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Introduction: Genome-scale metabolic models (GEMs) are organism-specific
knowledge bases which can be used to unravel pathogenicity or improve
production of specific metabolites in biotechnology applications. However, the
validity of predictions for bacterial proliferation in in vitro settings is hardly
investigated.

Methods: The present work combines in silico and in vitro approaches to create
and curate strain-specific genome-scale metabolic models of Corynebacterium
striatum.

Results:We introduce five newly created strain-specific genome-scale metabolic
models (GEMs) of high quality, satisfying all contemporary standards and
requirements. All these models have been benchmarked using the community
standard test suite Metabolic Model Testing (MEMOTE) and were validated by
laboratory experiments. For the curation of those models, the software
infrastructure refineGEMs was developed to work on these models in parallel
and to comply with the quality standards for GEMs. The model predictions were
confirmed by experimental data and a new comparison metric based on the
doubling time was developed to quantify bacterial growth.

Discussion: Future modeling projects can rely on the proposed software, which is
independent of specific environmental conditions. The validation approach based
on the growth rate calculation is now accessible and closely aligned with
biological questions. The curated models are freely available via BioModels and
a GitHub repository and can be used. The open-source software refineGEMs is
available from https://github.com/draeger-lab/refinegems.
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1 Introduction

Human life and substantial cultural achievements depend on
prokaryotes. While a minority of bacterial species cause invasive
diseases, humans could not exist without beneficial microbes
colonizing the gut and the body surfaces. Additionally, the
metabolic capacities of microbes flavor and preserve our food,
detoxify the environment, or allow the production of antibiotics
to treat infections. Without the ability to identify and growmicrobes
under defined conditions within laboratory surroundings, many
modern comforts would be unthinkable. Remarkably, we are only
beginning to appreciate the enormous diversity of bacterial life, and
even with state-of-the-art techniques to grow bacteria, the vast
majority remains uncultivated (Lloyd et al., 2018).

As a huge metabolic capacity is slumbering within these
“unculturable” bacteria, efforts for their cultivation should be
intensified (Thrash, 2019; Bodor et al., 2020). Computer
modeling of the nutritional needs of microorganisms holds great
promise in this regard. The importance of computational modeling
in biology has steadily increased over the last decades (Bordbar et al.,
2014). In particular, genome-scale metabolic models, so-called
GEMs, have proven beneficial in numerous application areas due
to their facile mathematical manageability and predictive power (Gu
et al., 2019).

Among other benefits, GEMs permit predicting an appropriate
media composition that should allow proliferation for any organism.
However, up to date, this potential seems hardly exploited as it needs
combined efforts of bioinformaticians to make predictions and of
microbiologists to test the same systematically. Most published
models lack sufficient experimental validation, or the designators
of the components contained in the models only allow preliminary
conclusions to be drawn about tangible cell components. These
shortcomings reduce the validity or interpretability of the predicted
results. Only if modelers and experimenters work closely together
can they check predictions made by the model and, if necessary,
change the structure of the model or the experimental setup to
gradually arrive at a meaningful representation of reality in the
model that yields reliable results (Fitzpatrick and Stefan, 2022).

Herein we tested the ability of de novo created GEMs to predict
in vitro growth characteristics ofCorynebacterium striatum. At the time
of writing, no genome-scale systems biology models are available that
characterize this species. C. striatum is a Gram-positive, non-
sporulating rod discovered in the early 20th century. It was
considered a commensal within the healthy human skin microbiota
for a long time (McMullen et al., 2017), and its pathogenic properties
remained unknown. With increasing awareness of nosocomial
infections, C. striatum was identified as a cause of diseases,
particularly for immunocompromised patients. It may cause several
diseases, including Chronic Obstructive Pulmonary Disease, COPD, or
pneumonia (Shariff et al., 2018). In addition to the human respiratory
tract, long-standing open wounds belong to its habitat (Chandran et al.,
2016), leading to prolonged hospitalizations (Nudel et al., 2018).
Compared to other Gram-positive members of the skin flora,
C. striatum is particularly resistant to several antibiotics (McMullen
et al., 2017), including ampicillin, penicillin, and tetracycline (Chandran
et al., 2016). For these reasons, C. striatum constitutes an ideal example
case for benchmarking and improving a systematic and semi-automatic
modeling environment.

The individual work steps required to reconstruct high-quality
models have been excellently characterized in the literature in
numerous examples (van’t Hof et al., 2022; Feierabend et al.,
2021; Dillard et al., 2023; Dahal et al., 2023). However, a
substantial obstacle in this endeavor is the enormous complexity
and the sheer number of those steps, which Thiele and Palsson put at
96 repetitive steps (Thiele and Palsson, 2010). In addition, this
requires knowledge from many orthogonal scientific disciplines
ranging from (bio)chemistry, biophysics, and bioinformatics to
mathematics and their application in bioengineering and,
depending on the use case, various fields such as microbiology,
oncology, or biotechnology. Working with the underlying file
formats and data standards also requires specialized knowledge
in particular areas. It is easy to see why the modeling work is
neither intuitive nor generally accessible. Fundamental
programming skills are required to examine the resulting models
just rudimentarily.

The file format SBML (Keating et al., 2020; Renz et al., 2020) is
most widely used to encode systems biology models (Dräger and
Waltemath, 2021). However, a particular extension, the Flux Balance
Constraints (FBC) package (Olivier and Bergmann, 2018), is
required to store constraint-based genome-scale models in it.
Other packages open up additional features of the SBML format
to users, such as linking metabolic maps directly to the
computational model (Gauges et al., 2015; Bergmann et al.,
2018), offering a wide range of visualization capabilities
(Buchweitz et al., 2020; Holzapfel et al., 2022).

Such metabolic maps are often drawn using web-based
programs such as Escher (King et al., 2015) or Newt (Balci et al.,
2021), which are compatible with the Systems Biology Graphical
Notation (SBGN) standard (Bergmann et al., 2020; Touré et al.,
2021) and generate unambiguously represented biological network
maps. The computational model can be created and edited using
various programs, depending on the type of modeling. Constraint-
Based Reconstruction and Analysis (COBRA) programs such as
COBRApy (Ebrahim et al., 2013) (for Python users) or COBRA
Toolbox (Heirendt et al., 2019) (for Matlab users) have proven
particularly useful for genome-scale models. An initial model is, in
turn, first created with programs such as CarveMe (Machado et al.,
2018). For the publication of models, the BioModels database is
usually available (Malik-Sheriff et al., 2020).

This short list is not exhaustive but should illustrate that
modeling work is often discontinuous because numerous
different programs are required in combination. In addition, the
modeler needs to think about a suitable structure for versioning their
models and save it in a way that is understandable to others. Many
steps also require manual revision, sometimes done directly in the
SBML files or using the command line and highly specific scripts.
Much of the work required for modeling may be similar in its
outcome but repetitively and independently developed. Not only
does the resulting redundancy lead to endless hours of avoidable
programming work. It also results in projects that are incompatible
with each other but similar in their effect (Yurkovich et al., 2017).

The fewer users test a particular software project, the higher the
probability of finding previously undiscovered programming errors.
Ultimately, these also affect the model quality. Since each developer
typically places the aspects relevant to its respective project in the
foreground and cannot cover the curation of the models in sufficient
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depth, it can be easily explained why frequently certain aspects fall
by the wayside: either due to a lack of time or the sheer
overwhelming nature of the overall complexity.

The present work addresses such problems by providing a unified
directory structure and a collection of directly executable programs
within a Git-based version control system. To this end, the authors use
their experience gained in numerous previous projects on systems
biology modeling (Feierabend et al., 2021; Dahal et al., 2023), software
development (Panchiwala et al., 2022; Glöckler et al., 2023) and
laboratory work (Adolf et al., 2023; Krauss et al., 2023) to precisely
reconstruct and experimentally validatemultiple strains in parallel using
currently common standard operating protocols for a bacterium that
remains to be studied in systems biology. In this work, we constructed
GEMs of fiveC. striatummodel strains and used them to predict growth
characteristics under defined nutritional conditions. These predictions
were then tested in the laboratory. Interestingly, we found that the
in vitro and in silico data for C. striatum largely overlap. In addition to
the comparison between laboratory and in silico strain behavior, a
program to enhance the creation of high-quality models is presented.

2 Materials and methods

2.1 Genome sequences

Both the National Center for Biotechnology Information (NCBI)
and PATRIC were used to search for complete genome sequences of
C. striatum strains. On NCBI the genome assembly ASM215680v1 of
C. striatum KC-Na-01 with the accession reference GCF_

002156805.1 was the most prominent. This sequence was used
to create a first GEM. This strain was not available to order from the
Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ,
translates to German Collection of Microorganisms and Cell Cultures).
Thus, four additional strains with BacDrive sequence information were
obtained from DSMZ (Table 1). All sequences were downloaded from
NCBI (Table 1).

2.2 Existing model assessment

One GEM for C. striatum exists in the Virtual Metabolic Human
(VMH) database. The VMH offers GEMs of organisms interesting for
human microbiomes. Most models within the VMH database are used
as a basis to build simulatable microbiomes. Additionally, all VMH
GEMs use specific entity IDs of which some overlap with biochemically,

genomically, and genetically structured (BiGG, Norsigian et al., 2019)
IDss. The one existingGEMwas assessedwithMEMOTE andmanually
evaluated by looking at the Extensible Markup Language (XML) file.

2.3 Draft models

Draft models were created from the genome sequences
annotated by the NCBI Prokaryotic Genome Annotation Pipeline
using CarveMe (Machado et al., 2018). We used version 1.5.1 of the
package, which we installed via pip on a MacBookPro running
macOS Monterey version 12.3.1. CarveMe was run on the protein
FASTA files of the sequences with the fbc2 flag. Fbc2 refers to the
SBML package “Flux Balance Constraints” (Olivier and Bergmann,
2018) which extends models written in SBML by structures that
enable flux bounds and optimization functions. These structures are
necessary for growth simulations with flux balance analysis (FBA)
which were used to compare the models to laboratory results.

2.4 Automated polishing

The drafts were polished with ModelPolisher (Römer et al., 2016)
andwith the scriptpolish.py available with the refineGEMs toolbox
(see Section 3.3). Automated polishing included moving entries from
the notes section to the annotation section of an entity, annotating all
entities with their respective BiGG (Norsigian et al., 2019) ID as
identifiers.org link, and setting the models parameters to mmol_

per_gDW_per_h. In addition, the GeneProducts were polished
using refineGEMs: They were annotated with the NCBI Protein ID
and renamed with the respective name indicated on NCBI.

2.5 Semi-automated curation

RefineGEMs was used to add charges to metabolites that had no
denoted charge, some of the missing charges were extracted from the
model of Pseudomonas putida KT2440 with the ID iJN1463.
RefineGEMs was used to apply the SBOannotator tool (Leonidou
et al., 2023) which allows for automated Systems Biology Ontology
(SBO, Courtot et al., 2011) term annotation and specialization. The
Python module MassChargeCuration (Finnem and
Mostolizadeh, 2023) was used to further correct the charges and
masses of the metabolites. RefineGEMs was used to synchronize
annotations of metabolites in different compartments.

TABLE 1 Corynebacterium striatum strains used in this study, with the corresponding DSM-number, NCBI accession number, and identifier.

Name DSM NCBI Short ID Model ID BioModels ID

FDA-ARGOS_1054 20668 CP066290 TS iCstr1054FB23 MODEL2304270001

FDA-ARGOS_1197 45711 CP069514 1197 iCstr1197FB23 MODEL2304270003

FDA-ARGOS_1115 7184 CP068158 1115 iCstr1115FB23 MODEL2304270002

FDA-ARGOS_1116 7185 CP068157 1116 iCstr1116FB23 MODEL2304270004

KC-Na-01 — — KC iCstrKCNa01FB23 MODEL2304270005

“Short ID” is the name used in this manuscript. The “Model ID” contains the final ids of the models uploaded to BioModels where it is accessible using the ID in the rightmost column. TS

denotes the type strain of C. striatum.
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2.6 Manual curation

Manual curation was first focused on cleaning residues left from
the automated draft reconstruction: Duplicate reactions and
metabolites with different IDs were identified using MEMOTE
(Lieven et al., 2020) and subsequently removed. Metabolites with
only a few or no annotations were researched manually in multiple
databases and annotated based on the results. Network gaps were
identified by drawing pathways as Escher maps (King et al., 2015)
and comparing those to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway maps (Kanehisa et al., 2021).

2.7 Model quality assessment

The MEMOTE score (Lieven et al., 2020) serves as a tool for
researchers to quickly evaluate the completeness and accuracy of
GEMs and to compare models across different organisms and
strains. It also helps to identify potential gaps in the models,
making it easier to improve them in the future.

2.8 In silico growth rates

Growth rates and, thus, doubling times were determined by
FBA. We used the routine implemented in refineGEMs which is
based on the COBRApy optimize function. This maximized the flux
through the biomass objective function (BOF). It assumes that the
goal of any organism is to increase its biomass toward cell division.
The returned objective value was then interpreted as growth rate in
mmol ·g−1DW · h−1. The doubling time or generation time Td in
minutes is then calculated by the formula

Td � ln 2( )
r

· 60 mmol−1 · g−1DW (1)

with r being the growth rate or objective value extracted from the
FBA. All used media formulations can be found in the sbo_

media_db.sql in refineGEMs.

2.9 Growth rate comparison

Growth rates from simulations with COBRApy are given in
mmol ·g−1DW · h−1, which can be used to calculate doubling times
using Eq. 1. To ensure robust comparison, we chose to extract
doubling times from experimental growth curves by fitting a logistic
equation to the data and using the rate at the inflection point as the
growth rate in optical density (OD) per time from which we can
calculate the doubling time. This approach was taken for all
comparisons.

2.10 In vitro growth phenotypes

All media compositions are available in the Supplementary
Material. Cultures were grown in Tryptic Soy Broth (TSB)
overnight at 37°C and 150 rpm. After 10 min of centrifugation at
4,000 rpm, the remaining pellets were resuspended in the medium of

interest. The samples were inoculated at an OD of 0.1. The OD

600 nm (OD600) was measured at t = 0 h and at t = 24 h. Fold changes
were calculated by dividing OD600 (t = 24 h) by OD600 (t = 0 h).

2.11 In vitro growth rates

For each of the four strains, one colony grown on Tryptic Soy
Agar (TSA) Blood plates was inoculated in 10 mL of TSB.
Precultures were incubated overnight at 37°C and 150 rpm and
diluted to an OD of 0.05 in TSB, Brain-Heart-Infusion Broth (BHI),
Roswell Park Memorial Institute cell culture medium 1640 (RPMI),
Lysogeny Broth (LB), M9 minimal medium (M9), and
Corynebacterium glutamicum minimal medium version 12
(CGXII), Supplementary Table S1. 150 L of the suspensions was
distributed in a Greiner Bio-One 96 flat bottom well plate and
incubated at 37°C for 24 h in the BioTek Epoch 2Microplate Reader.
OD600 was monitored every 15 min after agitation at 600 rpm. All
experiments were performed using three technical replicates per
plate and at least three biological replicates.

2.12 Growth data analysis

Growth data were extracted from the plate reader in a Microsoft
Excel® file and were then read using pandas (Reback et al., 2022). The
logistic equation for growth was fitted using curve_fit from
scipy.optimize (Virtanen et al., 2020). This uses a non-
linear least squares approach to fit Eq. 2 to the growth data.
Then the growth rate r can be extracted, and the doubling time
or generation time Td is then calculated by Td = ln 2/r. A logistic
function that results from a logistic model of bacterial growth is
shown on Eq. 2:

ODt � K

1 + K−OD0
OD0

( ) · e−rt . (2)

Here, ODt is the OD at time t, K is the asymptote (usually the
maximumOD),OD0 is the OD at time 0, d refers to the displacement
along the x-axis. Multiple columns with OD values are possible.
Coming from the plate reader, technical replicates were averaged
before fitting. The wells representing the blank were also averaged
and subtracted from the averaged technical replicates.

For the logistic fit, curve_fit was always initialized with p0 =

np.asarray([0.2, 0.05, 0.05]), the function is defined in
Python as

def logistic (t, K, y0, r):
return K/(1+((K-y0)/y0)*np.exp(-r*t))

2.13 Model monitoring

During the tests on different media, the models were
continuously monitored, and simulations were run to obtain
missing metabolites that might help to recover growth on the
minimal media of interest. We noticed that the models had no
exchange reactions for sodium which was changed to reflect the
ability of sodium uptake of the respective organisms.

Frontiers in Bioinformatics frontiersin.org04

Bäuerle et al. 10.3389/fbinf.2023.1214074

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1214074


3 Results

3.1 Construction of five strain-specific GEMs

3.1.1 Available model and strains of C. striatum
To the authors’ best knowledge, no other manually curated high-

quality GEM of C. striatum is currently available. However, within
the gut microbiota resource of the VMH database (Magnúsdóttir
et al., 2017), a model for the type strain ATCC 6940 exists (Heinken
et al., 2023).

The VMHmodel for C. striatum has a MEMOTE score of 88%,
even though it contains erroneous annotations with NaN IDs and
incorrect InChIKeys. All the GeneProduct objects lack annotation,
and some of the reactions were only annotated with their respective

SBO terms. Thus, within this study, we created manually curated
high-quality GEMs for C. striatum.

We decided to work with multiple strains to get a comprehensive
picture of the strain-specific properties of C. striatum. Apart from
the type strain FDAARGOS_1054/ATCC 6940 [type strain (TS)], we
used three more strains, namely, FDAARGOS_1197 (1197),
FDAARGOS_1115 (1115) and FDAARGOS_1116 (1116), whose
genome sequences have been completely assembled. In addition to
these four strains, we also investigated the strain KC-Na-01 (KC),
which is well characterized by the KEGG database, but unlike the
other four strains, it is not available from the DSMZ. For this reason,
for strain KC, we exclusively performed an in silico analysis.

The strain-specific models were named following the guidelines
given by Carey et al. (2020). However, as there were no indications

FIGURE 1
(A) Scopes of all curatedC. striatummodels. Number of reactions, metabolites, and genes are read on the left y-axis, MEMOTE scores are read on the
right y-axis. This score is based on standardized and community-maintained metabolic tests for quality control and quality assurance of GEMs. (B)
Classification of reaction types by assigned SBO terms. SBO terms were annotated using the SBOAnnotator (Leonidou et al., 2023) tool and thus are
specialized. The distribution of different reactions is shown with stacked bars which represent the number of reactions that are classified with that
SBO term. (C,D) Strain comparison based on themetabolic reconstructions. Venn diagrams showing the overlap of all metabolites (C) and all reactions (D)
of the curated models in this study. These diagrams were created based on the metabolite/reaction identifiers using the pyvenn Python module.
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for naming strain-specific models we decided to elongate the species
indicator by a strain indicator (in our case the FDA-ARGOS ID). As
the iteration identifier the author’s initials (FB) and the year (23)
were added.

3.1.2 Characteristics of the models created in this
study

The models created in this study are composed of
1,053–1,382 metabolites, 1,541–2,002 reactions, and 719–772 genes.
This is within the usual range of bacterial GEM [compare, e.g., with
1,183 genes and 2,276 reactions (Hawkey et al., 2022)]. Figure 1A and
Supplementary Table S2 show that the model of strain TS has the
biggest scope with respect to the number of entities that it holds. All
GEMs have a metabolic coverage above 2%. Usually, models with a
high level of modeling detail will have a metabolic coverage above 1%,
which highlights the degree of detail of our models. All MEMOTE
scores are above 84%, which is higher than all scores of models
evaluated for the MEMOTE meta-study in 2020 (Lieven et al., 2020)
(compare SI Figure 30 of that study). All entities that are present in the
models are annotated both with Uniform Resource Identifiers (URIs)
and SBO terms. We used ten different databases for metabolite
annotations, eight for reaction annotations, and two databases to
annotate protein-encoding sequences which are added as Gene
Protein Reactions to the models. KEGG metabolic pathways were
added to all models. The models were checked for energy-generating
cycles, which were eliminated, and orphaned metabolites were
connected to the network. All models are stoichiometrically consistent.

Reactions can be classified into different types using the SBO
terms. SBO analysis showed that all four models follow a similar
reaction type distribution (Figure 1B), suggesting vastly overlapping
metabolic capacities of the strains.

The metabolic reconstructions were used for a detailed
comparison of the five strains. This showed an overlap of 47%
for all metabolites and an overlap of 35% for all reactions across all
models (Figures 1C, D). With 168 and 391 unique metabolites and
reactions, respectively, the strain KC showed higher divergence
compared to the other models. In comparison, strain
1115 showed 6 and 21 unique metabolites and reactions,
respectively. This suggests a reduced metabolic fitness compared
to strain KC.

3.2 Experimental validation of the strain-
specific GEMs

GEMs can be used to predict growth characteristics of bacterial
species under defined nutritional conditions (Dahal et al., 2023).
This can be useful for laboratory experimentation, especially when
little to no in vitro data for the microorganism of interest is available.
However, the accuracy of GEMs in predicting in vitro characteristics
is frequently unclear. Therefore, we decided to compare model
predictions to in vitro growth characteristics under various
nutritional conditions.

3.2.1 Growth characteristics under varying
nutritional conditions

We used the complex, nutritionally rich medium LB (Bertani,
1951) for which a nutritional composition to be used in metabolic

modeling is available (Machado et al., 2018). However, this medium
contains the complex component yeast extract, making the precise
composition of the medium in vitro unclear. As defined media, we
used RPMI (Thermo Fisher Scientific, Inc, 2023), M9 (Bécard and
Fortin, 1988; Merck & Co., Inc, 2023), and CGXII (Keilhauer et al.,
1993; Unthan et al., 2014; Yang et al., 2021) since their precise
chemical composition is known.

In vitro experiments allow for different experimental
approaches. Besides changing incubation temperature, bacterial
cultures can be grown in flasks with or without a baffle whose
volumes can be adapted from microliters to liters. Alternatively,
cultures can be grown in microtiter formats (100 µL·well−1 to
500 µL·well−1) or even in continuous culture systems where a
constant refreshment of medium with an inflow of metabolites
can be used. It is well known that varying growth conditions
impact the achieved cell densities and growth rates significantly.
However, the influence such conditions have on, e.g., gas exchange
rates, are difficult to reflect within GEMs.

We, therefore, decided to test the accuracy of the model to
predict the growth characteristics of the strains under two distinct
growth conditions (Figure 2).
1. Growth in high volume flasks for determination of binary

phenotypes. Higher volumes of media (10 mL in 50 mL flasks)
were inoculated to an optical density of 0.2, and the optical
density was assessed after 0 and 24 h to determine binary growth
phenotypes (growth vs. no growth). Binary phenotypes are used
to assess the accuracy of a GEM where a simulation can be run,
e.g., on different carbon sources that can then be tested in the
laboratory.

2. Microtiter format to assess growth kinetics. Besides binary
phenotypes, the prediction of metabolites or additional
nutrients that increase/decrease growth rates is of high
relevance for the planning of in vitro experiments. We used a
volume of 150 µL per medium in a 96-well plate and automated
the assessment of OD600 over time to determine growth
kinetics. From the growth curves captured via a plate reader
the doubling time at the inflection point of the sigmoidal
curve can be extracted and compared to those predicted by
the GEM.

3.2.2 Growth in LB medium is predicted correctly,
and growth rates for three strains in LB medium in
silico are reflected in vitro

GEM analysis predicted binary growth of TS, 1197, and
1115 while growth of strain 1116 was not possible under the
modeled nutritional composition of LB medium (Table 2).
Investigation of this phenomenon revealed that strain 1116 lacks
a part of the nicotinate metabolism (Supplementary Figure S2)
making the strain auxotrophic for the essential enzymatic
cofactor nicotinamide D-ribonucleotide (nmn). A putative nmn
transporter is predicted by the GEM, supporting the existence of
an auxotrophy to this compound. In contrast, transporters for the
precursors of nmn (nicotinate or nicotinamide) were not predicted.
This caused the GEM to predict a specific need for nmn which was
not available in the in silico formulation of LB. Interestingly, all
strains were able to grow in LB in in vitro experiments (Figure 3A).
This shows that the auxotrophy of 1116 is not relevant in LB. This
might have two reasons. Either nmn might be present in sufficient
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amounts in LB medium, or its precursors (nicotinate, nicotinamide)
are present and taken up by unidentified transport systems in
C. striatum. To further compare in silico modeling with in vitro
results, we used growth curve analysis to extract in vitro generation
times. Of note, automated extraction of generation times relies on
fitting a logistic equation to the growth curve, which is error-prone
when OD values do not show evident sigmoidal characteristics.
Accordingly, we have to mention that the generation times of
1115 and TS are more reliable than those of 1115 and 1197
(Figure 3B). Additionally, it has to be noted that the generation
time is calculated for the period of exponential growth (even when
very short) and does not necessarily reflect the reached final ODs of
the strains. Thus, the generation times calculated herein have to be
interpreted with care. However, we used them as a proxy to assess
the GEM predictions. In LB medium, strain 1197 grew significantly
slower (81.13 min·generation−1) than strains 1115 and 1116
(45.92 min·generation−1 and 40.38 min·generation−1 respectively)
(Figure 3B). These differences were not predicted by the
respective GEMs, suggesting differences in the metabolisms of

the strains that are currently not reflected within the models.
Strain 1116 differed from strain 1115 in the reached ODs of
around 0.2 and 0.6, respectively, but not in the doubling times of
40–45 min. The doubling times extracted from the growth curves
only differed for strain 1197 notably from those predicted by the
model, most likely due to the non-sigmoidal growth of the strain in
our experiment.

3.2.3 Model optimization allows congruent in silico
and in vitro growth in RPMI medium

None of the strains showed in silico proliferation on the
nutritional composition of RPMI (as detailed by the supplier).
Investigating this phenomenon showed a lack of the trace
elements (Co2+, Cu2+, Fe2+, Mn2+ and Zn2+) for all strains
while 1116 lacked additionally nmn as observed before.
However, all strains grew, effectively in flasks in vitro
(Figure 3C). This shows the presence of sufficient amounts of
trace elements in the medium to allow bacterial growth.
Consequently, modification of the in silico composition of
RPMI by the addition of trace elements is needed to optimize
the congruency of in silico and in vitro analysis. Furthermore,
RPMI contains nicotinamide. This strongly suggests that
nicotinamide can be taken up by strain 1116 and enables
synthesis of nmn.

Growth curve analysis resulted in final optical densities of
0.4 for all strains. However, the curves were characterized by long
lag phases and did not show sigmoidal appearances, complicating
the extraction of the doubling times. Nevertheless, doubling
times ranged from 73 min (strain 1115) to 100 min (strain
1197; Figure 3D). All strains grew slower than predicted
(Table 3).

FIGURE 2
Graphical summary of two experimental approaches to study the growth of Corynebacterium striatum under defined nutritional conditions. 1)
Growth in high volume flasks for binary assessment of growth. 2) Growth inmicrotiter plate format to assess growth kinetics. The figure was created using
BioRender.com.

TABLE 2 Growth behavior in silico and in vitro of all strains in LB.

Data TS 1197 1115 1116

In silico Growth plain Yes Yes Yes No

Missing nutrients nmna

dt (+missing) 57.82 59.68 50.33 50.62

In vitro 24 h-OD-fold-change 43 52 46 46

dt [min] 61.6 81.13 45.92 40.38

anicotinamide D-ribonucleotide.
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3.2.4 Growth in CGXII medium requires
enrichment to allow proliferation in vitro

CGXII medium is used as an optimal, chemically defined
medium to grow Corynebacterium glutamicum (Unthan et al.,
2014). Therefore, we decided to test the ability of our strains to
proliferate in this medium. In silico, none of the strains were
predicted to grow in standard CGXII composition. Analysis of
this phenomenon revealed that all strains need the addition of the
trace metal cobalt. This allowed in silico the proliferation of the
strain TS while all other strains showed auxotrophies for
L-Cysteine and pantothenic acid (strain 1197 and 1115) or
nmn and pantothenic acid (strain 1116). The addition of the
respective nutrients in silico allowed simulated proliferation for
all strains (see Table 4). Interestingly, none of the strains, not
even the strain TS showed proliferation in CGXII (supplemented
with cobalt) containing flasks in vitro. As the reasons for this
discrepancy were unclear, we tested if the addition of other
nutrients might stimulate growth. Firstly, we added 0.2 %
Tween 80 (Tw) which is known to have growth stimulatory
effects on Corynebacteria (Chevalier et al., 1987). This

increased the reached OD after 24 h slightly (Figure 4A).
However, we observed strongly improved growth of strain TS
when Tween 80 as well as a complex mixture of amino acids
(casamino acids—CasA) was added to CGXII.

Similarly, all other strains failed to grow in cobalt
supplemented CGXII and the addition of Tween 80 in
combination with strain-specific metabolites (see Table 4)
allowed only minor growth improvement. Interestingly, the
addition of CasA improved the growth of all strains, but the
growth of strain 1116 was improved to a lesser extent compared
to the other strains.

None of the strains showed growth in microtiter plate format in
CGXII, a phenotype that did not change upon the addition of further
nutrients as described above. Accordingly, the growth kinetics of the
different strains in CGXII could not be assessed.

3.2.5 Growth inM9medium requires enrichment to
allow proliferation in vitro

M9 is a widely used minimal medium. For growth in M9 our
models predicted that all strains needed the addition of trace metals

FIGURE 3
OD fold changes and in vitro growth curves in LB (A,B) and RPMI (C,D) of the strains TS, 1197, 1115, and 1116. (A,C) 10 mL medium in 50 mL flasks
were inoculated to OD600 = 0.2. After 24 h of incubation, the OD600 was measured again, and the fold-change was calculated as a measure for bacterial
growth. Shown are the mean and SD of three independent experiments. (B,D) Growth in Microtiter plates. 150 mL of medium in a 96 well plate were
inoculated and OD600 was assessed automatically for 24 h using an Epoch2 plate reader. The logistic fit was calculated using curve_fit (dotted
lines). The doubling times extracted from the logistic fit are indicated in the legend. For strain TS and 1197, we only fitted data up to 12.5 h to avoid fitting to
diphasic growth.
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TABLE 3 Growth behavior in silico and in vitro of all strains in RPMI.

Data TS 1197 1115 1116

In silico Growth plain No No No No

Missing nutrients Co, Cu, Fe, Mn, Zn Co, Cu, Fe, Mn, Zn Co, Cu, Fe, Mn, Zn Co, Cu, Fe, Mn, Zn, nmna

dt (+missing) 60.02 61.91 55.78 52.64

In vitro 24 h-OD-fold-change 19 17 16 28

dt [min] 80.38 99.8 73.47 99.06

Chemical symbols are used for the designation of metals.
anicotinamide D-ribonucleotide

TABLE 4 Growth behavior in silico and in vitro of all strains in CGXII.

Data TS 1197 1115 1116

In silico Growth plain No No No No

Missing nutrients Co Co, pntob, L-Cysteine Co, pntob, L-Cysteine Co, nmna, pntob

dt (+missing) 75.82 75.2 74.43 -

dt (+missing + CasA) 65.45 65.09 54.36 56.96

In vitro 24 h-OD-fold-change (+Co) 1.61 1.58 1.10 1.03

24 h-OD-fold-change (+missing + Tween) 3.24 3.07 2.88 1.3

24 h-OD-fold-change (+missing + CasA) 7.74 12.84 11.61 5.56

“-” indicates doubling time is equal to infinity due to zero growth rate. Chemical symbols are used for the designation of metals.
anicotinamide D-ribonucleotide.
bpantothenic acid.

FIGURE 4
In vitro binary growth phenotypes in CGXII (A) and M9 (B) of the strains TS, 1197, 1115, and 1116. 10 mL medium in 50 mL flasks were inoculated to
OD600 =0.2. After 24 h of incubation, the OD600 was measured again, and the fold-change was calculated as a measure for bacterial growth. Shown are
the mean and SD of three independent experiments. “Tw” corresponds to the addition of 0.2% Tween 80, “adds” indicates the addition of predicted
missing metabolites (see Tables 4, 5), “CasA” indicates that 0.1% casamino acids were added. The concentrations of the added predicted missing
metabolites are denoted in Supplementary Table S1.
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as well as strain-dependent metabolites such as L-Cysteine,
nicotinamide D-ribonucleotide and pantothenic acid (Table 5).

Again, the in vitro experiments did not reflect the in silico prediction.
Growth in M9 medium (supplemented with all trace metals) was poor
for all strains (Figure 4B). The addition of Tw as well as of the respective
“missing”metabolites did only improve the growth for all strains but the
addition of CasA increased the proliferation (Figure 4B). Similar to
growth in CGXII, we failed to detect growth in M9 in microtiter plate
format which prevented growth rate analysis.

3.3 RefineGEMs: a toolbox for faster curation
and analysis

The work on reconstructing multiple strain-specific models of
opportunistic bacterial pathogens resulted in a new, more general
software toolbox called refineGEMs. It combines, integrates, and
extends COBRApy and the libSBML (Bornstein et al., 2008) Python
package for faster and more accessible GEM curation and analysis in
a standardized repository structure.

The toolbox offers various features to help in the
investigation of any GEM. It enables the user to load GEMs
from SBML files, build a report containing key entities such as
charge unbalanced reactions and numbers of reactions, and
compare genes present in the model to those found in the
KEGG Database given a GFF file and the KEGG ID of the
organism. The charges and masses of the metabolites in the
model can also be compared to those found in the
ModelSEED database (Seaver et al., 2021). The toolbox
facilitates performing reproducible growth simulations.

In addition to investigating GEMs, refineGEMs can also be used
to curate a given model. For instance, if a model was created with
CarveMe version 1.5.1, refineGEMs can transfer relevant information
from the notes field within model components to their respective
annotation section and can automatically annotate GeneProducts in
the model from their IDs using the NCBI IDs. It also enables the
addition of KEGG Pathways as groups (using the SBML groups
extension) and SBO term annotation refinement via its integrated

SBOannotator (Leonidou et al., 2023). Other important functionalities
are updating the annotation of metabolites and extending the model
with missing reactions based on a table filled in by the user during
manual research.

RefineGEMs can be used in two different ways: a) as a standalone
script using the main.py script and the corresponding config.yml
file, which is available on GitHub b) it can be installed via pip and the
functions can be accessed individually Comprehensive documentation
is available online, which is accessible via GitHub. The scope of the
different modules of refineGEMs is outlined in Table 6, giving an
overview of the capabilities of the toolbox. All growth simulations and
parts of the model refinement described in the results above were done
using refineGEMs.

4 Discussion

This study aimed at building strain-specific genome-scale
metabolic models (GEMs) for Corynebacterium striatum. Only
strains whose genome has been entirely sequenced and available
in the German Collection of Microorganisms and Cell Cultures
(DSMZ) were selected as strains to be studied. In doing so, this work
comprises three principal objectives: First, developing a unified
infrastructure for creating systems biology models was and
making it publicly available. Second, using this infrastructure to
create GEMs for selected strains of the bacterium C. striatum and to
make them freely accessible. Finally, experimentally verifying and
using these strain-specific GEMs for their further refinement based
on generated predictions of bacterial growth in the presence of
defined nutritional environments.

The GEMs’ prediction of bacterial growth have enormous
potential for laboratory-based microbiology as it might help to
quickly adjust culture conditions to optimize growth rates and
growth yields, to optimize fermentation processes or even to
enable growth of so far not-culturable bacteria. However, while
GEMs are nowadays created for many different species and even for
multiple strains of the same species, their ability to correctly predict
biological phenotypes is hardly investigated.

TABLE 5 Growth behavior in silico and in vitro of all strains in M9.

Data TS 1197 1115 1116

In
silico

Growth plain Yes No No No

Missing nutrients Co, Cu, Fe,
Mn, Zn

Co, Cu, Fe, Mn, Zn, L-Cysteine, β-
Alanine

Co, Cu, Fe, Mn, Zn, pntob,
L-Cysteine

Co, Cu, Fe, Mn, Zn, pntob,
nmna

dt (+missing) 75.81 75.19 74.42 -

dt (+missing + CasA) 65.45 65.1 54.36 56.96

In vitro 24 h-OD-fold-change 1.57 4.78 1.37 2.49

24 h-OD-fold-change (+missing +
Tween)

1.96 4.06 3.23 1.69

24 h-OD-fold-change (+missing +
CasA)

6.92 13.19 10.5 5.12

“-” indicates doubling time is equal to infinity due to zero growth rate. For in vitro experiments β-Alanine was replaced with pantothenic acid. Chemical symbols are used for the designation of

metals.
anicotinamide D-ribonucleotide.
bpantothenic acid.
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In a typical scenario, published computer models are initially
developed as a theoretical foundation and only checked against
previously published data, if available (Renz et al., 2021a). In other
cases, previously published models get revised based on recent
developments (Renz and Dräger, 2021; Dahal et al., 2023). Other
research groups can perform a comprehensive analysis and
validation once these models are publicly available. In the case of
the coronavirus pandemic, host-virus models initially developed purely
theoretically (Renz et al., 2021b) could be used as the basis for later
experimental studies that enabled the identification of potential antiviral
agents (Renz et al., 2022). However, it is not always possible for
researchers working on systems biology modeling to have their
models tested in the laboratory, but ideally, this should be standard
practice. To close this gap we used a tightly integrated collaboration
between bioinformatics and systems biology, on the one hand, and
microbiology, on the other hand. We created novel GEMs for several
C. striatum strains and used them to make predictions about
proliferation of the strains under defined nutritional conditions.
These predictions were then compared to biological data sets gained
in the laboratory. All models are available for download from the
BioModels database.

Our experiments identified several pitfalls reducing accuracy of
model prediction. We found several examples of “false negative”
predictions, referring to in vitro growth while GEMs predicted a
growth failure. This phenomenon can have two different underlying
reasons. Firstly, it is possible that certain nutrients are present in vitro
that were not included in in silico formulation of the nutritional
composition. This highlights that the in silico assembly of the
nutritional composition of laboratory media needs to be approached
deliberately. Trace metals are important to mention in this regard.

These nutrients are hardly mentioned on ingredient lists of commercial
media (e.g., RPMI). Similarly, not all tracemetals are purposely added to
definedmedia (CGXII, M9) produced in laboratories around the world.
However, the amount needed is extremely low and physiologically
relevant concentrations are available in most media as long as special
action for their removal (e.g., addition of chelators) is avoided.
Accordingly, media formulations used with GEMs should reflect
that trace metals are most likely not limiting factors in experimental
setups.

Furthermore, for complex media ingredients such as yeast, tryptic
soy ormeat extracts that are frequently used inmicrobiological practice,
the precise composition of these extracts are unknown. However, they
contain excess of amino acids, vitamins, ribonucleotides, etc. which
should be included in the in silico composition of media to increase the
accuracy of growth prediction.

Secondly, false negative predictions can also be caused by
inappropriate transport activities within GEMs. One example in this
regard is nicotinic acid transport. The GEMof strain 1116 predicts nmn
to be a crucial metabolite for this strain. Supplementation of the
medium with the precursors nicotinic acid or nicotinamide is
regarded as insufficient as specific transporters for their import are
not predicted within the genome. In contrast to this prediction, we
found the strain to proliferate in the presence of nicotinamide (growth
in RPMI) as well as in the presence of nicotinic acid (M9 medium),
strongly suggesting that both intermediates can be acquired by the
bacterium and enable the synthesis of nmn. However, additional
experimental evidence is needed to validate this hypothesis and the
responsible transport systems remain to be identified.

We also observed “false positive” predictions, referring to GEMs
predicting growth, while proliferation is not observed in vitro. These

TABLE 6 Overview of refineGEMs modules and their scope.

Module Aim

analysis_biocyc All functions required solely for the comparison to BioCyc (Karp et al., 2019)

analysis_db All functions required for the KEGG and BioCyc comparison

analysis_kegg All functions required solely for the comparison to KEGG (Kanehisa et al., 2021)

charges Add charges from ModelSEED (Seaver et al., 2021) to non-charged metabolites

comparison Comparison of growth behavior of multiple strains

curate Model refinement, synchronization of annotations, transfer of notes to annotations

cvterms Utilities for CVTerms (f. ex. extraction of different database IDs)

databases Holds functions to access databases used in curation

gapfill Model extension by comparison to BioCyc or BioCyc and KEGG

growth Growth simulation on SNM (Krismer et al., 2014), LB, M9, SMM, CGXII and RPMI

investigate Model scope and quality assessment

io Utilities to load and write models in XML format

modelseed Comparison of charges and formulae to the ModelSEED database

pathways Addition of KEGG pathways as groups based on the reaction annotations

polish Correction of draft models obtained with CarveMe

sboann Refinement of SBO terms

More in-depth information can be found in the documentation accessible via GitHub. The sboann module is based on the SBOannotator’s original implementation (Leonidou et al., 2023).
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inconsistencies are more problematic, as they reduce the usefulness of
GEMs for laboratory-based experiments. Unfortunately, the reasons for
this are less clear and the issues are more difficult to address. However,
one reason might be that GEMs are based on genetic information while
information about expression of the respective metabolic pathways is
missing. Although genes for biosynthesis of aminoacids or vitamins
might be present within a strain of interest, a failure to express the same
might entail physiological auxotrophies. This phenomenon is known
for the amino acids Leucin and Valin for Staphylococcus aureus (Onoue
and Mori, 1997; Kaiser et al., 2018). Along this line we found that the
addition of casamino acids improved proliferation of C. striatum in
CGXII and M9 media.

Additionally, in silico assumptions are frequently not directly
transferable to in vitro conditions. GEMs assume homogeneously
mixed cells under isothermal and isobaric conditions whose
compartments maintain constant volumes. Molecular concentrations
are assumed abundant enough to be effectively continuous. In addition,
for simplicity, some physicochemical factors, such as osmotic pressure
or electroneutrality, are not considered. The modeled cells would also
remain steady, resulting in constant molecular concentrations. These
assumptions are by far not met in vitro which can also account for
discrepancies between model experimental results. Taken together,
GEMs have high potential to support experimental microbiologists.
However, close interactions and repetitive cycles of prediction
experimental validation and model refinements are needed to
improve accuracy of the predictions.

Inclusion of experimental observations into GEMs represents
another task for the future. Exemplarily, it is known that addition of
Tween 80 improves in vitro growth of Corynebacteria. It is currently
impossible to incorporate such findings into GEMs.

Since all individual steps for reconstructing these five strain-
specific C. striatummodels were performed by standardized Python
scripts in a directory structure based on version control and made
available, the modeling process can be traced in detail. Thus, a
software infrastructure comprehensively tested on several genuine
and relevant case studies is available, which can be applied to further
reconstruction projects.

The tools and models created in this work through close
collaboration between the dry and wet laboratories provide a
valuable working basis for subsequent studies. The software
infrastructure developed and the models created have been
extensively tested and validated using standard methods.

However, since no computer model, no matter how carefully
developed, can ever exhaustively represent all processes of a cell type
under investigation, subsequent work will be necessary to elucidate
further the metabolism of all five C. striatum strains described herein in
order to provide even more accurate and thus more meaningful
predictions.

Concerning the underlying model assumptions, extensions for
gene expression would also be beneficial. Modeling approaches are
already available as ME models [for Metabolism and Expression
(O’Brien et al., 2013)]. On the other hand, it may be interesting to
shed light on the effects of single gene mutations on enzyme
efficiency and, thus, metabolism as a whole, for which so-called
GEM-PROmodels could be used (Brunk et al., 2016). This would be
particularly important for clinical isolates. With the increasing
availability of genome sequencing, individual patient germs could
be characterized.

Further developments on the experimental side would also be
beneficial: since the predictive power improves the more precisely
the media composition is known, the substance concentrations of
their components should be clarified more precisely for model
development using human microbiota. Due to biovariability, only
average values can be expected, but knowledge of the standard
deviation across subjects also allows conclusions to be drawn and
enables computer experiments under variation with higher accuracy.

Since no biological system can live in isolation, the interaction
with other members of the microbiota remains an essential aspect
for subsequent research to understand the diverse interactions with
commensals, other pathogens, and the human host in a larger
picture. Basic approaches in this direction are already available,
with which the models developed here can also be combined
(Glöckler et al., 2022; Mostolizadeh et al., 2022; Glöckler et al., 2023).

The models, Python programs, and Git-based version
management working template presented with this work can be
directly applied and used for subsequent projects immediately and
can be independently further developed. Thus, an infrastructure
extensively tested on several relevant reconstruction efforts is
available and can be applied to any GEM.
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Glossary

BMBF-DZG Deutsche Zentren der Gesundheitsforschung

BiGG Biochemically, genomically, and genetically structured

BOF Biomass Objective Function

CGXII Corynebacterium glutamicum minimal medium version 12

CMFI Controlling Microbes to Fight Infections

COMBINE Computational Modeling in Biology Network

DFG Deutsche Forschungsgemeinschaft

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen

DZIF German Center for Infection Research

FBA Flux Balance Analysis

FBC Flux Balance Constraints

FROG Flux Variability Analysis (FVA), Reaction deletion, Objective function values, Gene deletion fluxes

FVA Flux Variability Analysis

GEM Genome-scale metabolic model

IBMI Institute for Bioinformatics and Medical Informatics

IMIT Interfaculty Institute of Microbiology and Infection Medicine Tübingen

KEGG Kyoto Encyclopedia of Genes and Genomes

ID identifier

LB Lysogeny Broth

M9 M9 minimal medium

ME Metabolism and Expression

MEMOTE Metabolic Model Testing

NCBI National Center for Biotechnology Information

OMEX Open Modeling EXchange format

OD optical density

RPMI Roswell Park Memorial Institute cell culture medium 1640

SBO Systems Biology Ontology

SBGN Systems Biology Graphical Notation

SNM Synthetic Nasal Medium

SMM Supplemented Minimal Medium

TSA Tryptic Soy Agar

TSB Tryptic Soy Broth

BHI Brain-Heart-Infusion Broth

TS type strain

URI Uniform Resource Identifier

VMH Virtual Metabolic Human

XML Extensible Markup Language
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