. In
contrast, the “everything” point cloud was generated using a low
threshold (−860 HU) to remove background noise. Subsequently,
“skin” was excluded from “everything” to form the “feathers” point
cloud, by removing points within the “everything” cloud in close
proximity to vertices in the “skin” cloud. The remaining “feathers”
cloud contains mostly feather rachises, and residual image noise and
artifacts.

2.3 Cluster isolation and identification

Before quantifying the morphological features, another necessary
step was to identify and isolate the point clusters associated with
individual feathers in the “feathers” point cloud, which contained not
only the rachises, but also imaging artifacts and unremoved image
noise. Fortunately, akin to visual inspection based on anatomical
contiguity, points of an individual feather could be isolated by the

proximity or density of its points. To this end, a python
implementation of the Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) algorithm
(Campello et al., 2013; McInnes et al., 2017) was used to identify
the clusters of points associated with each distinct object. The
clustering algorithm was applied to the aforementioned “feather”
point cloud, the default algorithm parameters in the referenced
implementation were used with the exception of minimum
allowable cluster size which was set to 50 points. As point clouds
are intrinsically unordered, the identified clusters were indexed and
ordered with respect to distance from the “skin” point cloud. Each
indexed cluster was then condensed to 10 equally spaced points by
averaging spatial locations along the indexed dimension. This process
is demonstrated in Figure 5. To classify each cluster as either “feather”
or “not feather”, a single channel convolutional neural network
consisting of three convolutional layers followed by a six layer
classification network with leaky ReLU activation functions was
implemented in Pytorch (Adam et al., 2019). Each of the
subsampled clusters was represented as a 10 by three array
consisting of the normalized xyz coordinates of each of the
10 points. To generate training data for the model, three birds (one
crested, and two un-crested) were scanned and processed to generate
point clouds. This process took about 18 h, and generated
approximately 30,000 clusters, of which 22,000 were used to train
the model, and the remaining 8,000 were used for testing. At training
time, the model was trained for 120 epochs, updated in accordance
with the default Pytorch implementation of the ADAM optimization
algorithm, and evaluated on the test clusters, taking just under 2 hours.

2.4 Morphological quantification

Following isolation and identification of the point clusters
associated with individual feathers, the desired morphological
quantification could be obtained numerically. The polarity of
each of the identified feathers was obtained by calculating
linear approximations to both the top and bottom of the
feather as demonstrated in Figure 1., using the condensed
points as demonstrated in Figure 5. The two linear

FIGURE 3
CT scan of a rock pigeon head. A single sagittal slice is shown in both normal (left) and saturated (right) intensity scales. The shafts of the inverted feathers
(green arrows), and conventional feathers (red arrows) are visually discernible, but difficult to distinguish from the background noise and artifacts.
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approximations are calculated using the top three and bottom
three points of the condensed points, and are used to extrapolate
intersection points from which the angles α and α′ can be
determined. These intersection angles are then compared to
each other to generate the Δα term. Subsequently, the feathers
were labelled as having “normal” or “inverted” polarity, depending
on whether Δα is positive or negative, respectively. Furthermore,
the extrapolation of the bottom feather points were used to
determine the insertion points of the feathers on the skin
surface. The insertion points of feathers with inverted polarity
were used to calculate the local crest feather density on the skin
surface coordinate. Finally, the skin region where feather density
was greater than the empirically determined threshold of 7 feathers

cm2

was taken to be the head crest area.

2.5 Performance assessments

The performance of our feather pattern analysis framework was
evaluated in two ways. The accuracy of the cluster classification was
evaluated on the 8,000 clusters in the test set which were hand labeled.
Second, the final outputs of the analysis pipeline (the areas of the skin
occupied by the inverted polarity growth pattern) was evaluated on
5 birds separate from the ones from which the training clusters were
derived. To perform the evaluation, the clusters from the “feather” point
cloud for each bird were manually labeled (taking about 6 h per bird to
hand label each of the clusters), and calculated polarity verified. With
the manually verified quantities, the remainder of the process is carried
out to map the region of inverted polarity. The intersection-over-union
is then calculated between this area and the area determined by the fully
automated process. As a control, the same procedure was done on two
additional birds without head crests to verify that no area was identified.

3 Results

A representative CT image of a pigeon head and neck is shown in
Figure 3. As expected, the image captured exquisite details of the interior
anatomy (e.g., bones). In contrast, the shafts of the feathers, background
noise and artifacts have similarly low intensity, which underscores the
difficult but not impossible tasks of the subsequent analyses. Figure 4
shows an anatomical isourface and a point cloud used for cluster and
morphological analyses, these clusters are classified as being a feather or
not, the clusters identified as feathers are displayed in Figure 5 in green,
while the skin is denoted in white, and the region determined to have
inverted polarity in red. Figure 6 shows a representative feather and
non-feather point clusters at the three stages of pre-classification
processing, detection, ordering, and subsampling respectively from
left to right. The final outputs of the current analysis pipeline, which
are the density map of inverted-polarity feathers and binary region
denoting the crest location and extent, are shown in Figures 7, 8 for a
crested and non-crested bird, respectively.

As metrics of performance, among the 8000 individual clusters
compared, the automated (i.e., machine learning) classification correctly

FIGURE 4
Generation of morphological point clusters. A low-intensity
threshold was applied to obtain the “everything” isosurface (top), whose
vertices were used to form the corresponding point cloud. A “skin” point
cloud (not shown) was similarly obtained using a high-intensity
threshold. The “feathers” point cloud (bottom) was produced by
excluding the “skin” from the “everything” cloud. Clusters corresponding
to individual objects identified from the point cloud are shown in
different colors. In the isosurface rendering (top), the rectangular
structures at the bottom are parts of the scanner animal holding bed, and
the patches of dispersed small objects above and below the head, and at
the base of the neck, are imaging noise and artifacts. Note that the
isosurface on top is generated at a slightly higher intensity to remove
some of the noise present in the below point cloud to better display the
feathers which are being identified. In the implementation of the
pipeline, the points in the isosurface and the point cloud match exactly.

FIGURE 5
Example of clusters classified as feathers (green), the skin point
cloud (white), and the region of inverted polarity (red).
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identified the feather clusters 86.0% of the time, while producing 4.5% and
9.4% false-positive and false-negative identifications, respectively.
Although the accuracy could likely be improved by additional training
data, more sophisticated algorithms, and additional training, the
performance was deemed acceptable for characterizing the collective
behavior of regions of feathers (e.g., density and area of reversed
feathers) rather than the individual feather polarity. For the second test
of performance, the intersection over union was calculated for 5 birds,
three with crests, and two without. Figure 9 shows a representative
comparison between the crest area obtained via computer and visual
inspection. Among the three crested birds examined, the automated and

visually-determined crest areas overlap by an average of 95.0% ± 3.1%
(mean ± standard error of the mean). In contrast, no crest area was
detected for either of the two animals without a crest, as expected.
Together, these findings indicate that our proposed framework for
feather characterization is highly accurate and reliable.

In terms of computational performance, the entire analysis (from
point cloud creation to mapping of the growth pattern) took
approximately 4.8 min per bird on our modest computation
setup. Beyond initial empirical determination of the computation
parameters (e.g., intensity threshold levels), the analysis was done
in a fully automated fashion without additional user input.

FIGURE 6
Sorting and sub-sampling of individual clusters for feather identification. The top and bottom panels correspond to representative feather and non-
feather clusters. The unsorted clusters (left) are sorted by distance with respect to one end of the feather, and falsecolor coded for visualization, then sub-
sampled (right). Despite of the reduction in the number of points in each object, essential hallmarks of the feather are still recognizable.

FIGURE 7
Determination and visualization of the crest. Using the isosurface rendering (left) of the skin and feather shafts as reference, the density of feathers with
inverted curvature is shown in falsecolor (center). The crest, defined here as region where inverted-feather density is greater than seven feathers per square
centimeter, is obtained via simple thresholding the density and shown as a binary map (right).
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4 Discussion

We applied computer vision and machine learning techniques to
analyze feather morphologies from CT images of pigeons, and
quantified the location and area of their head crests. The results
are in excellent agreement with the current “gold standard”
obtained by visual inspection. It is worth re-iterating that while
this approach was only applied to one species of bird, we see no
reason why the technique should not be generalizable to different
species which also exhibit the head crest growth pattern, and could be
adapted to quantify different types of growth patterns.

Excluding initial empirical determination of the parameters, and
labelling of the training data for the cluster identification model, the
entire analysis was performed automatically and took less than 5min
processing time on ourmodest workstation. Compared to the CT scan and
reconstruction times of 57 and 23 min, respectively, our analysis will not
become a bottleneck in a high-volume and high-throughput project. To
our knowledge, this is the first time that the analysis of feather growth
patterns is successfully performed in a non-invasive, quantitative and fully-
automated fashion.

In order for this approach to be viable, the structures being mapped
must satisfy two primary criteria. They have to exist within a radio-
opacity threshold so that they can be rendered as an isosurface, and be
separable into individual structures via clustering or some similar
method. Beyond elucidating quantifiable metrics in feathers, it is
possible that there is applicability of this technique to other
topologically analogous scenarios which satisfy the criteria. Limiting
the discussion to biological scenarios, there are many examples of these
so-called “over-growth” structures where different tissue types grow
directly on top of on another. For example, osteosarcomas are
cancerous tumors which grow on the surface of bones (Widhe and
Widhe, 2000; Roller et al., 2018). Similarly, Paget’s disease is
characterized by cartilaginous and fibrous outgrowth structures on
the spine (Saifuddin and Hassan, 2003). The technique we’ve
developed for quantifying the morphology of feather growing out of
the skin may be a viable approach for identifying and quantifying the
morphology of these types of biological overgrowth structures
characterized by one tissue type growing immediately next to another.

Although the results are encouraging, the current study has several
potential limitations. First, the results are validated by comparing to those

FIGURE 8
A representative bird without crest used as control. Close-up of the CT isosurface rendering reveals feathers that all have normal polarity (left). The
automated image analysis pipeline did not detect any crest area (right).

FIGURE 9
Verification of determined crest area for a representative bird. Top-view of the crest areas determined by computer (left) and visual inspection (center)
are shown in maroon and yellow, respectively, on blue-color surface rendering of the skin. The overlap of the areas is shown in orange (right). For this
particular animal, the computer-determined crest area is slightly smaller (4%) than that by visual inspection.
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obtained via visual inspection. Although it currently produces the best-
available “ground truths”, visual inspection is necessarily subjective, and its
labor-intensiveness limits the number of comparisons that can be
practically performed. Second, the accuracy of our machine learning
algorithm for identifying feathers is a modest 86%, and the accuracy in
determining their polarity has not been directly evaluated. Although our
current outputs (i.e., the overall location and area of the head crest) appear
not to have been adversely impacted, these limitations may need to be
addressed in other applications. One notable approach could be via
additional training data (more hand labeled clusters) or data
augmentation. In early versions of the machine learning based cluster
classification, the use of data augmentation was explored, but in order to
make the approach robust to relative position of birds in the scanner,
location of feathers, and computational stability, the xyz points used for
classification were normalized. This normalization made the most
straightforward methods of data augmentation like rotation, translation,
dilation of clusters less representative of the actual data. In future work, or
where higher accuracy on the cluster identification task was necessary,
more complex data augmentation methods could certainly be explored.

Lastly, as a pipeline for image analysis, the performance is highly
dependent on the modality used and quality of the input images. The
current study was possible only after the optimal CT protocol for
maximizing the contrast of the feather rachises in the CT images was
determined. The imaging and analysis pipeline likely needs to be
optimized on a case-by-case basis for each different application.
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