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Introduction: Autofluorescence imaging of the coenzymes reduced nicotinamide
(phosphate) dinucleotide (NAD(P)H) and oxidized flavin adenine dinucleotide
(FAD) provides a label-free method to detect cellular metabolism and
phenotypes. Time-domain fluorescence lifetime data can be analyzed by
exponential decay fitting to extract fluorescence lifetimes or by a fit-free
phasor transformation to compute phasor coordinates.

Methods: Here, fluorescence lifetime data analysis by biexponential decay curve
fitting is compared with phasor coordinate analysis as input data to machine
learning models to predict cell phenotypes. Glycolysis and oxidative
phosphorylation of MCF7 breast cancer cells were chemically inhibited with 2-
deoxy-d-glucose and sodium cyanide, respectively; and fluorescence lifetime
images of NAD(P)H and FAD were obtained using a multiphoton microscope.

Results: Machine learning algorithms built from either the extracted lifetime
values or phasor coordinates predict MCF7 metabolism with a high accuracy
(~88%). Similarly, fluorescence lifetime images of M0, M1, and M2 macrophages
were acquired and analyzed by decay fitting and phasor analysis. Machine learning
models trained with features from curve fitting discriminate different macrophage
phenotypes with improved performance over models trained using only phasor
coordinates.

Discussion: Altogether, the results demonstrate that both curve fitting and phasor
analysis of autofluorescence lifetime images can be used in machine learning
models for classification of cell phenotype from the lifetime data.
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1 Introduction

The fluorescence lifetime is a quantitative measurement of the
time a fluorophore takes to relax to the ground state after being
excited by a photon. Fluorescence lifetime imaging (FLIM) is a
nondestructive imaging technique that has high sensitivity to
fluorophore microenvironment and molecular conformation. The
endogenous fluorophores reduced nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are
two critical coenzymes involved in different cellular metabolic
reactions such as oxidative phosphorylation (OXPHOS) and
glycolysis. Autofluorescence imaging of these coenzymes provides
information about the metabolic state of cells without using labels or
cell fixation (Chance et al., 1979; Georgakoudi and Quinn, 2012).
NADH and its phosphorylated form NADPH, exhibit the same
spectral properties; therefore, NAD(P)H represents the combined
fluorescence of both molecules (Huang et al., 2002). NAD(P)H and
FADmolecules both have two conformations: either free or protein-
bound, each of which has a different lifetime. Free NAD(P)H has a
short lifetime, and protein-bound NAD(P)H has a long lifetime
(Lakowicz et al., 1992). FAD has a long lifetime when free and a
short lifetime when bound to a protein (Nakashima et al., 1980).

FLIMofNAD(P)H and FAD and subsequent quantitative analysis is
sensitive to metabolic changes within cells due to alterations in cellular
metabolic activity or cellular functional phenotypes. For example,
macrophages, which play a critical role in the innate immune
response, can polarize into either a pro-inflammatory, “classically-
activated” phenotype (M1) or an anti-inflammatory and pro-wound
healing, “alternatively-activated” (M2) phenotype (Mosser and Edwards,
2008; Galvan-Pena and O’Neill, 2014). M1 and M2 macrophages are
dependent on different metabolic activities within the cell (Galvan-Pena
and O’Neill, 2014). These metabolic differences between M1 and
M2 macrophages can be detected using FLIM of NAD(P)H and
FAD, allowing for the differentiation of macrophage subtypes without
using fluorescent tags (Alfonso-Garcia et al., 2016; Borowczyk et al.,
2020; Heaster et al., 2020; Heaster et al., 2021; Miskolci et al., 2022).
Similarly, cancer cells are often characterized by aerobic glycolysis
(Warburg, 1956), and exhibit metabolic perturbations when exposed
to chemotherapy. FLIM of NAD(P)H and FAD has been used to
investigate metabolic differences between non-cancer and cancerous
cells and to track metabolic changes due to anti-cancer drug response
(Bird et al., 2005; Walsh et al., 2013; Sharick et al., 2018). Machine
learning prediction models that use the quantitative information
obtained from FLIM are a promising technique to identify functional
cell phenotypes such as drug-responsive or resistant cancer cells
(Cardona and Walsh, 2022), activated or quiescent T cells (Walsh
et al., 2021), M1 or M2 macrophages (Neto et al., 2022), and
differentiation efficiency of cardiomyocytes from stem cells (Qian
et al., 2021).

FLIM data can be analyzed by several methods including
exponential decay fitting and phasor analysis. In time domain
FLIM, a short laser pulse is used to excite the sample, and the
subsequent fluorescence decay is measured (Becker, 2005; Lakowicz,
2013). For quantitative analysis, the fluorescence exponential decay
is fit to an exponential curve. For NAD(P)H and FAD which
typically have a short and long lifetime due to conformational
changes due to binding, the fluorescence decay curve is fitted to
a two-component exponential model, I(t) � α1e−t/τ1 + α2e−t/τ2 + C,

where I(t) represents the fluorescence intensity as the function of
time, τ₁, and τ₂ are the short and long lifetimes respectively, α₁ and α₂
are their corresponding fractions, and C accounts for background
noise. An average fluorescence lifetime can be calculated by the
weighted average of short and long lifetimes τm � α1τ1 + α2τ2
(Lakowicz, 2013). Although exponential fitting provides
quantification of the short and long lifetime values and their
relative amplitudes, the fitting procedure is computationally
expensive as it requires deconvolution of the fluorescence decay
from the instrument response function and an iterative least-squares
method to determine the lifetime and fractional values (Becker,
2012). Additionally, a large number of photons must be acquired at
every pixel for robust decay analysis, limiting FLIM to small image
pixel sizes and long frame integration times.

Alternatively, FLIM data can be analyzed using a phasor
transformation. For the phasor transformation, the polar
coordinates S and G are computed from the lifetime decay data
according to the equations

gi,j ω( ) � ∫
T

0
Ii,j t( ) cos ωt( )dt
∫
T

0
Ii,j t( )dt

(1)

si,j ω( ) � ∫
T

0
Ii,j t( ) sin ωt( )dt
∫
T

0
Ii,j t( )dt

(2)

where ω � 2πf, and f is the laser repetition rate (Digman et al.,
2008). The S and G coordinates are found for each pixel within a
FLIM image and plotted on a polar hemisphere. The phasor plot can
be qualitatively assessed as data with a single lifetime will plot on the
unit circle with shorter lifetimes on the right. Data with multiple
lifetimes will plot within the unit circle along a trajectory of the unit-
circle placement of the lifetime values. FLIM analysis with phasors
has been used to visualize neural stem cell differentiation (Stringari
et al., 2012a; Stringari et al., 2012b) and macrophage phenotypes
from NADH lifetime data (Alfonso-Garcia et al., 2016). Phasor
analysis is especially beneficial for datasets with 3+ or an unknown
number of fluorophore species as it does not require a priori
knowledge of the number fluorophore lifetimes, and accuracy for
multiexponential decays is not dependent on high photon counts as
in exponential fitting (Malacrida et al., 2021). Additionally, phasor
analysis is advantageous for large datasets due to its fit-free nature
and faster analysis times (Malacrida et al., 2021). Phasor analysis is
compatible with both time-domain and frequency-domain FLIM
instrumentation. However, phasor analysis has been shown to be
limited for low signal-to-noise (SNR) FLIM data and is susceptible
to instrumentation response errors (Datta et al., 2020).

This study compared the performance of machine learning
models that predict cell phenotypes from FLIM features extracted
via either phasor analysis or exponential curve fitting. Fluorescence
lifetime images of NAD(P)H and FAD images of macrophages
chemically polarized to different phenotypes (M0, M1, and M2)
were acquired using a two-photon fluorescence lifetime microscope.
Quantitative FLIM data was extracted using both a two-component
exponential decay curve fit and phasor analysis to compute S and G
coordinates. Images were segmented into individual cells. Random
forest tree (RFT) algorithms were developed, validated, and
compared for classification of the macrophage phenotype for
each cell using the FLIM data. Similar analysis were performed
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for a dataset of metabolically-perturbed MCF7 breast cancer cells to
compare the performance of machine learning models to predict cell
metabolic states from phasor coordinates or exponential fit values.

2 Methods

2.1 Cell preparation

THP-1 monocytes (ATCC) were cultured with RPMI-1640
media supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. THP-1 monocytes were seeded on 35 mm
glass-bottom imaging dishes with a density of 105 cells/dish and
treated with freshly prepared Phorbol 12-myristate 13-acetate
(PMA, 50 ng/mL) supplemented with RPMI -1,640 media for
24 h to promote their differentiation into macrophages. Upon
24 h of PMA stimulation, most THP-1 cells become adherent
M0 macrophages. For pro-inflammatory (M1) polarization, the
macrophages were subsequently treated with Lipopolysaccharides
(LPS, 10 ng/mL) and interferon-γ (IFN-γ, 15 ng/mL) for 24 h.
M0 macrophages were exposed to interleukin (IL)-4 (20 ng/mL)
for anti-inflammatory (M2) polarization. After 24 h of cytokine
stimulation, the media was replaced with normal media.

The metabolic perturbation experiment of cancer cells was
previously performed by Hu et al., and the procedure
summarized here is fully covered in Hu et al. (Hu et al., 2022).
MCF7 breast cancer cells were cultured in the Dulbecco’s Modified
Eagle’s Medium (DMEM) with glucose (50 mM), pyruvate (2 mM),
1% antibiotic-antimycotic, and 10% fetal bovine serum (FBS). The
cells were seeded at a density of 2 × 105 per 35 mm glass-bottom
imaging dish 48 h before imaging. The cells were treated with NaCN
(4 mM) to inhibit OXPHOS 5 min before imaging. To inhibit
glycolysis, 2-Dexoy-D-glucose (2DG, 50 mM) was added to the
media 1 h before imaging. Additionally, a glucose depletion
group was created by switching the media to no glucose DMEM
supplemented with pyruvate (2 mM) 1 h before imaging.

2.2 Fluorescence lifetime imaging of NAD(P)
H and FAD

Fluorescence lifetime images of NAD(P)H and FAD in cells were
captured by a customized multiphoton fluorescence lifetime
microscope (Marianas, 3i) equipped with a time-correlated single
photon counting (TCSPC) electronics module (SPC-150N, Becker &
Hickl). A stage-top incubator (okolab) was set to 37°C, 5% CO2, and
85% relative humidity to maintain a physiological environment while
imaging. NAD(P)H and FAD inmacrophages were excited by a tunable
Ti: sapphire femtosecond laser (COHERENT, Chameleon Ultra II) at
750 nm (~27 mW) and 890 nm (~35 mW) respectively. The
fluorescence lifetime images of NAD(P)H and FAD were obtained
sequentially by photomultiplier tube (PMT) detectors
(HAMAMATSU, H7422PA-40) and isolated by a 447/60 nm
bandpass filter and a 560/88 nm bandpass filter, respectively. For
each imaging dish, both NAD(P)H and FAD fluorescence lifetime
images were captured in at least five random positions, and each
fluorescence lifetime image (256 × 256 pixels) was acquired with a
pixel dwell time of 50 μs and 5 frame repeats. The NAD(P)H and FAD

fluorescence lifetime images in the cancer cell metabolic inhibitor
experiment were previously collected by AJ Walsh and L. Hu with
the same imaging system, and the details of autofluorescence imaging
are covered in Hu et al. (Hu et al., 2022).

2.3 Cell-based fluorescence lifetime analysis

Fluorescence lifetime decays of each NAD(P)H and FAD image
were analyzed using SPCImage (Becker & Hickl). The decay curve of
each pixel was deconvoluted with the measured instrument response
function (IRF), which was obtained by the second harmonic generation
of urea crystals, and then fitted into a two-component exponential
model. Then, the weight-average fluorescence lifetime was calculated
for each pixel with MATLAB to obtain the corresponding τm images.
The phasor plot analysis was also performed in SPCImage, which
converts the time decay of each pixel (i, j) to its corresponding phasor
coordinates (gi,j(ω), si,j(ω)) using a laser repetition rate of 80MHz. As a
result, three decay fitting parameters (α₁, τ₁, τ₂) and two phasor plot
coordinates (G, S) were extracted for each pixel in each NAD(P)H and
FAD fluorescence lifetime image.

Images were then segmented into individual cells to acquire cell-
based fluorescence lifetime features. The cell segmentation process
was achieved in CellProfiler using a customized pipeline based on
the NAD(P)H intensity images (Walsh and Skala, 2014). As a result,
533–1828 cells were extracted for each group with 3 technical
replicates (Supplementary Table S1). Finally, image processing
was performed using a customized script in MATLAB, and the
pixel-averaged values for eight NAD(P)H and FAD fluorescence
decay fitting features including NAD(P)H τ₁, NAD(P)H τ₂, NAD(P)
H α₁, NAD(P)H τm, FAD τ₁, FAD τ₂, FAD α₁, FAD τm, and four
phasor plotting features including NAD(P)H G, NAD(P)H S, FAD
G, and FAD S, were acquired for each cell.

2.4 Statistical analysis and ML model
development

The statistical analysis and machine learning (ML) model
development were performed using customized scripts in Rstudio. A
two-sided t-test was applied to compare different autofluorescence
lifetime features across various cell groups, and a p value of
0.05 was set as the threshold to identify significance. The Uniform
Manifold Approximate and Projection (UMAP) was used to reduce the
data dimensions to visualize clusters within the autofluorescence
imaging datasets. Random forest tree (RFT) machine learning
algorithms were trained to classify macrophage phenotypes or
cancer cell metabolism based on the features of lifetime decay fitting
and phasor coordinates, respectively. Each model was evaluated using
5-fold cross-validation, which trained themodel with 80% of the dataset
and tested the model with the remaining 20% of the dataset on five
iterations. Furthermore, the AUC (area under the curve) of the receiver
operation characteristic (ROC) curves of the models evaluated on the
test datasets were used to evaluate the performance of the models. A
two-sided t-test was applied to compare the average accuracy and ROC
AUC of the 5-fold repeated models across different classifiers. The
relative contributions of each feature in each classifier were obtained by
the mean decrease gini from the RFT.
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3 Results

3.1 Phasor analysis and decay curve fitting
for analysis of autofluorescence lifetime
images of macrophage phenotypes

Both biexponential lifetime decay curve fitting and phasor
analysis revealed different characteristics of NAD(P)H and FAD
fluorescence lifetime across the macrophage phenotypes.
M1 macrophages had a lower fraction of free NAD(P)H (α₁)
than M0 and M2 macrophages, which was also captured by the
phasor analysis with an increased NAD(P)H phasor S value and
lower NAD(P)H phasor G value in M1 macrophages compared to
M0 and M2 macrophages (Figures 1A, E, F). The fraction of free
NAD(P)H (α₁) represents the pool of unbound NAD(P)Hmolecules
available for metabolic reactions, and changes in this fraction can
suggest alterations in the utilization of NAD(P)H in different
macrophages related to a shift in metabolic activities. Both
M1 and M2 macrophages had a shorter free NAD(P)H lifetime
(τ₁), and M2 macrophages had a shorter bound NAD(P)H lifetime
(τ₂) than M0 and M1 macrophages (Figures 1B, C). The lifetimes of
boundNAD(P)H (τ₂) reflect the dynamics of NAD(P)H interactions
with specific proteins in distinct metabolic pathways. Variations in
the free and bound lifetimes between macrophages indicate changes
in the kinetics of NAD(P)H binding and release involved in

metabolic pathways. These variations of NAD(P)H lifetime
components led to the shortest mean NAD(P)H lifetimes (τm) in
M2 macrophages (Figure 1D).

In the representative NAD(P)H phasor plot images, most pixels
clustered along a line between the lifetimes of freeNAD(P)H (0.5 ns) and
bound NAD(P)H (~3 ns) (Figure 1G). M1 macrophages had a higher
fraction of bound FAD, longer bound FAD lifetime, and shorter free
FAD lifetime than M0 and M2 macrophages (Supplementary Figures
S1A–C). These lifetime variations resulted in a shorter mean FAD
lifetime than M0 and M2 macrophages (Supplementary Figure S1D).
Alterations in metabolic pathways, such as the tricarboxylic acid (TCA)
cycle, electron transport chain, and fatty acid oxidation, can impact the
availability and utilization of FAD, consequently resulting in variations in
FAD lifetime. The phasor plot analysis of FAD fluorescence lifetime
showed that M1 macrophages had a higher FAD phasor G value and
lower FAD S value than the M0, and M2 macrophages (Supplementary
Figures S1E, F; Supplementary Table S2).

3.2 RFT models predict metabolic
phenotypes of macrophages from FLIM data

UMAP was used to visualize separation of cell phenotypes by
compressing the variance in the multivariate lifetime datasets into two
dimensions. The UMAP generated from eight different NAD(P)H and

FIGURE 1
Decay curve fitting and phasor analysis resolvemetabolic variations amongmacrophage phenotypes. (A)NAD(P)H free fraction (α₁) (B) Free NAD(P)H
lifetime (τ₁) (C) bound NAD(P)H lifetime (τ₂) (D) Average NAD(P)H lifetime (τm) (E) NAD(P)H phasor G (F) NAD(P)H phasor S reveal differences in the
quantifiedNAD(P)H fluorescence lifetimes ofM0,M1, andM2macrophages. *p <0.05, **p < 0.01, ****p < 0.0001 for two-sided Student’s t-test. Each data
point is the pixel-averaged value for a single cell, n = 1828 cells for M0, n = 1,074 cells for M1, n = 1706 cells for M2 (G) Representative NAD(P)Hmean
lifetime image (τm) and corresponding phasor plot for M0 (top), M1 (middle), and M2 (bottom) macrophages. The color in the phasor plot represents the
estimated probability density. Scale bar = 60 μm. Each data point on the phasor plot corresponds to a single pixel in the FLIM image.
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FAD lifetime decay curve fitting features (NAD(P)H: α₁, τ₁, τ₂, τm; FAD:
α₁, τ₁, τ₂, τm) showed that M1 macrophages are predominantly
positioned at the bottom right, exhibiting a subtle separation from
the other two macrophage phenotypes (Figure 2A). The separation
observed on the UMAP based on lifetime decay suggests the potential
for classifying macrophage phenotypes. However, the M0 macrophage
cluster overlapped with M2 macrophages (Figure 2A).

Random forest tree models were generated for pairwise
classification of macrophage phenotype. When applying random
forest tree algorithms to predict macrophage phenotypes, the model
achieved a mean prediction accuracy of 94.6% and an AUC value of
0.99 for classifying M1 macrophages versus M2 macrophages
(Figure 2B; Supplementary Table S2), and the free FAD lifetime
(τ₂) and bound FAD lifetime (τ₁) were the highest weighted features
for this classification (Figure 2C). Moreover, a RFTmodel could also
discriminate between M0 and M1 macrophages with an AUC of
0.97 and an average accuracy of 92.6% (Figure 2B; Supplementary
Table S2). In this model, the bound FAD lifetime (τ₁), free FAD
lifetime (τ₂), and free NAD(P)H lifetime (τ₁) contributed most to the
classification (Figure 2C). The strong contributions of free and
bound FAD lifetimes (τ₁, τ₂) in both classifiers highlight the
importance of FAD metabolism and dynamics in distinguishing
between macrophage phenotypes. However, the RFT trained with
NAD(P)H and FAD features of decay fitting did not provide high

performance in classifying M0 and M2 macrophage phenotypes
(Figure 2B; Supplementary Table S2). A RFT for classifying M0-M2
macrophages had an average accuracy of 71.1% and an AUC value of
0.80 (Figure 2B; Supplementary Table S2), with the free NAD(P)H
lifetime (τ₁) and bound NAD(P)H lifetime (τ2) contributing
significantly to this classification (Figure 2C).

The phasor coordinates of NAD(P)H and FAD FLIM images
also classify macrophage phenotypes. The UMAP visualization
based on four different NAD(P)H and FAD phasor plot features
(NAD(P)H: G, S; FAD: G, S) showed that the M1 macrophages are
located at the top, and exhibit clustering separate from the M0 and
M2 macrophages (Figure 2D). Applying these features to predict
macrophage phenotypes using a RFT machine learning algorithm
achieved an AUC of 0.98, and an average accuracy of 0.924 for
classifying M1 versus M2 macrophage phenotypes (Figure 2E;
Supplementary Table S3). The phasor features achieved a
classification of M0 versus M1 macrophage phenotypes with an
AUC of 0.94 and an average accuracy of 89.7% (Figure 2E;
Supplementary Table S3). These results imply that phasor
coordinates of autofluorescence lifetime images are effective at
classifying the macrophage phenotypes accurately. FAD G was
the most important feature in both of these two classifiers
(Figure 2F). The autofluorescence phasor analysis features did
not discriminate M0 versus M2 macrophage phenotypes with

FIGURE 2
Prediction of metabolic phenotypes of macrophages with autofluorescence lifetime features [(A–C) use features from decay fitting, (D–F) use
features fromphasor plotting]. (A)UMAP of NAD(P)H and FAD autofluorescence lifetime features from decay fitting inM0,M1, andM2macrophages. Each
dot corresponds to a single cell, blue corresponds to M0 macrophages, yellow corresponds to M1 macrophages, and gray corresponds to
M2macrophages. (B) ROC curves of the test data for RFT machine-learning models developed based on decay fitting features for the classification
of different macrophage phenotypes. (C) Feature importance (mean decrease gini) of curve-fitting features within RFT classifiers for predicting
macrophage phenotypes. (D) UMAP of NAD(P)H and FAD autofluorescence lifetime features from phasor analysis in M0, M1, and M2macrophages. Each
dot corresponds to a single cell, blue corresponds to M0 macrophages, yellow corresponds to M1 macrophages, and gray corresponds to M2. (E) ROC
curves of the test data for RFT machine-learning model developed based on phasor analysis features for the classification of different macrophage
phenotypes. (F) Feature importance (mean decrease gini) of phasor plot features within RFT classifiers for predicting macrophage phenotypes.
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high accuracy. The RFTmodel to predict M0 fromM2macrophages
had an AUC of 0.67 and an average accuracy of 64.1% (Figure 2E;
Supplementary Table S3).

To statistically compare the performance of the different classifiers
in discriminating macrophage phenotypes, the average accuracy and
ROC AUC of the 5-fold cross-validation were compared using a two-
sided t-test. The RFT models trained with decay fitting features
demonstrated a significantly higher accuracy (p < 0.001) compared
to the models trained with phasor features when classifying M0 versus
M1 (approximately 3% improvement) and M0 versus M2
(approximately 7% improvement) (Supplementary Tables S2, S3,
S8). Furthermore, the combination of both decay fitting and phasor
features further improved the classification accuracy significantly (p <
0.01) for discriminating M0 and M1, as well as M0 and
M2 macrophages (Supplementary Tables S4, S8).

3.3 Phasor analysis identifies NAD(P)H and
FAD lifetime distributions in cancer cells
exposed to metabolic perturbations

The phasor analysis from a dataset of MCF7 cells exposed to
metabolic conditions to stimulate and inhibit glycolysis and
oxidative phosphorylation showed that the mean NAD(P)H
phasor components G and S were statistically different among
control, 2DG-treated, and cyanide-treated cells (Figures 3A, B).
The FAD phasor components were inconclusive, with the mean
G coordinate of the control MCF7 cells not statistically different
from the cyanide (OXPHOS inhibition) or the glycolysis inhibition
groups (Figure 3D). The MCF7 cells treated with cyanide for
OXPHOS inhibition had a higher mean G component and a
lower S component for NAD(P)H compared to the control group
(Figures 3A, B). While the FAD mean lifetime (τm) showed a

statistically significant difference between control cancer cells and
both the glycolysis inhibition groups, 50 mM 2DG and no glucose,
only the no glucose group was statistically different from control
cells for both FAD Phasor G and S values (Figures 3D–F), potentially
indicating that the exponential decay fitting method was more
sensitive for FAD differences in cancer cells with glycolysis
inhibition (Figure 3F). The NAD(P)H phasor plots shown in
Figure 3G allow visualization of shifts in the NAD(P)H lifetime
of MCF7 cells along the 0.5–3 ns axis due to metabolic perturbations
without using a biexponential curve fitting. The cells with OXPHOS
inhibition exhibited a shift towards more free NAD(P)H with a
shorter fluorescence lifetime compared to the control and glycolysis-
inhibited group (Figure 3G). Cyanide inhibits the electron transport
chain complex IV (Marziaz et al., 2013), leading to this increase in
free NADH, as observed previously in MCF10A breast cancer cells
(Drozdowicz-Tomsia et al., 2014). For the glycolysis inhibition
group, the phasor plot allows visualization of the shift towards
bound NADH, which can be attributed to the fact that free NADH is
produced during glycolysis (Hu et al., 2022).

3.4 Autofluorescence lifetime features
predict metabolic phenotypes of cancer
cells

UMAP visualization of MCF7 metabolic perturbation dataset from
the FLIM decay fitting components (NAD(P)H: α₁, τ₁, τ₂, τm; FAD: α₁,
τ₁, τ₂, τm) showed there was some separation between the glycolysis
inhibition group clusters from the control and OXPHOS inhibition
groups (Figure 4A). Similarly, a UMAP generated from the phasor
components (NAD(P)H: G and S; FAD: G and S) showed similar
patterns to the UMAP generated from the decay fitting variables, where
a separation between the glycolysis inhibition group and the other two

FIGURE 3
Phasor analysis and decay curve fitting resolve metabolic states of MCF7 cells. (A) NAD(P)H phasor G (B) NAD(P)H phasor S (C) NAD(P)H τm (D) FAD
Phasor G (E) FAD phasor S (F) FAD τm values reveal differences in the NAD(P)H and FAD fluorescence lifetimes of MCF7 cells exposed to control media,
mediawith 2DG at 50 mM,media without glucose, andmedia with cyanide. *p <0.05, ****p < 0.0001 for two-sided Student’s t-test. Each data point is the
pixel-averaged value for a single cell, n = 472–839 cells per group. (G) Representative NAD(P)Hmean lifetime image (τm) and corresponding phasor
plot. The color in the phasor plot represents the estimated probability density. Scale bar = 60 μm.
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groups (control and OXPHOS inhibition) is apparent (Figure 4D)
indicating that there is a potential for classifying the metabolic states in
breast cancer cells. To test this, RFT machine learning models were
created and compared for classifying MCF7 cell metabolism phenotype
from NAD(P)H and FAD fluorescence lifetime metrics. Using lifetime
features from decay fitting, the RFT machine learning algorithm
provided an overall higher AUC compared to using only phasor
analysis components S and G to differentiate between the control,
glycolysis inhibition, and OXPHOS inhibition groups (Figures 4B, E).
The model built from exponential decay fitting features had an AUC of
0.857 and an average accuracy of 78.5% for the classification of the
glycolysis inhibition group from the control group (Figure 4B;
Supplementary Table S5), whereas the model for the same
comparison built from phasor coordinates had an AUC of 0.846,
and an average accuracy of 75.5% (Figure 4E; Supplementary Table
S6). For distinguishing between the glycolysis inhibition and OXPHOS
inhibition group, the RFT algorithms achieved an AUC of 0.939 and an
average accuracy of 86.3% for the exponential curve fitting data
(Figure 4B; Supplementary Table S5). Comparatively, an AUC of
0.918 and an average accuracy of 87.7% were achieved for the
glycolysis versus OXPHOS RFT model created from the phasor
coordinates (Figure 4E; Supplementary Table S6). Neither of the
models trained with the features of decay-fitting or phasor analysis
discriminated the OXPHOS inhibition and control group achieved an
ROC AUC value greater than 0.9 (Figures 4B, E).

NAD(P)H mean lifetimes (τm) contributed the most for
differentiating between the glycolysis inhibition and OXPHOS

inhibition groups as well as between the glycolysis inhibition group
and the control for the lifetime componentsMLmodel (Figure 4C). The
NAD(P)H free (τ1), bound (τ2), and mean lifetimes (τm) contributed
to the classification of OXPHOS inhibition and the control group. For
the phasor components, NAD(P)H G component was found to be the
most critical feature for distinguishing between the control and
glycolysis inhibition groups and the glycolysis inhibition and
OXPHOS inhibition (Figure 4F). Furthermore, all NAD(P)H and
FAD phasor components were important factors in classifying the
control and OXPHOS inhibition groups (Figure 4F). The combination
of decay fitting and phasor features did not significantly improve the
prediction accuracies of glycolysis inhibition versusOXPHOS inhibition
(Supplementary Tables S7, S8).

4 Discussion

Autofluorescence lifetime imaging of endogenous fluorophores
NAD(P)H and FAD provides a label-free, nondestructive method
for quantifying metabolic variations in live cells, allowing for the
classification of different phenotypes of cancer cells, stem cells, and
immune cells using machine learning algorithms (Liu et al., 2018; Qian
et al., 2021; Walsh et al., 2021; Hu and Walsh, 2022; Neto et al., 2022).
Time-domain fluorescence lifetime data can be analyzed using both
curve fitting and phasor analysis to extract lifetime values and phasor
coordinates, respectively. Exponential curve fitting analysis of NAD(P)
H and FAD lifetime quantifies the fraction of free and boundmolecules,

FIGURE 4
Prediction of the metabolic states of MCF7 cells from autofluorescence lifetime features [(A–C) use features from decay fitting, (D–F) use features
from phasor plotting]. (A) UMAP of NAD(P)H and FAD autofluorescence lifetime features from decay fitting for control, 2DG and no glucose treatment
(glycolysis inhibition) and cyanide groups (OXPHOS inhibition). Each dot corresponds to a single cell, blue corresponds to the control group, orange
corresponds to the 2DG and no glucose treatment (glycolysis inhibition), and gray corresponds to the cells treated with cyanide (OXPHOS
inhibition). (B) ROC curves of test data predicted from RFT machine-learning model using decay fitting features for the different metabolic states of the
cancer cells. (C) Feature importance (mean decrease gini) of curve-fitting features within RFT classifiers for predictingmetabolic states of cancer cells. (D)
UMAP of NAD(P)H and FAD autofluorescence S and G phasor components for classification of different metabolic states of cancer cells. Each dot
corresponds to a single cell, blue corresponds to the control group, orange corresponds to the 2DG and no glucose treatment (glycolysis inhibition), and
gray corresponds to the group treated with cyanide (OXPHOS inhibition). (E) ROC curves of test data predicted from RFT machine-learning model using
phasor analysis features for the different metabolic states of the cancer cells. (F) Feature importance (mean decrease gini) of phasor plot features within
different RFT classifiers for predicting metabolic states of cancer cells.
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along with their corresponding fluorescence lifetimes. However,
exponential decay fitting requires a number of assumptions about
the dataset, such as the number of lifetime components and shifts in
instrument response function, that necessitate domain expertise.
Moreover, the deconvolution process before fitting can be
challenging and a higher number of photons are required for an
accurate fit, which limits the applicability of exponential fitting in
cases with low autofluorescence and high background noise (Becker,
2012; Datta et al., 2020).

Alternatively, phasor analysis provides a fit-free visualization of
lifetime estimates, allowing for faster lifetime analysis with fewer
computational tasks and does not require assumptions of the decay
parameters (Ranjit et al., 2018). Because pixels with similar fluorescence
lifetimes cluster on the polar plot, phasor analysis allows rapid
visualization and identification of image regions with either similar or
different fluorescence lifetimes (Ranjit et al., 2018). Even though phasor
analysis does not directly quantitate lifetime values or componentweights,
phasor analysis is compatible with both time and frequency-domain
lifetime imaging systems and can overcome deconvolution and
exponential decay fitting limitations (Digman et al., 2008; Ranjit et al.,
2018; Malacrida et al., 2021). Given that phasor plot analysis and curve
fitting analysis present lifetime variations in different formats, it is
important to compare the effectiveness of these two methods to
extract fluorescence lifetime features for subsequent discriminating
algorithms, such as machine learning models for cell classification. In
this paper, we employ RFT ML models to evaluate and compare the
performance of features derived from decay fitting analysis and phasor
plot analysis in predicting metabolic phenotypes of cancer and immune
cells.

Under normal conditions, pro-inflammatory macrophages (M1)
depend on glycolysis, whereas monocytes (M0) and anti-inflammatory
macrophages (M2) typically use oxidative phosphorylation (OXPHOS)
to maintain their metabolic requirements (Galvan-Pena and O’Neill,
2014; Kelly and O’Neill, 2015; Verdeguer and Aouadi, 2017). The
metabolic variations inmacrophages can be visualized throughNAD(P)
H and FAD fluorescence lifetime imaging, and metabolic phenotypes
can be distinguished by machine learning algorithms using
autofluorescence features (Figures 1, 2) (Neto et al., 2022). Although
previous studies have observed an increased fraction of bound NAD(P)
H in M2 macrophages and an increased free fraction of NAD(P)H in
M1 macrophages in vitro (Alfonso-Garcia et al., 2016; Heaster et al.,
2020), in vivo studies of macrophages in zebrafish demonstrate a
decreased mean NAD(P)H lifetime, due to decreased short and long
NAD(P)H lifetimes, and an increased NAD(P)H α1 within the
macrophages in tail wounds (Miskolci et al., 2022). The
inconsistencies observed in NAD(P)H lifetimes among various
macrophage phenotypes may be attributed to differences in
macrophage origins, polarization protocols, and intra-group cellular
heterogeneity. Metabolic differences, particularly in lipid and amino
acid metabolism, have been identified between human THP-1 cells and
rat bone marrow-derived macrophages, which can impact NAD(P)H
and FAD fluorescence lifetimes (Gross et al., 2014; Namgaladze and
Brune, 2014; Batista-Gonzalez et al., 2019). Furthermore, perturbations
in NAD(P)H and FAD fluorescence lifetime in macrophages have been
observed in various circumstances, including wound healing (Miskolci
et al., 2022), and tumor association (Szulczewski et al., 2016; Heaster
et al., 2020; Heaster et al., 2021), indicating the existence of metabolic
heterogeneity within macrophage populations.

Machine learning RFT models achieved similar accuracies with
ROC AUC values > 0.94 for the classification of M1 from
M2 macrophages and the classification of M0 from
M1 macrophages for models built from autofluorescence lifetime
metrics quantified either via decay fitting or phasor analysis (Figures
2B, E). Similar results have been previously reported for a RFT model
that predicts M1 and M2 phenotype of human macrophages polarized
and treated with FCCP (ROC AUC = 0.944) (Neto et al., 2022).
Although significant differences in NAD(P)H lifetimes (τ1, τ2, τm),
were observed between M0 and M2 macrophages (Figures 1B–D), the
random forest tree (RFT) models designed to distinguish between these
subsets did not achieve a high accuracy (~71%) (Supplementary Table
S2), suggesting that the differences in lifetime features may not be
sufficient for effective classification. BothM0 andM2macrophages rely
on oxidative phosphorylation (OXPHOS) for energy production,
suggesting a biological explanation for overlapping metabolic
characteristics of lifetime features that prevent robust classification of
M0 andM2macrophages from autofluorescence lifetime-based models
(Ravi et al., 2014).

For the M0 versus M2 models, better accuracy (p < 0.0001) was
achieved for the RFT model that used FLIM features from the fitted
decay than the model built from the phasor coordinates (ROC AUC of
0.8 versus 0.67; Figures 2B, E; Supplementary Table S8). It is noteworthy
that FAD fluorescence lifetime features contributed more to the
M1 versus M2 models than the NAD(P)H features (Figures 2E, F),
which has not been previously reported. FAD fluorescence lifetimes
may be associated with alterations in mitochondrial function and
metabolism, suggesting that mitochondria-dependent metabolism
drives phenotypic changes between M1 and M2 macrophages.

Similarly to activated macrophages, cancer cells exhibit increased
aerobic glycolysis to support proliferation even when oxygen is present,
a phenomenon known as the Warburg effect (Warburg, 1956).
Autofluorescence lifetime imaging combined with either exponential
decay fitting or phasor analysis allows analysis of metabolic phenotypes
of cancer cells from FLIM data (Periasamy et al., 2012; Walsh et al.,
2014; Alam et al., 2017; Trinh et al., 2017; Pham et al., 2021). The phasor
plots showed that glycolysis inhibition within MCF7 cells led to a shift
towards more boundNADH, while the OXPHOS inhibition stimulated
a shift toward more free NADH (Figure 3G). These results are
consistent with previously reported NAD(P)H lifetime phasor shifts
of MCF7 cells treated with caffeine enhancement of cisplatin, a
chemotherapy drug that alters the metabolic state of a cancer cell
and induces mitochondrial apoptosis (Pascua et al., 2020). The
MCF7 cells trended toward OXPHOS when treated with a
combination of caffeine and cisplatin, representative of a lower
amount of free NAD(P)H (Pascua et al., 2020). Additionally, a
significant difference in the FAD phasor components was observed
between the cells with glucose starvation and the control cells (Figures
3D, E), which has been shown in previous studies for lifetime
components as well (Supplementary Figure S3) (Hu et al., 2022).

Biexponential fluorescence decay curve fitting analysis of
NAD(P)H and FAD fluorescence lifetimes resolve metabolic
variations of breast cancer cells and further allows for the
classification of metabolic phenotypes at a single-cell level using
machine learning algorithms (Hu et al., 2022). We expanded on this
work by comparing the performance of the RFT machine learning
models trained on phasor features, curve fitting features, and
combined features from both analysis approaches. Using the
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phasor features of autofluorescence lifetime as inputs to the RFT
model proved not as effective as the curve-fitting features in
discriminating metabolic phenotypes of cancer cells. Although
the model trained with phasor features distinguished between
glycolysis inhibition and OXPHOS inhibition groups with an
AUC of 0.918, the model was only marginally able to accurately
differentiate the control group from the glycolysis inhibition groups
(AUC of 0.846) and control from the OXPHOS inhibition group
(AUC of 0.781; Figure 4E). In contrast, the model trained with curve
fitting features had AUC values ~85% (Figure 4B) for predictions of
control versusOXPHOS and control versus glycolysis. The increased
number of features provided by bi-exponential decay fitting could
contribute to the slight increases in average accuracies of the RFT
models built from fitting features rather than phasor coordinates.
The NAD(P)H G coordinate contributed significantly to the
classification of cells with glycolysis inhibition and cells with
OXPHOS inhibition (Figure 4C), and the ML model trained with
lifetime features (Figure 4F) was generally more dependent on
NAD(P)H τm, suggesting that NAD(P)H lifetime is the most
informative metric for characterizing cellular metabolic states.

Both biexponential decay fitting and phasor analysis have
advantages and limitations for the analysis of NAD(P)H and FAD
FLIMdata. In a direct comparison of FLIM features formachine learning
classification, RFTmodels built from biexponential decay fitting features
and phasor coordinate yielded similar accuracies for distinguishing
between groups with large metabolic differences (M1 versus
M2 Figure 2; OXPHOS inhibited versus glycolysis inhibited cancer
cells; Figure 4). However, the accuracy of the phasor-based models
decreased relative to the matched models constructed from exponential
fit parameters for groups with smaller differences in metabolism
(M0 versus M2 Figure 2.; OXPHOS inhibited versus control cancer
cells; Figure 4). However, curve-fitting is computationally intensive and
can be prone to inaccuracies caused by the variations of photon numbers.
In contrast, phasor coordinates can be quickly calculated without
requiring detailed decay curve information or fitting, making it useful
for large time-domain or frequency-domain lifetime datasets.

It is important to note that the classifiers developed here for cancer
cells and macrophages may potentially transfer to classify additional cell
types by metabolic phenotypes if the metabolism and autofluorescence
lifetimes of the new cell types are similar to those of cancer cells and
macrophages. Likewise new classifiersmay be developed to classifymixed
populations of cells, provided that the cells have different sufficiently
different metabolic phenotypes and autofluorescence lifetimes. However,
the autofluorescence lifetime features alone may not be sufficient to
distinguish between cell types if 2 cell types share similar metabolic states,
as was observed for M0 and M2 macrophages (Figure 2). To overcome
this limitation, additional cellular features, such as cell size, morphology,
and texture, derived from autofluorescence lifetime images could be
included in classifier models in addition to the lifetime properties. These
morphological features can be obtained through appropriate imaging
preprocessing techniques and may provide additional information for
differentiation among multiple cell types.

5 Conclusion

In summary, this paper compares curve fitting and phasor
analysis approaches for analyzing time-domain NAD(P)H and

FAD FLIM data of cancer cells and macrophages across
metabolic and phenotypic states. Quantified phasor coordinates
identify differences in NAD(P)H and FAD lifetimes of
metabolically-perturbed cancer cells and M1 and
M2 macrophages. The phasor coordinates were used in machine
learning algorithms to predict metabolic phenotypes of cancer cells
and macrophage phenotypes. Comparable accuracy was obtained
for RFT models using either exponential decay features or phasor
coordinates for the prediction of OXPHOS from glycolytic cancer
cells and M1 from M2 macrophages. RFT models trained on
biexponential lifetime features achieved slightly higher accuracies
(~2–3%) than data-matched phasor-based models for
discriminating cancer cell metabolism and macrophage phenotypes.
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