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The soybean cyst nematode (SCN) [Heterodera glycines Ichinohe] is a devastating
pathogen of soybean [Glycine max (L.) Merr.] that is rapidly becoming a global
economic issue. Two loci conferring SCN resistance have been identified in
soybean, Rhg1 and Rhg4; however, they offer declining protection. Therefore,
it is imperative that we identify additional mechanisms for SCN resistance. In this
paper, we develop a bioinformatics pipeline to identify protein–protein
interactions related to SCN resistance by data mining massive-scale datasets.
The pipeline combines two leading sequence-based protein–protein interaction
predictors, the Protein–protein Interaction Prediction Engine (PIPE), PIPE4, and
Scoring PRotein INTeractions (SPRINT) to predict high-confidence interactomes.
First, we predicted the top soy interacting protein partners of the Rhg1 and
Rhg4 proteins. Both PIPE4 and SPRINT overlap in their predictions with
58 soybean interacting partners, 19 of which had GO terms related to defense.
Beginning with the top predicted interactors of Rhg1 and Rhg4, we implement a
“guilt by association” in silico proteome-wide approach to identify novel soybean
genes that may be involved in SCN resistance. This pipeline identified
1,082 candidate genes whose local interactomes overlap significantly with the
Rhg1 and Rhg4 interactomes. Using GO enrichment tools, we highlighted many
important genes including five genes with GO terms related to response to the
nematode (GO:0009624), namely, Glyma.18G029000, Glyma.11G228300,
Glyma.08G120500, Glyma.17G152300, and Glyma.08G265700. This study is
the first of its kind to predict interacting partners of known resistance proteins
Rhg1 and Rhg4, forming an analysis pipeline that enables researchers to focus their
search on high-confidence targets to identify novel SCN resistance genes in
soybean.
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1 Introduction

Cultivated soybean (Glycine max (L.) Merr.) is a valuable
crop worldwide, regularly used in food, feed, and fuel. Soybean is
also an important partner in sustainable agricultural
management practices due to its symbiotic relationship with
nitrogen-fixing bacteria (Boerema et al., 2016). The reference
genome, Williams 82, is ~1.1 GB with ~89,500 protein-coding
transcripts and 55,589 genes encompassed in 20 chromosomes
(Schmutz et al., 2010). The soybean genome is difficult to study
due to chromosomal rearrangement, rounds of diploidization,
and two major duplication events that occurred 59 and 13 million
years ago, making 75% of its genes available in paralogs (Schmutz
et al., 2010). Soybean must deal with numerous abiotic stressors,
among which are various mineral deficiencies, drought,
daylength, and cold weather conditions (Jumrani and Bhatia,
2018). In addition to abiotic stressors which are difficult to
control, soybean faces several biotic stressors, including
pathogenic stressors such as Fusarium virguliforme (causing
sudden death syndrome), Aphis glycines (soybean aphid),
Sclerotinia sclerotiorum (causing sclerotinia stem rot), and
Heterodera glycines Ichinohe, also known as soybean cyst
nematode (SCN) (Bradley et al., 2021).

SCN is one of the most destructive pathogens of soybean, first
detected in North America in 1954 in North Carolina (Winstead
et al., 1955). SCN attacks soybean roots, thereby creating feeding
sites within them called syncytia, and robs nutrients from the
plant for its own growth and development (Gheysen and
Mitchum, 2011). At the J2 (juvenile) stage, the nematode will
live and feed in the syncytia for about 3–4 weeks, until they reach
the adult stage. Male adults will leave the roots, while females will
continue to feed and grow. At one point, the adult females will
push through the roots, releasing pheromones to attract adult
males for mating. The still females will then deposit eggs near the
root while also keeping some within their body, before hardening
into cysts and dying. The cysts, containing viable eggs, are able to
remain in the soil for up to 10 years until conditions are favorable
for them to emerge and infect more soybean roots (Davis and
Tylka, 2000).

At present, there exist two commercially used loci for SCN
resistance in soybean, the recessive form of Rhg1 and the dominant
form of Rhg4 (Concibido et al., 1997; Glover et al., 2004; Kim et al.,
2010; Liu et al., 2012). The Rhg1 locus consists of a 31 kb multi-
gene segment coding for an α-SNAP protein (GmSNAP18), a
wound-inducible domain protein (WI12; GmWII2), and an amino
acid transporter (AAT; GmAAT). All three were shown to be
involved in resistance and were mapped to chromosome 18 (Cook
et al., 2012; Liu et al., 2017). The Rhg1 locus has two resistance
alleles, rhg1-a “Peking-type” and rhg1-b “PI88788-type.” The rhg1-
a allele contains a retrotransposon in the GmSNAP18 protein and
has a lower copy number for all three proteins (about three or
fewer copies), while the rhg1-b allele does not contain a
retrotransposon in GmSNAP18 and has a higher copy number
for the three proteins (~4–10 copies). The rhg1-a allele requires
Rhg4 for complete resistance, while the rhg1-b allele does not. The
Rhg4 gene codes for a cytosolic serine hydroxymethyltransferase
(SHMT) protein which confers resistance against SCN (Liu et al.,
2012).

Current management strategies against SCN remain
challenging as soybean varieties containing resistance alleles at
Rhg1 or Rhg4 loci are collapsing as more virulent SCN
populations are emerging. Since the human population is
expected to reach an all-time high in 2050 and continue
growing, the threat that SCN poses to soybean yield is
significant, fueling a rise in breeding programs which deal
with SCN (Yan and Baidoo, 2018; Shaibu et al., 2020; Nissan
et al., 2022). There have been significant advancements in SCN
research in the hopes of identifying novel genes involved in
resistance, such as fine-mapping studies, methylation, large-
scale genomics, transgenics, transcriptomics, and proteomics
(Shaibu et al., 2020). There is a lack of knowledge when it
comes to Rhg-interacting proteins that trigger the
hypersensitive response in soybean, which has been
problematic in terms of identifying ways to control SCN.

Protein–protein interactions (PPIs) are critical to cellular
functions in living organisms. They participate in many different
processes including DNA replication, catalysis of metabolic
reactions, DNA transcription, suppression or activation of a
protein, and transportation of molecules (Peng et al., 2017).
Studying PPIs allows for molecular machinery in cells to be
identified (De Las Rivas and Fontanillo, 2012). This is possible
because proteins often form complex structures to perform specific
functions in an interaction network called the “interactome” instead
of functioning as individual units (Cusick et al., 2005). Studying PPI
networks has aided in identifying gene function (Zhao et al., 2016;
Samanfar et al., 2017; Gligorijević et al., 2018), diseases/allergens (Xu
and Li, 2006; Dick et al., 2021a), and pharmaceutical discoveries
(Yıldırım et al., 2007; Schoenrock et al., 2015). Primarily small-scale
studies have identified PPIs through yeast-two-hybrid (Y2H)
experiments, tandem affinity purification and mass spectrometry
(TAP-MS), and co-immunoprecipitation (Co-IP) techniques
(Bensimon et al., 2012; Stynen et al., 2012). For example, a large-
scale comprehensive PPI has been performed for Saccharomyces
cerevisiae in a genome consisting of approximately 6,000 genes,
using Y2H studies, proteome chips, and a combination of
computational and experimental strategies (Uetz et al., 2000; Zhu
et al., 2001; Tong et al., 2002). However, limitations begin to arise
with the use of wet-laboratory experiments with larger genomes
such as soybean, which is composed of 55,589 genes (Torkamaneh
et al., 2021). Some of those limitations include labor costs, scale of
study, time constraints, and false positive and negative rates (Zhang
et al., 2019). Hence, the use of computational predictors of PPIs has
become valuable in molecular biology research. These
computational approaches supplement and focus the use of wet-
laboratory experiments on targeted, high-confidence predictions. In
the last decade, there has been an increase in demand for
computational tools that can predict a comprehensive
interactome, which is the set of all possible pairwise PPIs within
or between proteomes. This has become possible due to the
emergence of high-performing computer infrastructure and
algorithmic optimizations (Dick et al., 2020). The sequence-based
PPI prediction methods used in this study exploit information from
previously confirmed PPI sets to determine whether two query
proteins will physically interact (Li and Ilie, 2017; Dick et al., 2020).

In this study, we use two complementary PPI prediction
methods, the latest version of the Protein–protein Interaction
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Prediction Engine (PIPE), PIPE4, and the Scoring PRotein
INTeractions (SPRINT) predictor, to investigate the soybean
proteome (Pitre et al., 2006; Li and Ilie, 2017; Dick et al., 2020).
These PPI predictors are applied to predict the PPIs of the entire
soybean proteome, which enables studying unannotated proteins
through a “guilt by association” approach. Such an approach works
on the premise that if an unknown protein is found to be interacting
with many proteins exhibiting a given function, there is a heightened
chance that the unknown protein also shares that function (see
Figure 1) (Rao et al., 2014).

We developed a computational pipeline to identify novel
soybean genes possibly involved in the resistance against SCN.
Through this analysis, we highlight our most interesting genes
by predicting the complete interactome of soybean; we first
reveal the direct interactors of Rhg1 and Rhg4 (i.e., the SCN
resistance pathway) and, second, discover those unannotated
proteins whose interactome overlaps significantly with the
pathway.

2 Methods

2.1 Computational approach, outline, and
summary

To identify putative novel genes involved in the resistance
pathway to SCN, a data mining pipeline was developed using the
longest protein transcript for each of the 55,589 predicted genes. The

genes were processed through a sequential cascade of computational
analyses. First, PIPE4 and SPRINT were used to predict the entire
soybean interactome using the Williams 82 reference genome;
decision thresholds are applied to each protein pair within the
soybean proteome to predict interactions in the SCN resistance
pathway. The resulting candidate list was then refined using GO
enrichment of the top candidates using SoyBase’s GO Term
Enrichment Tool (https://soybase.org/goslimgraphic_v2/
dashboard.php), followed by GO REVIGO (http://revigo.irb.hr)
for visualization and further analysis (see Figure 2).

2.2 PPI prediction with PIPE4 and SPRINT

Both PIPE4 and SPRINT were used to predict soybean PPIs
for all soybean proteins. Due to the lack of experimental soy–soy
PPI data, Arabidopsis thaliana PPI data were used as a cross-
species proxy for training PIPE4 and SPRINT predictors (Dick
et al., 2020). This training set consisted of 3,027 A. thaliana–A.
thaliana confirmed protein interactions between 2,096 proteins.
Performing all-to-all soy–soy predictions on 88,647 soy
proteins resulted in 3,929,189,628 protein pairs. However,
considering only the longest protein sequence isoforms
reduces the number of relevant proteins to 56,044 (including
Glyma.U proteins), which results in 1,570,492,990 possible
interactions. This was performed because both PIPE4 and
SPRINT examine the protein sequence, and utilizing the
longest sequence will allow the PPI predictors to consider

FIGURE 1
Guilt-by-association approach showing a known SCN resistance protein in teal and its top interacting partners highlighted in blue within the dotted
circle. An unknown protein, with a question mark, is observed to interact with the same interacting partner as the resistance protein. Hence, through the
“guilt by association” approach, the protein with the question mark can be predicted to interact in the resistance protein pathway due to sharing
interacting partners with the known resistance protein.
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more “windows” for interaction, while removing redundant
sequences from the analysis.

Considering the predictions from both PIPE4 and SPRINT, we
determined an overlapping set of highly probable candidate PPIs for
subsequent analysis. The top 0.07% of soybean-interacting partners
(40 genes) were extracted for each of the 55,589 soy proteins
(Glyma.U proteins were used to train PPI predictors but were
excluded from our search for novel resistant genes). This highly
conservative threshold was determined by plotting the rank-order
distribution of the top 1,000 predicted interactions and identifying a
“knee” in the L-shaped curve where the predicted score plateaus
(Figure 3) as motivated by the following work leveraging a similar
methodology (Dick and Green, 2018; Dick et al., 2021a). As shown
in Figure 3A, there is a notable step-wise decrease in the
PIPE4 prediction scores at rank 60, whereas in Figure 3B, there
is a notable step-wise decrease in the SPRINT prediction score at
rank 40. For consistency within this work, we selected the highly
conservative top 40 cutoff values for both methods. Positive control
set A (AP) for PIPE4 and (AS) for SPRINT comprise the top
40 ranked interacting partners of Rhg1 (Glyma.18g022400,
Glyma.18g022500, and Glyma.18g022600) and Rhg4
(Glyma.08g108900) proteins, resulting in 160 PIPE- and
160 SPRINT-identified soybean proteins overlapping with these
positive control sets (Supplementary Table S1 and Figure 4). This
work follows the “guilt by association” method and was
implemented using Python. Any proteins whose top
40 interactors overlapped by at least 25% with the top
40 interactors of the positive control set AP (and AS when
repeated using SPRINT) were kept for further analysis. The top
25% were chosen as both PIPE4 and SPRINT predicted the closest
numbers of interacting proteins between both predictors at this
percentage threshold (Supplementary Figure S1).

Finally, to quantify the predictive performance of both
PIPE4 and SPRINT within this cross-species prediction schema,
we sought to evaluate the performance of the models on unseen
experimentally validated PPI pairs. To this end, we extracted all
known soy–soy PPI pairs from BioGRID (https://thebiogrid.org,
accessed on 18 May 2023) (n = 17) and report the sensitivity of both

methods based on the highly conservative top 40 threshold
considered in this work (Supplementary Table S2).

2.3 Gene Ontology

Soybean genes in the AP and AS positive control sets, as well as
the 1,082 candidate list (Supplementary Table S3), were
independently run through the SoyBase GO Term Enrichment
Tool (https://www.soybase.org/goslimgraphic_v2/dashboard.
php, accessed on 17 February 2023) (Grant et al., 2010) to
curate the GO term enrichment of each of the two lists (the
58 overlapping proteins in the AP/AS list and the 1,082 candidate
list). The SoyBase GO:BP output was searched for terms related
to “defense,” “response,” and “nematode” to encompass terms of
interest identified in the QuickGO database (www.ebi.ac.uk/
QuickGO/, accessed on 17 February 2023). Terms of interest
in the biological process category included but were not limited
to terms involved in defense/resistance such as response to
nematode (GO:0009624), response to wounding (GO:
0009611), defense response (GO:0006952), response to
mechanical stimulus (GO:0009612), response to xenobiotic
stimulus (GO:0009410), defense response to bacterium (GO:
0042742), jasmonic acid and ethylene-dependent systemic
resistance (GO:0009861), response to salicylic acid (GO:
0009751), response to ethylene (GO:0009723), response to
abscisic acid (GO:0009737), and response to jasmonic acid
(GO:0009753). Only defense-related annotations remained in
the final lists. The enriched GO:BP terms and p-values were
then run through REVIGO (http://revigo.irb.hr, accessed on
17 February 2023), a tool used to reduce and visualize large
lists of GO terms by scoring mother and daughter ontologies on
frequency, relative group size, dispensability, and uniqueness
(Supek et al., 2011). REVIGO filtering parameters were set to
the medium threshold (0.7), and A. thaliana was used as a
reference species. REVIGO scatterplots were created using the
log10 size value of the biological process GO terms across all A.
thaliana GO terms.

FIGURE 2
Flowchart of the computational large-scale pipeline used to identity novel soybean genes involved in resistance against SCN.
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2.4 3D structure prediction using AlphaFold2

In this study, we employed the AlphaFold2 algorithm to
generate precise 3D structural conformations for the proteins of
interest, based on their respective amino acid sequences.

AlphaFold2, an advanced deep learning model, utilizes a two-step
process to predict protein structures (Jumper et al., 2021). First, it
employs a neural network trained on a large database of known
protein structures to generate protein-specific potentials. These
potentials capture the complex relationships between amino acid

FIGURE 3
L-shaped curves identifying predicted score plateaus using the top 1,000 predicted interactions for (A) PIPE4 and (B) SPRINT.

FIGURE 4
PPI analysis through the guilt-by-association approach. The interactions are denoted by gray soy-interacting protein partners. The red protein is a
candidate gene with over 25% overlaps in soy-interacting proteins from positive control sets AP/AS.
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sequences and their corresponding structures (Jumper et al., 2021).
In the second step, the potentials are utilized to optimize the protein
structure by minimizing a predefined energy function. The resulting
structures are refined iteratively to achieve higher accuracy (Jumper
et al., 2021). By leveraging AlphaFold2, we obtained highly accurate
3D structural conformations for the proteins of interest, facilitating a
comprehensive understanding of their molecular functions and
interactions. We make this predicted structural information
available to the broader research community within the GitHub
repository associated with this work (https://github.com/earezza/
Soybean-Large-Scale-PPI-Analysis).

3 Results

3.1 Results for the positive control sets AP

and AS

PIPE4 and SPRINT predicted the top 40 (or top 0.07%)
interacting partners of Rhg1 and Rhg4 proteins

(Glyma.18g022400, Glyma.18g022500, Glyma.18g022600, and
Glyma.08g108900), resulting in the AP and AS positive control
sets (Supplementary Table S1) resulting in 58 overlapping proteins.

3.2 Gene Ontology results for the
overlapping proteins in positive control sets
AP and AS

For the 58 genes found to overlap between both sequence-
predictors, we used Gene Ontology (GO) to better understand their
roles in relation to SCN resistance or defense response, as well as
help clarify the ontologies of the Rhg1 and Rhg4 interactome.
SoyBase’s GO term enrichment analysis of the overlapping
predicted interacting protein list of genes identified 86 biological
process (BP) and molecular function (MF) terms strongly associated
with these genes (Supplementary Table S4). The GO analysis was
used to search for defense-related annotations. Only those candidate
proteins that were strongly associated with defense-related GO
terms were retained, resulting in 19 out of the 58 genes. The

FIGURE 5
REVIGO scatterplot of the 86GO terms for the 58 overlapping proteins found in positive control lists AP/AS. GO search was performed usingmedium
0.7 list size and using Arabidopsis thaliana as the species to work with. The size and color of the circles represent logSize value; higher logSize values
indicate high numbers of a term and/or its daughter terms within the total database for A. thaliana; terms that are highly represented have larger bubbles.
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SoyBase GO terms did not include any hits for “nematode;”
however, other defense-related terms were found. Subsequent
analysis using REVIGO reduced the GO terms to 68 from 86
(see Figure 5). The terms “defense response” (GO:0006952) and
“response to mechanical stimulus” (GO:0009612) were two terms
listed with 0.346 and 0.309 dispensability values, respectively
(Supplementary Table S5). From the SoyBase GO enrichment
data, it was evident that five genes were responsible for both
terms (Table 1). In addition to these valuable GO terms, there
were other defense-related terms present within the control list
including but not limited to “response to xenobiotic stimulus” (GO:
0009410) with a dispensability score of 0. Another enriched GO
term found in the overlapping proteins in the control list is “defense
response to bacterium” (GO:0042742), which contains a
dispensability score of 0.488.

In addition to the typical defenseGO terms, other ontologies related
to hormone response that also play a role in plant defense were present,
such as “jasmonic acid and ethylene-dependent systemic resistance”
(GO:0009861, dispensability: 0.117) and “response to abscisic acid”with
four genes (GO:0009737, dispensability: 0.510) (Table 1).

3.3 Interactionswith the positive control sets
AP and AS

PIPE4 predicted 5,763 genes with 25% or more overlaps in
soybean-interacting partners with positive control set AP, while
SPRINT predicted 6,153 genes with at least 25% overlaps in
soybean-interacting partners with positive control set AS.

Comparing PIPE4 and SPRINT results showed that 1,086 genes
were common to both with the top four being Rhg1 and Rhg4 genes
themselves (Supplementary Table S3).

To visualize and interpret the predicted Rhg1 and Rhg4
partners using PIPE4 and SPRINT, Figure 6 shows a
network-based representation that highlights the overlap for
both sets: green nodes are the Rhg1 and Rhg4 proteins, yellow
nodes are predicted by PIPE4, blue nodes are predicted by
SPRINT, and pink nodes represent the overlapping
predictions. To better interpret those proteins and their
relationships within this network, a fully interactive variant
of this network is available at the following link: https://cu-bic.
ca/soybean-rgh1-rgh4/.

3.4 Gene Ontology analysis for top
candidate genes

The set of 1,086 genes (1,082 after excluding the Rhg1 and Rhg4
genes themselves) was assessed for GO term enrichment to refine the
search for genes related to SCN infection or defense response. The
gene IDs were input into the SoyBase GO Term Enrichment Tool,
and the GO enrichment data were extracted. The GO enrichment
identified 1,183 unique GO terms from this gene list (Supplementary
Table S6). The term “response to nematode” (GO:0009624,
dispensability: 0.921) was overrepresented in the GO output; five
genes were responsible for this enrichment. Also, among the
SoyBase GO term enrichment output, “regulation of nematode
larval development” (GO:0061062) was overrepresented among

TABLE 1 Top 19 defense-related interacting partners of Rhg1 and Rhg4 proteins predicted by both PIPE4 and SPRINT engines and their corresponding defense-
related GO terms.

Genes in both AP and AS lists GO terms GO term ID TAIR10 hit

Glyma.08G032900 Heat shock protein 81–2

Glyma.17G182500 Defense response GO:0006952 Heat shock protein 81–2

Glyma.17G220000 Heat shock protein 81–2

Glyma.19G098200 Response to mechanical stimulus GO:0009612 Heat shock protein 81–2

Glyma.20G037900 Heat shock protein 81–2

Glyma.04G200500 Basic helix–loop–helix (bHLH) DNA-binding superfamily protein

Glyma.06G165000 Basic helix–loop–helix (bHLH) DNA-binding superfamily protein

Glyma.08G008200 Response to xenobiotic stimulus GO:0009410 Basic helix–loop–helix (bHLH) DNA-binding superfamily protein

Glyma.16G049400 Basic helix–loop–helix (bHLH) DNA-binding superfamily protein

Glyma.16G147200 Basic helix–loop–helix (bHLH) DNA-binding superfamily protein

Glyma.19G102000 Basic helix–loop–helix (bHLH) DNA-binding superfamily protein

Glyma.09G131500 Response to bacterium GO:0042742 Heat shock protein 90.1

Glyma.16G178800 Heat shock protein 90.1

Glyma.01G245100 Jasmonic acid and

GO:0009861

Histone deacetylase 1

Glyma.04G000200 ethylene-dependent Histone deacetylase 1

Glyma.06G000100 systemic resistance Histone deacetylase 1

Glyma.11G000300 Histone deacetylase 1

Glyma.04G187000

Response to abscisic acid GO:0009737

Histone deacetylase 6

Glyma.05G040600 Histone deacetylase 6

Glyma.06G178800 Histone deacetylase 6

Glyma.17G085700 Histone deacetylase 6
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the data and also included one of five genes from the previous GO
term. REVIGO filtering reduced the list of GO terms by 30%,
resulting in 765 GO terms. The “response to nematode” term
was retained after filtering; this is a daughter term of “defense
response” (GO:0006952), which was the 15th most frequent GO
term (Supplementary Table S7; Figure 7). Of the list of genes,
19 were responsible for the “defense response” term
(dispensability: 0). Similarly, “regulation of defense response”
(GO:0031347, dispensability: 0.932) was identified and made up a
list of six genes, “response to xenobiotic stimulus” (GO:0009410,
dispensability: 0.936) was also enriched in six genes, “response to
wounding” (GO:0009611, dispensability: 0.922) in 23 genes,
“response to mechanical stimulus” (GO:0009612, dispensability:
0.915) three genes, and “innate to immune response” (GO:
0045087, dispensability: 0.899) is another important term related
to resistance and defense-related genes with three genes being
responsible. Finally, “detection of biotic stimulus” (GO:0009595,
dispensability: 0.939) is the last GO term of interest overrepresented
in this list with eight genes.

In addition to defense-related GO terms, GO terms related to
hormones responsible for defense were also identified within this list
including “response to jasmonic acid” (GO:0009753, dispensability:
0.899) enriched in nine genes, “response to ethylene” (GO:0009723,
dispensability: 0.904) in 11 genes, “response to salicylic acid” (GO:

0009751, dispensability: 0.901) in seven genes, and finally, “response
to abscisic acid” (GO:0009737, dispensability: 0.890) enriched in
28 genes. All genes are presented in Table 2.

4 Discussion

In this research, we used various bioinformatics tools including
two machine learning PPI predictors, PIPE4 and SPRINT, to scan
the entire soybean genome in search of novel genes involved in
resistance against SCN (Li and Ilie, 2017; Dick et al., 2020). We
predicted the soybean interactome using Arabidopsis thaliana as a
proxy training species, due to the lack of confirmed PPIs in the
organism in question. The requirement to use a proxy species will
somewhat reduce the accuracy of these methods (Dick et al., 2020).
Therefore, we used a highly conservative score threshold, retaining
only the top 0.07% of predicted interactions for each protein (i.e., top
40 predictions). Using predictions common to both PIPE4 and
SPRINT also provided a conservative approach. The subsequent
stages of the analysis pipeline (i.e., threshold filtration and REVIGO
filtration) were designed to further filter the list of potential
interactors, thereby increasing our confidence in the final list of
candidate genes hypothesized to be associated with SCN resistance
in soybean.

FIGURE 6
Network-based depiction of the Rhg1 and Rhg4 interaction partners by both PIPE4 and SPRINT, as well as their overlapping sets. Green nodes are
the Rhg1 and Rhg4 proteins, yellow nodes are predicted by PIPE4, blue nodes are predicted by SPRINT, and pink nodes represent the overlapping
predictions. Link for the interactive plot: https://cu-bic.ca/soybean-rgh1-rgh4/.
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Early comparisons of the performance of SPRINT to the ancestral
PIPE2 algorithm list SPRINT performance as having a sensitivity of
12.92% at a 99.95% specificity compared to PIPE2 having a sensitivity of
6.57% at a 99.95% specificity (Li and Ilie, 2017). In this work, we
quantified the performance of the PIPE4 and SPRINT methods using
known (experimentally validated physical interactions) G. max-G.max
extracted fromBioGRID: 17 unseen PPI pairs not used in the training of
either method that can be used to quantify the performance of the two
methods. From the highly conservative top 40 predictions considered in
this work, PIPE4 detected 2/17 pairs, achieving a sensitivity of 11.8%,
while SPIRNT detected 4/17 pairs, achieving a sensitivity of 23.5%
(Supplementary Table S2). Given the severely limited availability of
experimentally validated PPIs (only n = 17 physical interactions), these
estimates are extremely conservative and may under-report the
performance of both PIPE4 and SPRINT. Numerous recent
comparisons of the SPRINT algorithm to the latest PIPE4 algorithm
indicate that both methods perform similarly and complement one
another in massive-scale interactome studies (Dick et al., 2020; Dick

et al., 2021b). Importantly, both methods are tuned to be highly
conservative and aim to minimize the false positive rate, making
them applicable to interactome-scale screening analysis. At present,
PIPE4 and SPRINT predictive performance approaches that of wet-
laboratory studies such as tap-tagging and yeast-two-hybrid studies, but
on a much faster and larger scale and with lower running costs (Pitre
et al., 2006; Li and Ilie, 2017). These two PPI predictors function by
using a sequence-based approach utilizing the primary sequence of
amino acids and a known dataset of interacting partners. They differ
primarily in how short regions of sequence similarity are defined when
comparing query proteins to known PPIs. They are both algorithms
that automatically learn and extract sequence patterns important to
PPIs, learned directly from the training examples of known PPIs (Li and
Ilie, 2017; Dick et al., 2020). Since we have confirmed soybean proteins
that play a major role in resistance against SCN, Rhg1 and Rhg4, we
were able to use PIPE4 and SPRINT to extract the top-ranked predicted
interacting soy partners of Rhg1 and Rhg4 to act as positive control
groups. By comparing top-ranked interacting partners between these

FIGURE 7
REVIGO scatterplot of the 1,183 GO terms for the top 1,082 candidate soybean genes for resistance against SCN. GO search was performed using
medium 0.7 list size and using Arabidopsis thaliana as the species to work with. The size and color of the circles represent logSize value; higher logSize
values indicate high numbers of a term and/or its daughter terms within the total database for A. thaliana; terms that are highly represented have larger
bubbles.

Frontiers in Bioinformatics frontiersin.org09

Nissan et al. 10.3389/fbinf.2023.1199675

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1199675


TABLE 2 Top 91 candidate soybean genes for resistance against SCN identified from the genome-wide computational analysis from the 1,082 gene list and their
corresponding defense-related GO terms.

Genes in both AP and AS lists GO terms GO term ID TAIR10 hit

Glyma.08G120500

Response to nematode GO:0009624

Major facilitator superfamily protein

Glyma.08G265700 Growth-regulating factor 1

Glyma.11G228300 Transmembrane amino acid transporter family protein

Glyma.17G152300 Purine permease 10

Glyma.18G029000 Transmembrane amino acid transporter family protein

Glyma.08G265700 Regulation of nematode larval development GO:0061062 Growth-regulating factor 1

Glyma.01G013100

Defense response GO:0006952

NB-ARC domain-containing disease resistance protein

Glyma.01G030100 NB-ARC domain-containing disease resistance protein

Glyma.01G149200 NB-ARC domain-containing disease resistance protein

Glyma.02G020300 WRKY DNA-binding protein 72

Glyma.02G051200 Disease resistance protein (TIR-NBS-LRR class)

Glyma.04G035000 Allene oxide synthase

Glyma.04G068000 Overexpressor of cationic peroxidase 3

Glyma.06G259100 Disease resistance protein (TIR-NBS-LRR class), putative

Glyma.06G310000 Disease resistance protein (TIR-NBS-LRR class) family

Glyma.07G153500 Receptor-like protein 27

Glyma.09G090400 NB-ARC domain-containing disease resistance protein

Glyma.09G102400 MLP-like protein 34

Glyma.11G131300 Leucine-rich repeat (LRR) family protein

Glyma.12G055500 Leucine-rich repeat (LRR) family protein

Glyma.14G078600 Allene oxide synthase

Glyma.15G209200 Polygalacturonase inhibiting protein 1

Glyma.16G134000 S-adenosyl-L-methionine-dependent methyltransferase
superfamily protein

Glyma.18G263900 Cyclic nucleotide-regulated ion channel family protein

Glyma.19G055000 Disease resistance protein (TIR-NBS-LRR class) family

Glyma.02G105900

Regulation of defense response GO:0031347

TEOSINTE BRANCHED, cycloidea and PCF (TCP) 14

Glyma.02G187900 Protein kinase superfamily protein

Glyma.10G271400 Protein kinase superfamily protein

Glyma.16G064100 Leucine-rich repeat receptor-like protein kinase family protein

Glyma.16G064200 Leucine-rich repeat receptor-like protein kinase family protein

Glyma.19G030900 Plastid transcription factor 1

Glyma.02G082800

Response to xenobiotic
GO:0009410

VIRE2-interacting protein 1

Glyma.07G161500

stimulus

Tetratricopeptide repeat (TPR)-like superfamily protein

Glyma.10G172500 RING/FYVE/PHD zinc-finger superfamily protein

Glyma.12G027700 Tetratricopeptide repeat (TPR)-containing protein

Glyma.17G007300 Ferredoxin hydrogenases

Glyma.20G217700 RING/FYVE/PHD zinc-finger superfamily protein

Glyma.02G103500

Response to wounding GO:0009611

S-adenosyl-L-methionine-dependent methyltransferase
superfamily protein

Glyma.02G113600 Chitinase A

Glyma.04G007700 Arginine decarboxylase 2

Glyma.04G035000 Allene oxide synthase

Glyma.05G196100 Diacylglycerol kinase 2

Glyma.06G037000 Protein of unknown function

Glyma.06G160500 Myb domain protein 4

Glyma.06G186200 Unknown protein

Glyma.07G004700 Proline extension-like receptor kinase 1

Glyma.07G048700 O-methyltransferase 1

(Continued on following page)
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TABLE 2 (Continued) Top 91 candidate soybean genes for resistance against SCN identified from the genome-wide computational analysis from the 1,082 gene list
and their corresponding defense-related GO terms.

Genes in both AP and AS lists GO terms GO term ID TAIR10 hit

Glyma.08G071000 White–brown complex homolog protein 11

Glyma.08G338900 UDP-glycosyltransferase superfamily protein

Glyma.09G160000 White–brown complex homolog protein 11

Glyma.09G162400 UDP-glucosyl transferase 71B6

Glyma.10G010400 Myb domain protein 2

Glyma.10G180800 Myb domain protein 15

Glyma.12G191400 Hydroperoxide lyase 1

Glyma.12G194200 Glutamate receptor 3.4

Glyma.13G248800 S-locus lectin protein kinase family protein

Glyma.14G078600 Allene oxide synthase

Glyma.15G080300 HXXXD-type acyl-transferase family protein

Glyma.16G134000 S-adenosyl-L-methionine-dependent methyltransferase
superfamily protein

Glyma.16G209400 White–brown complex homolog protein 11

Glyma.06G037000 Response to mechanical

GO:0009612

Protein of unknown function

Glyma.12G184500 stimulus bZIP transcription factor family protein

Glyma.13G316900 bZIP transcription factor family protein

Glyma.13G161700 Innate to immune

GO:0045087

Calmodulin-binding receptor-like cytoplasmic kinase 3

Glyma.13G323400 response Phosphatidate cytidylyltransferase family protein

Glyma.18G294800 Protein kinase family protein

Glyma.02G176300

Detection of biotic stimulus GO:0009595

Phytochelatin synthase 1 (PCS1)

Glyma.04G035000 Allene oxide synthase

Glyma.05G007100 Carbonic anhydrase 1

Glyma.05G151000 Subtilase family protein

Glyma.09G066600 MAP kinase kinase 2

Glyma.14G078600 Allene oxide synthase

Glyma.18G208800 WRKY DNA-binding protein 33

Glyma.19G007700 Carbonic anhydrase 1

Glyma.04G007700 Arginine decarboxylase 2

Glyma.04G035000 Allene oxide synthase

Glyma.06G160500

Response to jasmonic acid GO:0009753

Myb domain protein 4

Glyma.10G010400 Myb domain protein 2

Glyma.10G180800 Myb domain protein 15

Glyma.14G078600 Allene oxide synthase

Glyma.16G134000 S-adenosyl-L-methionine-dependent methyltransferases
superfamily protein

Glyma.17G076100 Glycosyl hydrolase family protein with chitinase insertion
domain

Glyma.19G030900 Plastid transcription factor 1

Glyma.02G080200

Response to ethylene GO:0009723

Integrase-type DNA-binding superfamily protein

Glyma.04G007700 Arginine decarboxylase 2

Glyma.07G175000 Anthranilate synthase beta subunit 1

Glyma.09G162400 UDP-glucosyl transferase 71B6

Glyma.10G010400 Myb domain protein 2

Glyma.10G180800 Myb domain protein 15

Glyma.11G228300 Transmembrane amino acid transporter family protein

Glyma.12G059000 Metal tolerance protein B1

Glyma.12G225600 MATE efflux family protein

Glyma.18G026700 CRINKLY4-related 3

Glyma.18G029000 Transmembrane amino acid transporter family protein

(Continued on following page)
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positive control proteins and all other soybean proteins, we can identify
candidate soybean proteins that are likely to share resistance-related
function with Rhg1 and Rhg4 through the guilt-by-association
approach.

To this point in time, researchers have struggled to identify
genes involved in the host–pathogen relationship between soybean
and SCN as the defense mechanism of soybean against SCN seems
to be different from the typical “R gene” type of resistance. This can
be seen in the discovery of Rhg1 and Rhg4 genes (Cook et al., 2012;
Liu et al., 2012; Liu et al., 2017), as well as the later discovery of a
pathogenesis-related protein GmPR08-Bet VI (Glyma.08g230500)
as an interacting partner (Lakhssassi et al., 2020). Hence, we posed
the question “Can we predict the top interacting partners for
Rhg1 and Rhg4 with a high degree of accuracy through a
computational large-scale approach, and if so, what kind of

genes will we find to be present within that relationship?” To
the best of our knowledge, this is the first study to attempt to
answer this question on a large scale. By tackling this problem and
making our data available for scientists, we can open possibilities
for further research on this relationship.

By filtering and visualizing the GO terms of AP/AS positive control
lists by first using the SoyBase GO Term Enrichment Tool and then
using REVIGO, we identified that our two PPI predictors, PIPE4 and
SPRINT, made overlapping predictions of Rhg1 and Rhg4 top
interacting proteins with GO terms involved in defense response
(GO:0006952) and response to mechanical stimulus (GO:0009612).
Seven genes were responsible for these enriched functions
(Glyma.17G182500, Glyma.08G032900, Glyma.20G037900,
Glyma.17G220000, Glyma.10G098300, Glyma.19G098200, and
Glyma.03G114400). As shown in Table 1, our two PPI predictors

TABLE 2 (Continued) Top 91 candidate soybean genes for resistance against SCN identified from the genome-wide computational analysis from the 1,082 gene list
and their corresponding defense-related GO terms.

Genes in both AP and AS lists GO terms GO term ID TAIR10 hit

Glyma.03G214100

Response to salicylic acid GO:0009751

Domain-containing protein

Glyma.04G101900 Myb domain protein 93

Glyma.06G103300 Myb domain protein 93

Glyma.06G160500 Myb domain protein 4

Glyma.10G010400 Myb domain protein 2

Glyma.13G070900 Peroxidase superfamily protein

Glyma.19G011700 Peroxidase superfamily protein

Glyma.02G105900

Response to abscisic acid GO:0009737

TEOSINTE BRANCHED, cycloidea and PCF (TCP) 14

Glyma.04G007700 Arginine decarboxylase 2

Glyma.04G057000 Copper transporter 5

Glyma.04G068000 Overexpressor of cationic peroxidase 3

Glyma.04G101900 Myb domain protein 93

Glyma.06G032600 GYF domain-containing protein

Glyma.06G103300 Myb domain protein 93

Glyma.07G003000 Galactose mutarotase-like superfamily protein

Glyma.08G071000 White–brown complex homolog protein 11

Glyma.08G223600 Galactose mutarotase-like superfamily protein

Glyma.08G265700 Growth-regulating factor 1

Glyma.09G057300 Galactose mutarotase-like superfamily protein

Glyma.09G160000 White–brown complex homolog protein 11

Glyma.09G162400 UDP-glucosyl transferase 71B6

Glyma.09G171100 Homeodomain-like superfamily protein

Glyma.10G010400 Myb domain protein 2

Glyma.10G180800 Myb domain protein 15

Glyma.12G022500 Unknown

Glyma.12G181400 Histone deacetylase 2C

Glyma.13G070900 Peroxidase superfamily protein

Glyma.13G329700 Related to AP2.7

Glyma.14G140900 BURP domain-containing protein

Glyma.15G163600 Galactose mutarotase-like superfamily protein

Glyma.16G209400 White–brown complex homolog protein 11

Glyma.17G076100 Glycosyl hydrolase family protein

Glyma.17G249900 GYF domain-containing protein

Glyma.19G011700 Peroxidase superfamily protein

Glyma.20G137200 Cysteine-rich RLK (RECEPTOR-like protein kinase)
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made common predictions for proteins that interact with Rhg1 and
Rhg4 in the broad “defense response” category, also in additional
defense-related GO terms including but not limited to response to
xenobiotic stimulus (GO:0009410), defense response to bacterium (GO:
0042742), and jasmonic acid and ethylene-dependent systemic
resistance (GO:0009861) (Table 1). We note here that the genes
predicted using both engines have a higher chance of being true
predictions and that we may now be one step closer to
understanding the soybean–SCN relationship.

The major resistance gene at Rhg1 is an alpha-soluble
N-ethylmaleimide-sensitive factor (NSF) attachment protein
(α-SNAP) that is present in multiple copies in resistant lines
(Cook et al., 2012). Normally, this vesicular trafficking chaperone
binds SNARE complexes and stimulates their disassembly by
activating NSF. However, the resistance allele is defective in

interacting with NSF, and the overexpression of α-SNAP in the
syncytium leads to the disruption of vesicle trafficking and
cytotoxic levels of NSF (Bayless et al., 2016). In our study,
15 proteins were predicted to interact with α-SNAP by both
predictors. Many of these were protein kinases. It was shown
that mitogen-activated protein kinases were overexpressed in the
syncytium, play important signal transduction and membrane
trafficking roles, and may be involved in the defense response to
nematode infection (McNeece et al., 2019). The second gene at
Rhg1, AATRhg1, is a putative amino acid transporter. It was
recently shown that AATRhg1 accumulates along the path of
nematode invasion and physically interacts with NADPH
oxidase (Han et al., 2023). This results in significant reactive
oxygen species (ROS) increase in resistant lines. Most of the
11 proteins predicted to interact with AATRhg1, by both

FIGURE 8
AlphaFold2-generated depictions of a static view of Rhg1 and Rhg4 folded proteins. See the following link for more details: https://github.com/
earezza/Soybean-Large-Scale-PPI-Analysis.
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predictors in the present work, are heat shock proteins. These
proteins are central to the oxidative stress responses and may be
partnering with AATRhg1 in SCN resistance. The other main SCN
resistance quantitative trait locus (QTL) in soybean, Rhg4,
encodes a serine hydroxymethyltransferase (SHMT) (Liu
et al., 2012). Our predictions revealed that most of the
15 interactions predicted by both predictors are with proteins
involved in the ubiquitin-dependent protein catabolic process.
While the mechanism of resistance involving SHMTRhg4 is still
not fully understood, the ubiquitin proteasome system is
involved in host-defense in many different pathosystems (Kud
et al., 2019).

In addition to investigating the positive control sets AP/AS, we
were also interested in identifying additional proteins involved in
the resistance pathway against SCN. Hence, we posed another
question: “If we can predict interacting partners of known
resistance genes, can we use those predictions with a guilt-by-
association approach to identify novel genes involved in the
resistance pathway by scanning the PPI network of the entire
soybean proteome?” We wanted to do this on a large scale as
current resistant varieties are becoming increasingly susceptible to
the pest (Kofsky et al., 2021). We wanted to identify additional
genes, through a computational approach, for the possibility of
stacking resistance. We identified 1,082 candidates from the entire
soybean genome based on the level of overlaps between their
interacting partners and the top interacting partners of Rhg1 and
Rhg4. Interestingly, by filtering the enriched GO terms, we
identified five genes with ontologies related to response to
nematode, Glyma.18G029000, Glyma.11G228300,
Glyma.08G120500, Glyma.17G152300, and Glyma.08G265700,
or regulation to larval development (GO:0061062)
(Glyma.08G265700). These offer good targets for future
validation studies to characterize their role in resistance against
SCN. Among the 1,082 genes, 91 were highlighted (Table 2) based
on predicted functions that could be compatible with resistance
and will warrant future research, for example, Glyma.19G055000
is a toll-interleukin-1 receptor, nucleotide-binding site, and
leucine-rich repeat (TIR-NBS-LRR) disease resistance protein.
This class includes many classical plant disease resistance
genes. Furthermore, through literature search, it was identified
that five out of the top predictions from Tables 1 and 2 had genes
present within a ± 50 kb window of recent QTLs and genome-
wide association studies, i.e., Glyma.04g007700 (Li et al., 2016),
Glyma.06g186200 (Li et al., 2016), Glyma.10g172500 (Tran et al.,
2019), Glyma.17g085700 (Li et al., 2016), and Glyma.18g029000
(Chang et al., 2017). Interestingly, two other genes were found
within the QTL regions, SCN-2 (Glyma.08g223600) and SCN-3
(Glyma.08g338900) (Swaminathan et al., 2018).

Finally, the predicted structures generated by AlphaFold2 offer
significant utility to the broader research community, both in the
extension of the research findings herein and more broadly in the
realm of host–pathogen biology. These highly accurate 3D
structural conformations, available at https://github.com/
earezza/Soybean-Large-Scale-PPI-Analysis, serve as valuable
resources for scientists investigating the molecular mechanisms
underlying plant defense mechanisms. Figure 8 depicts a static
view of the folded proteins, and the proteins most relevant within
this work and additional structures are given in Supplementary

Table S2. By incorporating the predicted structures into their
research, scientists can gain insights into putative PPIs,
candidate ligand-binding sites, and potential enzymatic
activities, facilitating the development of strategies to enhance
plant resistance against pathogens. The predicted structures also
provide a starting point for experimental studies, allowing for
validation and refinement through techniques like X-ray
crystallography and cryo-electron microscopy. Overall, the use
of AlphaFold2 predictions holds significant promise for advancing
our understanding of host–pathogen interactions and contributing
to the development of innovative approaches in plant biology.
Given the sparsity of known PPIs and/or experimentally
determined protein structures within the G. max-G. max
proteome, it is our recommendation that subsequent research
initiatives leverage these state-of-the-art AI methods to
increasingly expand their representation within large-scale
consortium databases such as the AlphaFold protein structure
database (Varadi et al., 2021).

5 Conclusion

In this paper, we provide an approach to scan the entire soybean
proteome and use a guilt-by-association method, in addition to a
multistep workflow, to predict the most likely novel candidates
involved in resistance against SCN. This pipeline combined two
machine learning tools, PIPE4 and SPRINT, and illustrated the
potential of new technological advances to facilitate gene discovery.
We believe that these tools can be used to predict other resistance
protein-interacting partners and will allow scientists to focus their
research in a much more efficient manner to address existing and
emergent diseases.
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