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Introduction: Alzheimer’s disease (AD) is one of the most prominent medical
conditions in the world. Understanding the genetic component of the disease can
greatly advance our knowledge regarding its progression, treatment and
prognosis. Single amino-acid variants (SAVs) in the APOE gene have been
widely investigated as a risk factor for AD Studies, including genome-wide
association studies, meta-analysis based studies, and in-vivo animal studies,
were carried out to investigate the functional importance and pathogenesis
potential of APOE SAVs. However, given the high cost of such large-scale or
experimental studies, there are only a handful of variants being reported that have
definite explanations. The recent development of in-silico analytical approaches,
especially large-scale deep learning models, has opened new opportunities for us
to probe the structural and functional importance of APOE variants extensively.

Method: In this study, we are taking an ensemble approach that simultaneously
uses large-scale protein sequence-based models, including Evolutionary Scale
Model and AlphaFold, together with a few in-silico functional prediction web
services to investigate the known and possibly disease-causing SAVs in APOE and
evaluate their likelihood of being functional and structurally disruptive.

Results: As a result, using an ensemble approach with little to no prior field-
specific knowledge, we reported 5 SAVs in APOE gene to be potentially disruptive,
one of which (C112R) was classificed by previous studies as a key risk factor for AD.

Discussion: Our study provided a novel framework to analyze and prioritize the
functional and structural importance of SAVs for future experimental and
functional validation.
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1 Introduction

Alzheimer’s disease (AD), a complex disease with a known genetic basis, is the most
prominent cause of dementia in the elderly (Bettens et al., 2013). Understanding the genetic
component of AD can be of great importance in its early diagnosis, effective treatment and
improved prognosis. It has been widely studied and reported that the apolipoprotein E
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(APOE) gene, which is a key gene for lipid transportation, is closely
associated with the risk of AD (Kamboh et al., 1995; Yamazaki et al.,
2019; Martens et al., 2022). APOE gene has 3 different protein
isoforms, namely, APOE2, APOE3, and APOE4 (Husain et al.,
2021). These isoforms differ by two amino acids, APOE2 with
Cys112 and Cys158, APOE3 with Cys112 and Arg158, and
APOE4 with Arg112 and Arg158. APOE3 was considered the
reference isoform and the APOE4 Cys112Arg variant was a
strong risk factor for AD, while APOE2 Arg158Cys variant was
reported to be protective (Bojanowski et al., 2006; Dolai et al., 2020).
Given the functional importance and pathogenesis potential of
APOE variants, many experimental studies using animal models,
genome-wide association studies, and other meta-analyses have
been performed to interrogate the impact of variants residing in
the APOE gene (Bertram et al., 2008; Liu et al., 2014; Lewandowski
et al., 2020). However, given the high cost of such large-scale or
experimental studies, there are only a handful of variants being
reported that have definite explanations.

The recent development of in silico analytical approaches, especially
large-scale deep learningmodels, has opened new opportunities for us to
probe the structural and functional importance of APOE variants
extensively. Specifically, AlphaFold (Jumper et al., 2021), which
exploited attention mechanisms from language modeling and
multiple sequence alignment (MSA) data of protein homologs, has
provided substantially increased coverage of high-confidence protein
structure predictions. Additionally, the Evolutionary Scale Model (ESM)
(Lin et al., 2022), which was pre-trained on 250 million protein
sequences, has proven to be able to extract key functional domains
and evaluate the functional importance of amino acid variants (Brandes
et al., 2022) even in the absence of multiple sequence alignment (MSA)
data which were required in AlphaFold modeling. Recent studies have
tried to examine the ability of these tools individually to evaluate the
impact of single amino-acid variants (SAVs), but reported conflicting
results (Pak et al., 2021; Caswell et al., 2022). In this study, instead of
using these tools separately, we are taking an ensemble approach that
simultaneously uses these two large-scale protein sequence-basedmodels
together with a few in silico functional prediction web services to
investigate the known and possibly disease-causing variants in APOE
and evaluate their likelihood of being functional and structurally
disruptive.

2 Materials and methods

2.1 APOE sequence data retrieval

The protein sequence of the APOE gene was retrieved from Ensembl
genomebrowser v107 in FASTA format (https://useast.ensembl.org/index.
html). Python package Biopython was used to load and process the
retrieved sequence.Only the reference isoform (APOE3) and the precursor
APOE (pre-APOE) sequences were used in this study. The difference
between pre-APOE and mature APOE was the addition of an 18-residue
signal peptide at the beginning of the sequence. As a result, previously
reported variants with respect to mature APOE, such as C112R and
R158C, were reported as C130R and R176C, respectively, in this study.

The C130R variant was manually introduced to create a separate
sequence representing APOE4, and R176Cwasmanually introduced
to create a separate sequence representing APOE2.

2.2 ESM model retrieval and variant effect
prediction

ESM-1b model was retrieved from GitHub (https://github.com/
facebookresearch/esm) using PyTorch Hub. The same tokenizer as
the original ESMmodel was used to encode input protein sequences.
The variant effect for each amino acid variant (ESM score) was
calculated as the log-likelihood ratio between the variant and the
corresponding reference amino acid. To show a positive score, we
multiplied each prediction score by −1.

ESM score � −log P Variant( )
P Reference( )

The variant was predicted to be more damaging if it had a higher
ESM score.

2.3 AlphaFold model retrieval and variant
effect prediction

AlphaFold v2 model was run locally using a third-party
implementation, namely, LocalColabFold (https://github.com/
YoshitakaMo/localcolabfold) (Jumper et al., 2021; Mirdita et al.,
2022). The algorithm first implements MMseqs2 (Steinegger and
Söding, 2017) to retrieve MSA for the target protein. Then, it
predicts the 3D protein conformation for the given sequence.

Due to the high computational cost of running AlphaFold, it
was extremely time-consuming to run predictions (in silico
mutagenesis) for all possible SAVs in APOE, which would
require running AlphaFold 6,023 times (Supplementary Table
S1). As a workaround, we retrieved all SAVs in APOE reported in
ClinVar (Landrum et al., 2015). First, ClinVar database version
20220507 was downloaded from https://ftp.ncbi.nlm.nih.gov/
pub/clinvar/. Second, only variants annotated as inside the
APOE gene were kept (n = 69). Third, only non-synonymous
single nucleotide variants were kept, and all insertions and
deletions were excluded (n = 38). As a result, a total of
38 SAVs were retrieved, and a separate protein sequence was
created for each SAV. The predicted 3D protein structure for the
wild-type and each mutant sequence was compared using the
root-mean-square deviation (RMSD) of atomic positions, which
was commonly used as a distance measurement between two
protein structures. A variant with a higher RMSD score was
expected to have a greater impact on the protein structure.
Therefore, the RMSD score was used as a surrogate for
AlphaFold’s prediction of the variant’s impact.

2.4 Missense3D and DynaMut2 web service
tools

Besides the two computational tools described previously, we
used two additional web services to measure/predict the stability of
the protein with and without the variants. First, the Missense3D
database for APOE was retrieved from http://missense3d.bc.ic.ac.uk:
8080 (Khanna et al., 2021), which contains 307 pre-calculated
predictions in APOE. Second, DynaMut2 was used to predict
user supply variants (Rodrigues et al., 2020). The same SAVs
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retrieved from ClinVar were used and submitted to the
DynaMut2 web service at: https://biosig.lab.uq.edu.au/dynamut2/.

2.5 Retrieval of additional annotations

To evaluate the performance of the main predictor (ESM-1b
model), we retrieved population allele frequencies from gnomAD
(https://gnomad.broadinstitute.org/news/2020-10-gnomad-v3-1/).
Maximum population frequencies were retrieved for the same SAVs
retrieved from ClinVar as described previously.

An Evolutionary conservation score, GERP++ (Davydov et al.,
2010), was retrieved from the dbNSFP v4.3a database (Liu et al.,
2011; Liu et al., 2020), available at https://sites.google.com/site/
jpopgen/dbNSFP.

Additionally, we have retrieved 3 popular tools for predicting
protein stability change upon mutation, namely, FoldX
(Schymkowitz et al., 2005), DDGun (Montanucci et al., 2019)
and Maestro (Laimer et al., 2015). First, FoldX was downloaded
from https://foldxsuite.crg.eu/ using the academic license. The
“Stability” command was used to calculate the Gibbs energy of
protein folding for all 38 potential SAVs. The difference in folding
energy between wild-type and mutant sequences was calculated and
their absolute values were used to represent each SAV’s impact
predicted by FoldX, since both stabilizing and destabilizing
mutations may all have substantial impacts on the function of
the protein. Second, the DDGun web service, available at: https://
folding.biofold.org/ddgun/index.html, was used to make predictions
on protein stability change given a list of mutations. Specifically, the
wild-type sequence of APOE with a list of IDs for all 38 SAVs was
uploaded. A global Delta Delta G (DDG) value was predicted for
each of the SAVs, and its absolute value was used to represent each
SAV’s impact predicted by DDGun. Third, Maestro v1.2.35 Linux
executable file was downloaded from https://pbwww.services.came.
sbg.ac.at/?page_id=477. All 38 SAVs were submitted as input for the
Maestro program with the wild-type 3D structure of APOE obtained
using AlphaFold2. Similarly, the DDG values were obtained from
the prediction and their absolute values were used to represent each
SAV’s impact predicted by Maestro.

2.6 Statistical tests and visualizations

To evaluate the correlation between allele frequencies of the
variants and predictions made by computational tools, Pearson’s
correlation coefficient was calculated using the Python library SciPy
(https://scipy.org/). We calculated the area under the receiver
operating characteristic curve (auROC) and average precision
scores to evaluate each predictor’s ability in prioritizing potential
clinically relevant variants. Specifically, an auROC was calculated by
measuring the predictor’s true positive rate (TPR) and false positive
rate (FPR) using different score cutoffs. Similarly, the average
precision (AP) score was calculated by measuring the predictor’s
precision and recall (same as TPR) using different score cutoffs. The
formulas for calculating TPR, FPR, and precision are:

TPR Recall( ) � TP

TP + FN

FPR � FP

TN + FP

Precision � TP

TP + FP

Where TP refers to the number of true positives (correctly predicted
ClinVar pathogenic variants), FN refers to the number of false negatives
(incorrectly predicted ClinVar pathogenic variants as benign), FP refers
to the number of false positives (incorrectly predicted ClinVar benign
variants as pathogenic), and TN refers to the number of true negatives
(correctly predicted ClinVar benign variants). Both auROC and AP
scores were calculated using the Python library sklearn with functions
roc_auc_score and average_precision_score, respectively.

Additionally, PyTorch was used to calculate ESM model
predictions, and Tensorflow was used to calculate AlphaFold
model predictions.

3 Results

3.1 ESM-1b model can predict regions with
high importance

As illustrated in Figure 1, the entire length of the APOE protein
was predicted by the ESM-1b model, and all potential amino acid
variants were evaluated as the log odds ratio between the mutant and
wild-type predictions. Variants with lighter colors indicate a low
predicted likelihood of the existence of a variant at this position,
which implies their functional importance. Key functional domains,
including a signal peptide, receptor binding domain and lipid
binding domain showed higher importance, as illustrated by light
color bands. Interestingly, these regions of high importance showed
higher conservation scores (GERP++ score), as illustrated by the top
panel. In contrast, amino acids from positions 18–45 showed both
low conservation and low predicted functional importance. This
observed concordance of the ESM prediction with annotated
functional domains and evolutionary conservation demonstrated
the model’s ability to capture important regions in the APOE gene,
given that the gene is only moderately conserved and is quite
tolerant to missense variants (Lek et al., 2016).

Additionally, multiple clustering patterns were observed in the
prediction heatmap, as illustrated by regions with high predicted
values. One of these regions was amino acids 1–18, representing the
signal peptide region. While few studies have tried to evaluate the
functional importance of variants residing in this region, it is clear that
multiple variants can be extremely harmful to the protein’s function.

3.2 ESM-1b model can identify variants of
high functional importance in the
population

To illustrate if the scores predicted by ESM-1b can truly reflect
function importance at the variant level, we next evaluated allele
frequencies observed in a large-scale population cohort, namely,
gnomAD, and see if the model’s predictions show correlations with
allele frequencies (AFs) of the variants in general populations. Due
to purifying selection, variants with lower AFs are more likely to be
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deleterious, whereas variants with higher AFs are more likely to be
tolerated (benign). As illustrated in Figure 2, predictions by ESM-1
showed statistically significant positive correlations
with −log10(AFs) in the general population, which indicates its
capability of identifying truly functional variants that have
undergone purifying selection.

3.3 AlphaFold’s predictions correlate with
evolutionary conservation

Next, we investigated the predictions made by AlphaFold.
AlphaFold gives a per-residue confidence metric called pLDDT

(predicted Local Distance Difference Test) score for all alpha-
carbon atoms (Mariani et al., 2013). Regions with high pLDDT
scores usually have fewer clashes and structural violations. As shown
in Figure 3, pLDDT scores correlate with conservation scores
(Spearman correlation coefficient = 0.43, p-value = 1.94 × 10−15),
which was expected, as AlphaFold prediction relies on MSA data as
input, which primarily utilizes conservation data. Additionally, in
regions with high pLDDT scores (pLDDT >70), for example, the
amino acid’s approximate position from 45–170, only pathogenic
variants and no benign variants were reported. Their potential
structural importance could explain this observed pattern.

3.4 Orthogonal tools show low pairwise
correlations

We compared the correlation of the predictions made by four
popular computational frameworks, namely, ESM-1b, AlphaFold,
Missense3D, and DynaMut2, which measure protein properties
from different perspectives (Figure 4). Specifically, ESM model
studies comprehensive protein sequence features from millions of
protein sequences using a language model. AlphaFold model studies
protein sequences and tries to predict 3D protein structures using
sequences and available templates. Missense3D adopts a
bioinformatics pipeline and evaluates a wide range of structural
impacts of an SAV. DynaMut2 model predicts protein stability by
learning a series of biochemical and biophysical features from the
target proteins. We have examined additional popular in silico tools
that can predict protein stability (Caldararu et al., 2020; Pan et al.,
2022), including FoldX (Schymkowitz et al., 2005), DDGun
(Montanucci et al., 2019) and Maestro (Laimer et al., 2015), but
all of them showed inferior performance compared to DynaMut2 in
APOE (Supplementary Figures S1, S2; Supplementary Table S2).
Therefore, we chose only DynaMut2 as the representative tool for
protein stability prediction. Interestingly, benchmarked using
ClinVar labels, the DynaMut2, as the best individual predictor

FIGURE 1
ESM-1b and GERP predicted functional importance scores for all potential SAVs in APOE gene. (A) GERP conservation scores for APOE gene. (B)
functional domains for APOE gene. (C) ESM-1b in silico mutagenesis predictions for APOE gene.

FIGURE 2
Correlation between ESM-1b predictions and population allele
frequencies among ClinVar reported variants in APOE. Pearson
correlation coefficient and associated p-value were reported.
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among protein stability methods, outperformed predictors from
other categories, including ESM and AlphaFold. Therefore, we
provided predictions from DynaMut2 for all possible SAVs in
APOE in Supplementary Table S3.

All these four selected tools showed no or very weak correlations
with each other, which can be both concerning and useful. On one
hand, if the inconsistency arises from methodological flaws, their
ability to capture useful information is extremely limited. Users
should be cautious when adopting these tools in their workflow. On
the other hand, if this inconsistency arises from the differences in
methodological preferences and their ability to capture different
aspects of protein functions, then these tools can provide valuable
orthogonal information.

3.5 Ensemble of multiple tools can provide
biological meaningful insights

To evaluate the usefulness of the previously described tools and
illustrate if their low correlation can be beneficial to explaining

variant effects, we obtained top candidates frommultiple predictions
and examined their biological relevance as a means of validation.
The top candidates were obtained based on the predictions made by
each of the four tools. We consider variants to be potentially
pathogenic if predictions from two or more tools showed
indicative of a disruptive effect. Using this ensemble approach
(majority vote), five candidate variants were obtained. As shown
in Table 1, variants C130R, R163C, and R132C are most likely to be
functional. Importantly, DynaMut2, which predicts the stability of
the mutant protein sequence, showed destabilizing effects for all
these 3 variants. AlphaFold models also predict the top 2 variants to
disrupt the key functional domains. Interestingly, the most
promising variant, C130R, is the variant that separates the
transcript that carries the variant gene (APOE4) from the wild-
type transcript (APOE3). The variant replaces Cysteine with
Arginine, which was predicted to change a residue state from
buried to exposed (Figure 5). The functional importance of the
C130R variant was validated by previous studies, which reported the
variant to be associated with an elevated risk of AD (Husain et al.,
2021; Martens et al., 2022). This observation highlighted the ability

FIGURE 3
The pLDDT scores for AlphaFold predicted APOE structure. (A) GERP conservation score. (B) pLDDT scores along APOE protein sequence. ClinVar
pathogenic/benign variants were highlighted in red and green, respectively. All variants are referred to as all amino acids in APOE, which reflect the pLDDT
distribution for all amino acids of APOE.
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FIGURE 4
Pairwise correlation of the variants between the four in silico predictors.

TABLE 1 Five candidate variants that affect APOE function.

Variant Allele frequency ESM DynaMut Missense3D AlphaFold Evidence count

C130R 0.138 0 −1.07 1 33.813 3

R163C 0.001 9.631 −0.86 0 8.305 3

R132C 0.00003 8.259 −0.77 1 5.664 3

R163P NA 10.296 −0.48 0 9.320 2

R160C NA 9.571 −0.02 0 9.113 2

*ESM, cutoff = 7.97(top 25 percentile); DynaMut cutoff = −0.5; Missense3D = 1 (damaging); AlphaFold cutoff = 6.42 (top 25 percentile). *specifies which cutoff value was used for each of these

predictors to decide if their predictions for the variants are damaging (functional) or not (non-functional).

The bold values mean that the individual predictor’s prediction for that specific variant is damaging (functional).
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to combine multiple functional prediction tools in finding key
functional variants.

Next, using a similar approach, we identify one variant to be
potentially benign. As shown in Table 2, all four tools predicted the
variant to be non-functional. ClinVar reported a conflicting
interpretation of pathogenicity for this SAV, meaning that multiple
clinical laboratories reported contradictory interpretations for the same
variant. Specifically, some studies reported it to be benign while others
report it to be uncertain significance, according to the 2015 ACMG-
AMP guidelines (Richards et al., 2015). Given its previous uncertain
annotations and the fact that all orthogonal in silico methods showed
concordant prediction, its function is worth investigating in future
studies to confirm whether the SAV is truly benign. All calculated

scores for all 38 SAVs analyzed in the study are provided in
Supplementary Table S2.

4 Discussion

In this study, we explored the usefulness of various orthogonal in
silico predictors in their ability to prioritize functionally and
structurally disruptive SAVs in the APOE gene. Using little to no
prior knowledge, we identified 5 potentially disrupting variants, one
of which (C130R) was classified by previous studies as a key risk
factor for AD (Holtzman et al., 2012).

As illustrated by our study, the ESMmodel, which utilized large-
scale pretraining and state-of-the-art deep learning architectures,
can efficiently identify highly important domains and functional
SAVs. The N-terminal of the APOE protein consists of 4 helices, H1,
H2, H3, and H4, which form a four-helix bundle that spans amino
acids from 42 to 182 (Wilson et al., 1991). These helices contain
some key functional domains, such as the LDL-receptor binding
region (residues 154–168). As illustrated by the ESM prediction
(Figure 1), this region indeed contains multiple highlighted bands,
reflecting the potential functional importance of the variants.
Moreover, the previously mentioned domain for the signal
peptide (residues 1–18) represents another region of interest. It
has been previously reported that variants located in signal-peptide-
encoding sequences may severely impact protein transportation
(Jarjanazi et al., 2007). For this under-investigated region, no
variant was reported in ClinVar, including benign, pathogenic, or
variant of unknown significance (VUS), which calls for future
studies to perform functional validation of variants in this region
that focus on the transportation and maturation of APOE.

However, the ESM model was imperfect, and it may fail to predict
variants residing in regions with little homologous coverage. For
example, in our study, the ESM model incorrectly predicted the
C130R variant to be non-functional. On the other hand, the
AlphaFold model has demonstrated potential in identifying such
highly disruptive SAVs. While the C130R variant was predicted as
non-functional by the ESMmodel, it showed the highest disruptive effect
predicted by AlphaFold among the top 5 candidate SAVs. Based on our
results from non-specific in silico predictions, this C130R variant may
convey its functional impact through altered protein 3D structure rather
than the function encoded in the underlying amino acid. Indeed, this
C130R, or the equivalently C112R in mature APOE, was reported to
destabilize the protein structure, which was considered to improve its
ability to bind to lipid and amyloid-β surfaces, which may ultimately
increase the risk of AD (Chetty et al., 2017).

Aside from the promising results of using a set of orthogonal in
silico tools to help us understand the functional importance of APOE
variants, we believe there are a few limitations in our study that
future studies could improve upon. First, our illustration and
analysis in this study were based only on a single gene APOE,
and future studies may include other apolipoprotein genes to

FIGURE 5
Predicted change in residue properties between Cysteine (green)
and Arginine (red) in C130R variant by Missense3D.

TABLE 2 Candidate variant that predicted to be benign by all tools.

Variant Allele frequency ESM DynaMut Missense3D AlaphaFold

L46P 0.0025 3.106 −0.09 0 3.564
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investigate the capability of these novel computational tools in
assisting lipid research. Second, we only considered SAVs in this
study, and we note that InDels (short insertions or deletions) may
play a greater role in protein stability and function. It is still an open
question regarding if and how these existing computational tools can
help with this regard. Third, in this study, we performed validation
across multiple data resources, including conservation score and
population allele frequency, and future studies may be conducted to
include additional in silico validations and even experimental
validations, such as deep mutational scanning data, to further
elucidate the functional importance of the reported variants.
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