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Antimicrobial peptides (AMPs) are components of natural immunity against
invading pathogens. They are polymers that fold into a variety of three-
dimensional structures, enabling their function, with an underlying sequence
that is best represented in a non-flat space. The structural data of AMPs
exhibits non-Euclidean characteristics, which means that certain properties,
e.g., differential manifolds, common system of coordinates, vector space
structure, or translation-equivariance, along with basic operations like
convolution, in non-Euclidean space are not distinctly established. Geometric
deep learning (GDL) refers to a category of machine learning methods that utilize
deep neural models to process and analyze data in non-Euclidean settings, such
as graphs andmanifolds. This emerging field seeks to expand the use of structured
models to these domains. This review provides a detailed summary of the latest
developments in designing and predicting AMPs utilizing GDL techniques and also
discusses both current research gaps and future directions in the field.
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Introduction

Bacterial resistance to antibiotics is causing a rise in mortality due to what were once
treatable infections. Novel strategies to counter such infections are needed. AMPs have been
recognized as promising substitutes for traditional therapies (Huemer et al, 2020; Magana
et al, 2020). These bioactive peptides display a low molecular mass and often possess high
antimicrobial, antibiofilm, and anti-inflammatory activities, in addition to encouraging
toxicity profiles (de la Fuente-Nunez et al, 2016; Silva et al, 2016). This class of antimicrobials
is also less likely than conventional antibiotics to select for bacterial resistance (Luo and
Song, 2021). AMPs have a net-positive charge that can interact with the bacterium’s net-
negatively charged membrane through two primary mechanisms of action: the peptide can
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either interfere with the cell membrane causing lysis or penetrate the
membrane to compromise bacterial metabolism, among other
intracellular targets, eventually leading to cell death (Lazzaro
et al, 2020).

In order to design a novel AMP candidate, its physicochemical
properties, structural profile, and biological activities, especially its
specific molecular targets, must be well elucidated. To become a
therapeutic candidate, the peptide must also have bioavailability in
the organism; in particular, it must be stable in human plasma.
Furthermore, to be safely administered in the human body, the
peptide must exhibit both high affinity and specificity towards the
target it is meant to bind to (Wang et al, 2022). All these properties
have been used experimentally for subsequent AMP prediction.
However, the in vitro experiments required for collecting such
parameters are usually laborious, expensive, and time-consuming
(Chung et al, 2020). Consequently, computational methods have
emerged as exciting avenues for precise AMP discovery and rational
design (Xu et al, 2021).

Numerous AMPs are now available in publicly accessible
databases, partly due to progress enabled by computational
methods, which are valuable resources for recognizing AMP
patterns and determinants that are crucial for biological function
(Singh et al, 2016; Wang et al, 2016; Porto et al, 2018; de la Fuente-
Nunez, 2019; Waghu and Idicula-Thomas, 2020; Yan et al, 2020;
Palmer et al, 2021; Torres et al, 2021; Torres et al, 2022; Wan et al,
2022). Thus, algorithms have been developed that can learn from
previously provided data and solve problems related to this learned
information (Melo et al, 2021). Machine learning procedures,
including (RF) random forest, have gained significant popularity
in the prediction of therapeutic drugs (Manne and Kantheti, 2021;
Söylemez et al, 2022). They have been fruitfully applied for
proteome-wide cleavage (PWC) site prediction, establishing
paleoproteome mining as a methodological approach to identify
novel peptide antibiotics (Maasch et al, 2022) and for accurately
predict putative AMP against Gram-negative and positive bacteria
(Söylemez et al, 2022).

AMP prediction methods based on deep learning have
demonstrated advantages over other computational tools.
Deep learning approaches can collect and integrate a large
amount of information in a nonlinear way, getting more
connections between the data points and, therefore, gathering
more knowledge (Gupta et al, 2021). Increasing developments in
deep learning methods, such as deep generative models, have
increased the reliability of prediction and generation of AMPs.
Deep generative models have produced promising peptides by (1)
assigning an AMP probability from the data distribution, (2)
generating novel AMPs that possess properties similar to those
AMPs present in the training data, and (3) extracting expressive
data representations or executing casual inference by specifying
the AMP generation process. Large language models such as
long-short term memory (LSTM) and a bidirectional LSTM have
been effectively constructed to design novel AMP molecules
against E. coli. (Wang et al, 2021). Deep generative models
have been successful in producing promising results for the
creation of novel drug-like molecules, including the
identification of potential antimicrobial peptides that can be
prioritized for further wet-lab experimentation (Rossetto and
Wenjin, 2020; Li et al, 2022; Wan et al, 2022; Zhang et al, 2023).

Among deep learning methods leveraged for AMP predictions,
the most widely used are convolutional neural networks (CNNs) (Li
et al, 2021). The CNNs used in conventional deep learning assume
that the data are related and organized as a regular grid, following
the parameters of Euclidean geometry (Li et al, 2021). Nonetheless,
the three-dimensional structure of peptides and proteins is better
represented in a non-Euclidean space because its manifold data
cannot be flattened without significant distortions. To implement
deep learning for prediction in non-Euclidean systems, geometric
deep learning emerges as a more efficient computational tool
compared to several advanced and contemporary techniques.
This is due to the fact that geometric deep learning can properly
recognize and decipher the biochemical and geometric patterns of a
given molecule (Rao et al, 2020; Yan K. et al, 2022; Puentes et al,
2022; Sun et al, 2022). Since geometric deep learning shows promise
when applied to AMP prediction, it is the main focus of this review
article (Huemer et al, 2020; Gainza et al, 2020) (Figure 1).

Geometric deep learning for AMP
prediction

To improve the representation of the three-dimensional
structure and physicochemical properties of amino acids, AMPs
can be modeled as graphs that are based on either their structural
data or manifolds describing their geometric shapes. Considering
the small size of AMPs compared to proteins, the burden of having a
graph with a large number of nodes representing the data size
reduces the challenge for machine learning processing.

Distinctive geometric deep learning methods for graphs have
been proposed thus far for general applications (i.e., image and
signal processing, traffic flow forecast, recommender systems,
natural language processing, etc.), such as spectral-based graph
convolutional networks: spectral convolutional neural networks
(SCNN) are based on the application of the Fourier transform to
graphs (Bruna et al, 2013); smooth SCNN use filters that are spatially
localized in the frequency domain (Henaff et al, 2015); Chebyshev
spectral CNN (ChebNet) applies the Chebyshev polynomial basis to
represent the filters of spectral CNNs (Defferrard et al, 2016); graph
convolutional networks (GCN) employs filters that process the
graph’s one-hop neighborhoods (Kipf and Welling, 2016);
adaptive graph convolutional networks (AGCNs) use a residual
graph that is formed by computing the pairwise distance between
nodes as the graph is expanded. (Li et al, 2018); and GCN with
complex rational spectral filters (CayleyNets) uses the parametric
rational complex function (Levie et al, 2019).

Spatial-based graph convolutional networks, such as graph
neural networks (GNN), have also been proposed. Until they
reach a state of convergence, they repeatedly adjust and improve
the hidden representation of nodes (Scarselli et al, 2009). GraphSage,
as an instance, employs an aggregation function to define the spatial
domain convolution on a graph (Hamilton et al, 2017). The
Diffusion CNN (DCNN) utilizes a random walk procedure on
the graph. (Atwood and Towsley, 2016), Patchy-San approach
involves transforming structural data of a labeling graph into a
structural grid, and then applying a CNN to handle graph
classification tasks in a shift-invariant manner (Niepert et al,
2016), with large-scale graph convolutional networks (LGCN)
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suggest a sorting technique that relies on the information present in
the feature of nodes (Gao et al, 2018), and mixture model networks
(MoNet) expand the CNN structure to domains that are non-
Euclidean (Monti et al, 2017). In graph attention neural networks
(GAT), attention mechanisms are applied to evaluate the
significance of each neighboring node (Vaswani et al, 2017). On
the other hand, graph generative networks (GGN) create a new
graph from a specified collection of observed graphs based on a
given sentence (Chen et al, 2018), and graph auto-encoders (GAE)
use neural network architecture to transform network vertices into a
vector space with fewer dimensions (Kipf and Welling, 2016). Some
of the graph methods mentioned above have already been applied to
AMP prediction and have outperformed current methods based on
Euclidean space (Table 1) (Cao et al, 2020).

Yan K. et al (2022) established the sAMPpred-GAT that
captures characteristics at the amino acid residue level by
incorporating sequence information and spatial interrelationships
among residues that are obtained from predicted protein structures.
To integrate peptide information, graphs are constructed containing
edges, which represent structural information, and nodes, which
represent sequence information and evolutionary information.
Next, a GAT is employed to derive characteristics from the data
presented in a graph format, followed by the use of a linear layer to
determine if a given peptide exhibits antimicrobial properties. The
method comprises four comprehensive features: one-hot encoding,
position encoding, position-specific scoring matrices, and hidden
Markov models. To predict the structure of a protein, the contact
map of the predicted protein structure is utilized to obtain the

FIGURE 1
General rational pipeline for antimicrobial peptide (AMP) prediction using GDL. From an initial putative AMP amino acid sequence, the relevant
physicochemical characteristics are extracted, and the three-dimensional structure of the sequence is predicted. Once the sequence and spatial
relationships are obtained, they are converted into graphs in which the structural information is represented by the edges, while the amino acid residue
information is represented by the nodes. The graph-based data is presented to a GDL network to predict whether the candidate is likely to have
antimicrobial activity. Created with BioRender.com.

TABLE 1 Summary of AMP prediction approaches using GDL methods.

Predictor’s name Applied prediction method Outperforms Paper
Reference

sAMPpred-GAT Graph Attention Neural
Networks (GAT)

amPEPpy, AMPfun, AMPEP, ADAM-HMM, Ampir, AMPScannerV2, AmpGram, Deep-
AMPEP30a, CAMP-ANN

Yan et al (2022b)

AMPs-Net GCN AMPScanner, AI4AMPs, CAMPR3, AMPDiscover, AMPlify, AMPEPpy (RF) Puentes et al
(2022)

LABAMPsGCN GCN and Chebyshev
Spectral CNN

CAMP-SVM, iAMP-2L, AMPfun Sun et al (2022)

ACP-GCN GCN Convolutional neural network, long short-term memory (outperforms for accuracy) Rao et al (2020)
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distance and angle measurements for each pair of amino acid
residues. To make predictions, graphs are created using both
structural and sequence attributes, and a neural network that
employs a GAT is used to integrate the data from adjacent
nodes. The final layers use the graph-level context vector to
forecast if the peptide possesses antimicrobial activity or not. The
findings indicate that sAMPpred-GAT surpasses alternative
approaches, demonstrating superior or closely comparable
outcomes in eight distinct test datasets, as assessed by the area
under the curve (AuC). sAMPpred-GAT achieved superior
performance, as measured by the area under the curve (AuC),
Matthews correlation coefficient (MCC), accuracy, sensitivity, and
specificity, by leveraging two types of information: (1) features
obtained from the graph-based data produced using amino acid
characteristics from sequence information, and (2) spatial
relationships derived from the predicted structural information.
This approach outperforms most of the current cutting-edge
methods. (Yan K. et al, 2022).

AMPs-Net, as presented by Puentes et al (2022), involves the
conversion of peptide sequences into graph representations, where
nodes match to edges and atoms corresponding to bonds. Nine
physicochemical properties are used to represent each amino acid,
and bonds between the amino acid residues are described by three
properties: type (single, double, triple and aromatic, stereochemistry
(none, z, e, cis, trans, any), and conjugation (true or false). The GCN
module is a message-passing approach, which has been employed to
forecast the characteristics or attributes of peptide graphs at the
molecular level. The GCN module comprises 20 message-passing
layers, utilized softmax as its aggregation function, and employed a
four-layer MLP as its update function. The resulting graph
contained 256 feature vectors for each amino acid residue and
bond. To generate a single representation for each peptide,
average pooling was utilized. The metadata vector (comprising
eight peptide physicochemical properties) was merged with this
representation and then inputted into a linear layer to generate a
new vector. This vector was then applied for binary and multiclass
classification, predicting AMP, and evaluating the probabilities of
AMP activity. Moreover, method outclassed four other deep
learning methods, demonstrating an improvement of 8.80%–
19.02% in average precision and 5.74%–24.23% in accuracy
(Puentes et al, 2022).

Sun et al (2022) developed a GCN to predict lactic acid
bacteria AMPs (LABAMPs). This model employed a vast,
diverse graph based on amino acid sequences and peptides,
encompassing amino acids, dipeptides, and tripeptides. The
peptides were represented as words (segmentation of an
amino acid sequence), after filtering and counting, to acquire
the words that are needed to function as nodes in a graph. The
edges can connect nodes of peptide segments or nodes of peptide
segments and sequences. The word embedding co-occurrence
technique is used to obtain heterogeneous graphs representing
sequence nodes and word nodes. An adjacency matrix was
computed to represent the peptide information on the graph
by means of its edges. In the subsequent stage, each word was
incorporated using one-hot embedding and sent along with the
sequence for model training. Finally, a GCN acquired knowledge
regarding the connections between nodes on the graph and
transmitted the pertinent details, guided by labels, to attain

node classification. After 10-fold cross-validation on two
different training datasets, the LABAMPs model presented an
accuracy of 0.9163 and 0.9379. For independent testing datasets,
the model achieved an accuracy of 0.9130 and 0.9291,
outperforming other machine learning algorithms (Sun et al,
2022).

Rao et al (2020) proposed a new GCN learning-based
computational model to detect anticancer peptides. The one-hot
encoding technique extracted the features from the peptide amino
acid sequence to construct an adjacency matrix and the amino acid
graph representation. The graph edges were built by using the
peptide co-occurrence information. To optimize the classification
outcome, the cross-entropy metric was used as the loss function.
This proposed model outperformed commonly used neural network
methods, such as CNN and CNN-LSTM (Rao et al, 2020).

Explainable artificial intelligence for
AMP design

Explainable artificial intelligence (XAI) has emerged as a
remarkable tool to enhance the accuracy and understanding of
machine learning approaches as applied to drug design (Jimenez-
Luna et al, 2020). XAI aims to provide a transparent rationale for
AMP predictions made by machine learning models whose input
data is not interpretable, and the output is usually regarded as a
black box outcome because due to its high dimensionality and non-
linear nature. The complex combination of physicochemical,
structural, and compositional properties of amino acids as input
to machine learning systems is still a limiting factor for
interpretations with XAI (Yan J. et al, 2022). By enabling
researchers to generate accurate predictions and explanations of
the underlying mechanisms involved in AMP-bacteria
interactions, XAI can help accelerate the discovery and
development of new pharmaceutically active molecules (Preuer
et al, 2019; Jimenez-Luna et al, 2020).

Conclusion

GDL has achieved promising accuracy levels for predicting
AMPs; additional methods not yet applied in this area, such as
GAE, GGN, MoNet, GNN, SCNN, etc., promise to further
improve performance. Future work should focus on furthering
our understanding of how machine learning models are able to
predict molecular function. XAI methods have been applied to
drug design and protein-ligand interactions with some success
but not yet to AMP design. Although several limitations still need
to be overcome, GDL methods hold great promise for
antimicrobial peptide prediction and design.

The GDL techniques application in the AMP domain will
result in better AMP structure modeling and further functional
relation understanding due to its non-Euclidean nature.
Furthermore, more accurate AMP prediction and rational
design of new targeted specific molecules. Ultimately, the
manifold AMP representation can create a new corpus of
peptide language that can be used for large language models
and improve the drug design process.
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