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A common practice inmolecular systematics is to infer phylogeny and then scale it
to time by using a relaxed clock method and calibrations. This sequential analysis
practice ignores the effect of phylogenetic uncertainty on divergence time
estimates and their confidence/credibility intervals. An alternative is to infer
phylogeny and times jointly to incorporate phylogenetic errors into molecular
dating. We compared the performance of these two alternatives in reconstructing
evolutionary timetrees using computer-simulated and empirical datasets. We
found sequential and joint analyses to produce similar divergence times and
phylogenetic relationships, except for some nodes in particular cases. The joint
inference performed better when the phylogeny was not well resolved, situations
in which the joint inference should be preferred. However, joint inference can be
infeasible for large datasets because available Bayesian methods are
computationally burdensome. We present an alternative approach for joint
inference that combines the bag of little bootstraps, maximum likelihood, and
RelTime approaches for simultaneously inferring evolutionary relationships,
divergence times, and confidence intervals, incorporating phylogeny
uncertainty. The new method alleviates the high computational burden
imposed by Bayesian methods while achieving a similar result.
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1 Introduction

Most molecular systematics studies reporting species divergence times currently apply
relaxed molecular clock dating to a specified phylogeny (dos Reis et al., 2016; Tao et al.,
2020). However, all evolutionary relationships in a molecular phylogeny rarely receive high
statistical support, even for phylogenomic datasets (Kapli et al., 2020; Sharma and Kumar,
2021). In this case, the sequential practice of first inferring phylogeny and then estimating
divergence times is expected to cause overconfidence in the estimates of some divergence
times, i.e., narrower confidence and credibility intervals (Cranston and Rannala, 2005;
Thorne and Kishino, 2005; Ho and Phillips, 2009; Lee et al., 2009; Ronquist et al., 2012a).
Consequently, the joint inference of phylogeny and divergence time is advocated (Cranston
and Rannala, 2005; Drummond et al., 2006; Sauquet, 2013; Bromham et al., 2018). For
example, Bayesian methods consider many likely tree topologies and build a posterior
distribution of divergence times (Ronquist et al., 2012b; Drummond et al., 2012; Hohna et al.,
2016; Bouckaert et al., 2019).

Although there is a general belief that phylogenetic uncertainty may impact time
estimates and credibility intervals (Drummond et al., 2006; Ho and Phillips, 2009;
Ronquist et al., 2012a; Sauquet, 2013; Ho and Duchêne, 2014; Bromham et al., 2018),
there is little information regarding the accuracy gains achievable by jointly inferring both
phylogeny and divergence times. In fact, the impact of topological uncertainty on divergence
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times may be limited to branches with short duration (Yoder and
Yang, 2000; Thorne and Kishino, 2005). Therefore, one major
objective of this study was to use empirical and simulated
datasets to quantify accuracy gains afforded by the joint inference
of evolutionary relationships and divergence time estimates.

During these investigations, we found that applying Bayesian
methods to infer phylogeny and times for phylogenomic datasets
jointly was too time consuming because the complexity of the
underlying likelihood calculations increases with sequence length
and the number of taxa (Sharma and Kumar, 2021). This is evident
from a linear escalation in the computational time required to
analyze increasingly longer subsets of a phylogenomic dataset of
72 mammalian species and 33,173,174 nucleotide sites (Figure 1).
This trend predicted that Bayesian analysis would require more than
49 years of computing time if we were to analyze the whole dataset
proposed by Álvarez-Carretero et al. (2022) at one time
(Supplementary Table S1). For this reason, many investigators
resort to using data subsamples and combining the estimated
dates (Jetz et al., 2012; Tonini et al., 2016; dos Reis et al., 2018;
Jetz and Pyron, 2018; Upham et al., 2019; Álvarez-Carretero et al.,
2022). These divide-and-conquer approaches effectively decrease
computational times but often require sequential analysis to
estimate times.

Here, we also present a bootstrap phylogeny approach for jointly
inferring phylogeny and times for large datasets of tens of thousands
to millions of sites. Our method uses the bag of little bootstraps
method (LBS) framework (Sharma and Kumar 2021) that analyzes
tiny subsamples of site patterns to decrease the computational time

and memory needs by orders of magnitude. Our method uses the
little bootstraps method resampling method to generate alternative
phylogenies, each subjected to relaxed clock dating using the relative
rate framework (Tamura et al., 2012). The resulting little bootstrap
replicate timetrees are then used to produce a consensus phylogeny,
divergence times, and confidence intervals that automatically
incorporate phylogenetic uncertainty. We use the maximum
likelihood (ML) approach to infer phylogenies and estimate
branch lengths. We also explored using the standard bootstrap
resampling (BS) method (Felsenstein, 1985) for small datasets
that may contain hundreds to thousands of sites.

We present our new approach and compare its performance
with Bayesian methods using empirical and computer-simulated
datasets in the following section. Specifically, we focus on inferred
phylogenies containing many clades with low statistical support,
addressing gaps in our knowledge about the usefulness of joint
inference and the need for computationally efficient methods for
bigger datasets. We focused our investigation on dating analyses in
which no time constraints on internal nodes were applied, except for
a single ingroup root calibration. This choice allowed us to directly
examine the power of both methods in dealing with phylogenetic
uncertainty without using internal calibrations that are expected to
make results from joint analysis (JA) and sequential analysis (SA)
more similar. The root was specified in all the analyses because
Bayesian methods may produce biased times when the root is
required to be inferred, and the specification of an ingroup clade
is a requirement in RelTime.

2 Materials and methods

2.1 A new joint inference (JA) approach

In the new approach (RelTime-JA), phylogenetic uncertainty is
incorporated in the analysis by using the little bootstraps method
framework and dating phylogenies produced in each little bootstrap
replicate. Figure 2 shows an outline of this process for the little
bootstraps method (Figure 2B), which is contrasted with the
standard bootstrap method (Figure 2A). In the case of the
standard bootstrap method, we generate bootstrap-resampled
datasets (Ais), each obtained by randomly sampling sites with
replacement from the original sequence alignment. Ai is
subjected to ML phylogenetic analysis to infer the replicate
phylogeny and branch lengths (Pi). Then, the RelTime (Tamura
et al., 2012) method is applied to Pi, along with calibrations, to
generate a replicate timetree containing divergence times and
confidence intervals (Ti). This process is applied to every Ai

alignment. We choose RelTime for relaxed clock dating because
its computational requirements are a small fraction of Bayesian
methods (Tao et al., 2020). Moreover, RelTime has been reported to
perform as well as Bayesian methods for dating phylogenies using
empirical (Mello et al., 2017; Battistuzzi et al., 2018; Tao et al., 2020)
and simulated data (Barba-Montoya et al., 2020; Mello et al., 2021).
However, any other dating method can be used instead (Tao et al.,
2020; Barba-Montoya et al., 2021).

Using the collection of bootstrap timetrees, we infer a consensus
tree as outlined in the work of Felsenstein (1985). Then, we estimate
the age for every inferred clade by mapping Ti timetrees onto the

FIGURE 1
Comparison of BEAST2 (green dots) and MrBayes (purple dots)
computing times for analysis of subsets of 1,000, 5,000, 10,000,
25,000, 50,000, and 100,000 nucleotide sites from a concatenation
of 72 mammal sequences and 33,173,174 sites form the study by
Álvarez-Carretero et al. (2022). We calculated the computing time
required for each analysis to reach aminimum effective sample size of
200 for all the parameters using only one thread. The equations and
coefficient of determination (R2) for the linear regressions are shown.
The dashed lines represent the best-fit linear regression for BEAST2
(green) and MrBayes (purple).
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consensus tree clade by clade. For clade j in the bootstrap consensus
tree, we first build a collection of member taxa and then find the
most recent common ancestor (MRCA) of this set of taxa in every
bootstrap replicate timetree. If r replicates have been conducted, we
produce r age estimates for each node in the bootstrap consensus
tree and their respective confidence intervals. The MRCA is used
because the member taxa in the inferred clades in the consensus tree
will not always be monophyletic in the replicate timetrees due to
phylogenetic uncertainty. The mean of r age estimates (tj) is the age
of clade j in the BS consensus phylogeny. The mean of the lower and
upper bounds of the time estimates in the replicate timetrees
establishes the confidence intervals for the age of clade j (Uj, Lj).

For datasets with long sequence alignments, the standard
bootstrap approach is replaced by the bag of little bootstraps
method (Figure 2B). In the little bootstrap approach, r bootstrap
replicate alignments (Bi) of s little subsamples of sites are analyzed.
Using each Bi, we first infer anML tree (PBi) and subject it to relaxed

clock dating to generate a replicate timetree (TBi). This procedure
generates r × s timetrees. We then infer a little bootstrap consensus
tree following the work of Sharma and Kumar (2021) and then map
the time estimates from TBi timetrees onto the consensus tree clade
by clade as described previously for the standard bootstrap
approach. The R codes developed for summarizing time
estimates and constructing timetrees are available at https://
github.com/josebarbamontoya/pu_dating.

2.2 RelTime-JA with little bootstraps for
phylogenomic data

We used the RelTime-JA method with little bootstraps
(Figure 2B) to analyze six phylogenomic datasets (Pessoa-Filho
et al., 2017; Johnson et al., 2018; Ran et al., 2018; Sann et al.,
2018; Kuntner et al., 2019; Álvarez-Carretero et al., 2022), which

FIGURE 2
Steps in the (A) RelTime-JA with standard bootstraps and (B) RelTime-JA with little bootstraps method. Shaded boxes represent sequence
alignments, with width representing the sequence length. In (A) RelTime-JA with standard bootstraps, L sites are randomly sampled with replacement
from the original dataset containing L sites. In this resampling process, a proportion of the data points are expected to be represented in a bootstrap
replicate dataset. Each replicate dataset is compressed into weighted resamples that contain only distinct site configurations and a vector of their
counts (represented by stacks of dots). An ML tree is inferred from each replicate dataset, and the BS support for a node/clade is the proportion of times
that appeared in bootstrap replicate phylogenies. Each ML tree is dated using RelTime to generate node ages and CIs; then, time estimates are
summarized on the BS consensus tree. In (B) RelTime-JA with little bootstraps, L sites are randomly sampled with replacement from the little dataset
consisting of only l = Lg sites, which produces bootstrap replicate datasets. This procedure automatically determines the size of little samples (l) by
adjusting the power factor (g). Power factor (g) estimation is given in the study by Sharma and Kumar (2021). Because l≪ L, each site will be represented
many times in the LBS replicate datasets, which we refer to as upsampling that changes the frequency of distinct site configurations. Stacks of dots are
much higher for LBS due to upsampling than for BS, which involves only resampling. The number of distinct site configurations in the upsampled dataset
is smaller than in the standard bootstrap replicate dataset because of l≪ L. Users need to ensure that sufficiently large little samples (l ≥ 10,000 sites) are
utilized, as well as enough little samples (s ≥ 10) and bootstrap replicates (r ≥ 10) to generate reliable estimates. An ML tree is inferred from each little
bootstrap replicate dataset, and the LBS support for a node/clade is the proportion of times that appeared in the little bootstrap replicate phylogenies
(̂BCL). Each ML tree is dated using RelTime to generate node ages and CIs, and then, time estimates are summarized on the LBS consensus tree.

Frontiers in Bioinformatics frontiersin.org03

Barba-Montoya et al. 10.3389/fbinf.2023.1225807

https://github.com/josebarbamontoya/pu_dating
https://github.com/josebarbamontoya/pu_dating
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1225807


contained 89,212–33,173,174 nucleotide sites and 15–189 sequences
(Supplementary Table S2). All phylogenomic datasets are available
at https://doi.org/10.6084/m9.figshare.22114943. The outgroup
clade of four datasets was pruned down to one species (Johnson
et al., 2018; Ran et al., 2018; Sann et al., 2018; Kuntner et al., 2019).
LBS replicates for each phylogenomic dataset were computed using
LBS software. We ensured that the size of the little samples (l), the
number of little samples (s), and bootstrap replicates (r) for each
dataset were sufficient to compute a reliable consensus phylogeny
and support values (Supplementary Table S2). For each bootstrap
replicate, an ML phylogeny was inferred using the correct
substitution model (Supplementary Table S2) in IQ-TREE
(Nguyen et al., 2015). Each ML bootstrap tree was then
individually dated using RelTime to generate node ages and CIs.
Then, node times and CI bounds for each node were summarized
using the dated bootstrap trees on the LBS consensus trees. We
recommend using a large number of sites in the little samples (l ≥
20,000 sites), as well as enough little samples (s ≥ 10) and bootstrap
replicates (r ≥ 10), to generate reliable consensus phylogeny and LBS
node support values.

For each analysis, we used a time constraint implemented as a
narrow uniform distribution U (min, max) for the rooting ingroup
node based on the time estimates from the original studies. We did
not apply internal calibrations to assess the power of RelTime-SA
and RelTime-JA in dealing with phylogenetic uncertainty
(Supplementary Table S2). The rooting outgroup was excluded
from the analysis. We evaluated the performance of RelTime-JA
by comparing the node times and CIs with those from RelTime-SA.
For each RelTime-SA, we used the ML phylogeny inferred in IQ-
TREE using the substitution model from the original study. The
same time constraints as for the RelTime-JA were used. We made an
additional RelTime-JA with the little bootstraps method analysis of
the apoid dataset (Sann et al., 2018) using 10 constraints
(Supplementary Table S2). We evaluated the performance of
RelTime-JA by comparing the MRCA node times with the
RelTime-SA node time estimated using the same time constraints
as for the RelTime-JA.

2.2.1 Calculation of the computing time for
phylogenomic data analysis

We evaluated the computing time required for the analysis of
subsets of 1,000, 5,000, 10,000, 25,000, 50,000, and 100,000 sites
from the concatenation alignment of 72 mammal sequences and
33,173,174 nucleotide sites from the study by Álvarez-Carretero
et al. (2022). In BEAST2, we used the uncorrelated relaxed clock
model. We used an autocorrelated clock model in MrBayes. The
sequence likelihood was calculated under the HKY+Γ5 model, and a
uniform tree prior was applied. The time unit was set at 100 Myr.
The timetrees were computed applying one calibration on the
ingroup node, which specified assigning a narrow uniform
distribution U (139, 144 Ma), and one on the rooting outgroup
node specified assigning U (200, 205 Ma) based on the time
estimates from the original study. We calculated the computing
time for each analysis to reach a minimum effective sample size
(ESS) of 200 for all the parameters using only one thread. By
extrapolating these results to 33,173,174 sites, we estimated the
expected computing time required to reach a minimum ESS of
200 for all parameters. We also compared the expected Bayesian

computing times with the computing time required by the
RelTime-JA using the little bootstraps method for analyzing the
dataset used by Álvarez-Carretero et al. (2022).

2.3 Molecular clock dating analysis of
simulated data

2.3.1 Computer-simulated data
We used datasets previously simulated by Tamura et al. (2012).

The model timetree consisted of 446 species derived from the bony-
vertebrate clade in the Timetree of Life (Hedges and Kumar 2009),
from which we randomly sampled 51 taxa. We chose nucleotide
gene alignments in which the rate variation was autocorrelated such
that the rate of a descendant branch was drawn from a lognormal
distribution around the mean rate of the ancestral branch. An
autocorrelation parameter ] =1 was used (Kishino et al., 2001).
All datasets were generated using SeqGen (Rambaut and Grassly,
1997) under the Hasegawa–Kishino–Yano (HKY) substitution
model (Hasegawa et al., 1985) and heterogeneous sets of
evolutionary parameters, including sequence lengths
(258–9,353 sites), evolutionary rates (range
1.35–2.60 substitutions per site per billion years), G+C-content
bias (G+C contents range 39%–82%), and transition/transversion
rate bias (transition/transversion ratio, range 1.9–6.0). More details
are given in the study by Tamura et al. (2012). We used
11 alignments of 309, 450, 537, 782, 1,073, 1,523, 2,116, 3,100,
4,070, 7,002, and 9,359 sites each, with different levels of topological
errors—normalized Robinson–Foulds (RF) distance (Robinson and
Foulds, 1981) of 0.21, 0.27, 0.08, 0.21, 0.13, 0.04, 0.10, 0.06, 0.00,
0.13, and 0.04, respectively. The normalized RF distances were
calculated using the R function MultiRF (Revell, 2012) by
comparing the model timetree with the ML trees inferred in
MEGA-CC for macOS (Stecher et al., 2020), applying the
HKY+Γ5 model (Hasegawa et al., 1985; Yang, 1994). The
simulated datasets and model timetree are available at https://doi.
org/10.6084/m9.figshare.22114943.

2.3.2 BEAST2 analysis
We analyzed 11 datasets using BEAST2 (Bouckaert et al., 2019)

under the Relaxed Clock Log Normal (ucld) model, which assumes
that the substitution rates for branches are independent variables
from a lognormal distribution (Drummond et al., 2006). The
lognormal distribution is parametrized using the mean and the
standard deviation. The mean (ucldMean.c) was assigned a gamma
hyperprior G (2, 0.1) with a mean of 0.2, and the standard deviation
(ucldStdev.c) was assigned a gamma hyperprior G (2, 0.05) with a
mean of 0.1. The sequence likelihood was calculated under the
HKY+Γ5 model. The time unit was set at 100Myr. For the tree prior,
hyperpriors were assigned to the parameters in the birth–death-
sampling model, the net diversification rate λ − μ ~ U(0, 1), and the
relative extinction rate μ/λ ~ U(0, 1) (Stadler, 2010; Höhna et al.,
2011). The timetrees were computed applying one calibration on the
ingroup node, specified assigning a uniform distribution U (445,
465 Ma) and a correct age constraint U (526, 527 Ma) on the rooting
outgroup node to ensure that the height of the inferred timetrees
matches the height of the model tree. Analyses were performed by
either fixing the inferred ML tree topology (BEAST2-SA) or jointly
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inferring the topology and divergence times to build a timetree
(BEAST2-JA). No internal calibrations were applied. We ran each
analysis four times to ensure convergence and that ESS values were
all >100. We then merged the samples from the runs before
summarizing the posterior. Each run consisted of 1×108

iterations, sampling every 5,000. The burn-in was set to 10% of
samples, resulting in a total of 7.2×104 samples from all four runs.

2.3.3 MrBayes analysis
In MrBayes (Ronquist, et al., 2012b), we used the

autocorrelated lognormal model (TK02) where the rates for
branches are autocorrelated variables from a lognormal
distribution (Thorne and Kishino, 2002). In the TK02 model,
a single parameter (tk02varpr) controls the rate variation across
the tree. The mean is assigned a lognormal hyperprior LN
(−0.155, 0.2), with the mean exp{−0.155,0.22/2} = 0.2. The
variance (tk02varpr) was assigned an exponential hyperprior
with a mean of 0.1. The sequence likelihood was calculated
under the HKY+Γ5 model. The time unit was set at 100 Myr.

A uniform tree prior was used. The timetrees were computed
applying one calibration on the ingroup node, specified assigning
a uniform distribution U (445, 465 Ma) and a correct age
constraint U (526, 527 Ma) on the rooting outgroup node to
ensure that the height of the inferred timetrees matches the
height of the model tree. Analyses were performed by either
fixing the inferred ML topology (MrBayes-SA) or by jointly
inferring the topology and divergence times to build a
timetree (MrBayes-JA). No internal calibrations were applied.
We ran each analysis eight times to ensure convergence and that
ESS values were all >100. We then merged the samples from the
runs before summarizing the posterior. Each run consisted of
1×107 iterations, sampling every 500, with the burn-in set to 10%
of samples, resulting in a total of 1.44×105 samples from the
eight runs.

2.3.4 RelTime analysis
For the RelTime-SA, we used RelTime implemented in

MEGA-CC for macOS (Stecher et al., 2020). They were

FIGURE 3
(A) Comparison of the original MCMTree time estimates and time estimates obtained by using RelTime-JA with little bootstraps for an apoid (wasps
+ bees) phylogenomic dataset of 177 species and 283,008 sites from the study by Sann et al. (2018). (B) Comparison of the original NCIWs (CI width/true
time × 100) and RelTime-JA NCIWs. The slope and coefficient of determination (R2) for the linear regression through the origin are shown. The black
dashed lines represent the best-fit linear regression through the origin. The solid gray line represents equality between estimates. (C) Tanglegram
comparing timetrees obtained by Sann et al. (2018) and RelTime-JA timetrees. Dotted line edges represent distinct edges between the timetrees.
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prototyped in MEGA X (Kumar et al., 2018). We used the
inferred ML phylogeny with branch lengths for each dataset
analysis to infer node times and CIs. Timetrees were
computed by applying one calibration on the ingroup node
which was assigned a uniform distribution U (445, 465 Ma).
Using no internal calibrations allowed us to directly assess the
power of RelTime-SA and RelTime-JA in dealing with
phylogenetic uncertainty. Dates for all taxa in the outgroup
were excluded because RelTime analysis does not produce
estimates in the outgroup (for an explanation, refer to the
work of Tamura et al., 2012; 2018). For the RelTime-JA, we
developed a new method based on a bootstrap (BS) resampling
approach (Felsenstein, 1985) for inferring timetrees with
phylogenetic uncertainty (Figure 2A). LBS software computed
100 bootstrap replicates for each simulated sequence alignment
(Sharma and Kumar, 2021) to generate reliable consensus
phylogeny and bootstrap node support values. An ML
phylogeny was inferred using the HKY+Γ5 substitution model
in MEGA-CC for each bootstrap replicate. Each ML bootstrap
tree was then individually dated using RelTime to generate node
ages and CIs under the same parameters used for the RelTime-
SA. Then, node times and CI bounds for each node were
summarized using 100 dated bootstrap trees on the BS
consensus tree. The rooting outgroup was excluded from the

analysis. The final timetrees include BS support values for the
clades.

3 Results

3.1 Divergence time estimation of
phylogenomic data by applying the
RelTime-JA with little bootstraps method

We analyzed a phylogenomic dataset of 177 species of apoids
(wasps + bees) and 283,008 nucleotide sites (Sann et al., 2018). We built
a timetree using RelTime-SA and compared it with RelTime-JA with
the little bootstraps method (Figure 2B). This dataset was selected
because despite a very large number of sites, many clade relationships
received less than 80% bootstrap support. Sann et al. (2018) used
10 calibrations in their Bayesian-SA (Supplementary Table S2). We
used their alignment and calibrations to test if RelTime-SA and
RelTime-JA produce similar estimates. We ensured that sufficiently
long little samples and a sufficiently large number of subsamples and
bootstrap replicates were utilized in the LBS analysis (Supplementary
Table S2). The average LBS node support was 0.96, with several node
support values lower than 0.7, similar to the BS support values in the
inferred phylogeny from the original study.

FIGURE 4
Comparison of time estimates obtained by using RelTime-SA and RelTime-JA with little bootstraps for six phylogenomic datasets: (A)mammals, (B)
spiders, (C) apoids, (D) hemipteroids, (D) pines, and (F) grasses. CIs are represented for RelTime-SA (blue lines) and RelTime-JA (red lines). For RelTime-JA,
we used the estimated node times for the MRCA of all the sets of taxa in the original phylogenies. The slope and coefficient of determination (R2) for the
linear regression through the origin are shown. The black dotted line represents the best-fit linear regression through the origin. The solid gray line
represents equality between estimates.
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RelTime-SA and RelTime-JA produced similar estimates for a
vast majority of node times and CIs, but five MRCA node ages were
considerably older and had wider CIs in RelTime-JA. They stand out
as outliers in Figures 3A, B. These differences occurred because of
large topological rearrangements between SA and JA topologies,
where the positions of Heterogyna nocticola, Astata and Dryudella
species, and some other clades shifted significantly (Figure 3C).
Other differences were observed for relationships near the tips of the
tree where the evolutionary change was small. We also observed that
RelTime-SA generated wider CIs than RelTime-JA for several deep
nodes in the timetree (Figure 3B). This difference in estimated times
suggests that phylogenetic uncertainty can considerably impact time
estimates.

We analyzed the apoid and five other phylogenomic datasets
(Pessoa-Filho et al., 2017; Johnson et al., 2018; Ran et al., 2018; Sann
et al., 2018; Kuntner et al., 2019; Álvarez-Carretero et al., 2022)
applying only a root calibration, which is critical to directly assess
the impact of applying SA or JA methods on time estimates without

topological and time constraints. RelTime-JA generated very similar
node times and CIs to RelTime-SA (Figure 4) because phylogenetic
uncertainty was small for the analyzed phylogenomic datasets.
However, some nodes in the hemipteroid and spider timetrees
differed considerably. On average, RelTime-JA generated 5%
wider CIs than RelTime-SA, which suggested a small effect of
phylogeny uncertainty. RelTime-JA with little bootstraps
generated timetree topologies that differed by less than 7% from
the published timetrees, with much of the difference observed near
the tips of the phylogeny (Supplementary Table S2). The average
little bootstraps support value for RelTime-JA timetrees was >95%
for all datasets (Supplementary Table S2).

3.2 Impact of phylogenetic uncertainty on
Bayesian and RelTime time estimates

Bayesian-JA is computationally expensive for large
phylogenomic datasets, and the number of phylogeny errors is
usually small. So, we evaluated the difference between JA and SA
estimates for a rather short sequence dataset (450 nucleotide sites).
We chose a simulated dataset because it allowed us to choose a
situation where the ML phylogeny contained many errors. We
scanned datasets simulated by Tamura et al. (2012) and chose a
sequence alignment in which 27% of the inferred clades in the ML
tree were incorrect. The ML tree inferred from this dataset had
errors on the terminal, intermediate, and deep nodes because the
sequence length of the simulated gene was relatively short. We
compared JA and SA time estimates produced by applying BEAST2
(Bouckaert et al., 2019), MrBayes (Ronquist et al., 2012b), and
RelTime (Figure 6). For RelTime-JA, we used the standard BS
method (Figure 2A). In this comparison, the true ages of clades
in the true tree (Figure 5) were compared with the MRCA of
member taxa in the correct clades in the trees produced by using
SA and JA methods.

BEAST2 produced underestimates of node times (Figure 6A),
but the slope and R2 were marginally better in JA (slope = 0.72; R2 =
0.84) than in SA (slope = 0.68; R2 = 0.77). MrBayes produced
overestimates (Figure 6B), but the slope and R2 were slightly
better for SA (slope = 1.14; R2 = 0.77) than those for JA (slope =
1.19; R2 = 0.65). Therefore, SA and JA produced comparable node
times for BEAST2 and MrBayes. In contrast, the slope and R2 for
RelTime-JA (slope = 0.91; R2 = 0.91) were considerably better than
those for RelTime-SA (slope = 0.68, R2 = 0.82) (Figure 6C). So, JA
performed better than SA for this example dataset in RelTime.

We also quantified the accuracy of the SA and JA methods by
computing the difference between the estimated MRCA node times
and the true node times. The difference was divided by the true node
time and multiplied by 100 to generate a percent time error (ΔTE).
In BEAST2, many node times were underestimated, resulting in an
overall tendency to underestimate times. The distribution of ΔTE
and its median for BEAST2-SA exhibited greater underestimation
than those for BEAST2-JA, with a median ΔTE of −55% compared
to −46% (Figure 6D). The median ΔTE from MrBayes-SA and
MrBayes-JA was also significantly different, 18% and 30%,
respectively (Figure 6E). The median ΔTE for RelTime-SA was
larger than that for RelTime-JA (−47% vs.–20%; Figure 6F). These
differences in time estimates between SA and JA methods for the

FIGURE 5
Phylogeny of 51 taxa showing calibrated nodes. The tree has
been scaled to time based on TEs from the Timetree of Life (Hedges
and Kumar, 2009). Calibrations are represented for two nodes. 1) A
uniform distribution U (min, max) for the rooting ingroup
calibration U (444.6, 464.6 Ma) was applied in BEAST2, MrBayes, and
RelTime analyses (closed black dot). 2) In BEAST2 and MrBayes
analyses, a root constraint was (open black dot) implemented as a
uniform distribution U (526, 527 Ma).
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FIGURE 6
Comparison of time estimates obtained by using SA (blue dots) and JA (red dots) methods with true node times for (A) BEAST2, (B)MrBayes, and (C)
RelTime for a simulated dataset of 450 sites. The slope and coefficient of determination (R2) for the linear regression through the origin are shown. The
blue (SA) and red (JA) dashed lines represent the best-fit linear regression through the origin. The solid gray line represents equality between estimates.
Distributions of the differences between the estimated and true node times (ΔTEs) for times inferred by SA (blue) and JA (red) in (D) BEAST2, (E)
MrBayes, and (F) RelTime. The black horizontal line represents the median value, indicated by an arrow. Comparison of NCIWs (CI width/true time × 100)
obtained by using SA and JA methods with true node times for (G) BEAST2, (H)MrBayes, and (I) RelTime. The slope and coefficient of determination (R2)
for the linear regression through the origin are shown. The black dashed lines represent the best-fit linear regression through the origin. The solid gray line
represents equality between estimates. Distribution of NCIWs of all the nodes for times inferred by SA (blue) and JA (red) for (J) BEAST2, (K)MrBayes, and
(L) RelTime. The black horizontal line represents themedian value, indicated by an arrow. For both SA and JAmethods, we used the estimated node times
for the MRCA of all the sets of taxa in the model timetree.
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FIGURE 7
Comparison of composite time estimates across 10 simulated dataset analyses obtained by using SA (blue dots) and JA (red dots) methods with true
node times for (A) BEAST2, (B)MrBayes, and (C) RelTime for a simulated dataset of 450 sites. The slope and coefficient of determination (R2) for the linear
regression through the origin are shown. The blue (SA) and red (JA) dashed lines represent the best-fit linear regression through the origin. The solid gray
line represents equality between estimates. Distributions of the differences between the estimated and true node times (ΔTEs) for times inferred by
SA (blue) and JA (red) in (D) BEAST 2, (E) MrBayes, and (F) RelTime. The black horizontal line represents the median value, indicated by an arrow.
Comparison of NCIWs (CI width/true time × 100) obtained by using SA and JAmethods with true node times for (G) BEAST2, (H)MrBayes, and (I) RelTime.
The slope and coefficient of determination (R2) for the linear regression through the origin are shown. The black dashed lines represent the best-fit linear
regression through the origin. The solid gray line represents equality between estimates. Distribution of NCIWs of all the nodes for times inferred by SA
(blue) and JA (red) for (J) BEAST2, (K)MrBayes, and (L) RelTime. The black horizontal line represents the median value, indicated by an arrow. For both SA
and JA methods, we used the estimated node times for the MRCA of all the sets of taxa in the model timetree.
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same method show that phylogenetic uncertainty can significantly
impact the bias and accuracy of time estimates.

We measured the accuracy of CIs by coverage probability
(CP), which is the proportion of nodes containing the true node
times in the CIs generated by the given method. We also
calculated normalized CI widths (CI width/true time × 100;
NCIW) for node times. In BEAST2-SA, the CP (0.06) was
significantly lower than that for BEAST2-JA (0.28). CIs
(Figure 6G) were considerably wider for BEAST2-JA than for
BEAST2-SA (median NCIW of 53% and 40%, respectively;
Figure 6J). MrBayes-JA also generated wider CIs than
MrBayes-SA (Figure 6H). Although the median NCIW for
MrBayes-JA (114%) was significantly wider than for MrBayes-
SA (95%), the CP was higher for MrBayes-SA (0.76) than for
MrBayes-JA (0.70) due to a smaller overestimation of time
estimates for MrBayes-SA (Figure 6K). RelTime-JA CIs were
also considerably wider than in RelTime-SA (Figure 6I), the
median NCIW for RelTime-JA was 117% compared to 97%
for RelTime-SA (Figure 6L), and thus, the CP for RelTime-SA
(0.71) was significantly lower than that for RelTime-JA (0.92).
The wider CIs estimated using the JA method show that
phylogenetic uncertainty significantly impacts CIs, suggesting
that using the JA method in BEAST2, MrBayes, and RelTime will
be needed to incorporate phylogenetic uncertainty in the CIs.

We further analyzed 10 other datasets of 309, 537, 782, 1,073,
1,523, 2,116, 3,100, 4,070, 7,002, and 9,359 sites (Supplementary
Table S3) to evaluate the generality of the aforementioned trends
(Figure 7). In BEAST2, MrBayes, and RelTime, the slope and R2 of
node time estimates from SA and JA methods were similar (Figures
7A–C, Supplementary Figures S1, S3, S5). This made the
distribution and median ΔTEs from SA and JA similar (Figures
7D–F, Supplementary Figures S1A, S3A, S5A). CPs were
consistently similar between SA and JA methods (Supplementary
Figures S2A, S4A, S6A), which means that JA did little to improve
the results from SA. The relative NCIWs did not show considerable
differences between SA and JA (Figure 7G–L) across all datasets.
However, some datasets displayed larger differences (Supplementary
Figures S2B, S4B, S6B).

Furthermore, we compared the normalized RF distance from
each inferred tree using ML, BEAST2, MrBayes, and RelTime-JA
with the standard bootstrap method (Figures 8A–D). We found that
applying the JA method did not increase the accuracy of phylogeny
inference (Supplementary Table S3). The timetrees inferred by
applying the JA method implemented in BEAST2, MrBayes, and
RelTime-JA generated RF distances similar to those of the ML tree.
This is reasonable because the divergence time estimation for an
individual bootstrap replicate does not add any new phylogenetic
information, as is the case for the Bayesian posterior trees.

FIGURE 8
Correlation between the number of sites and normalized RF distance for (A) ML, (B) BEAST2, (C) MrBayes, and (D) RelTime-JA with standard
bootstrap phylogenies. The equation and coefficient of determination (R2) for the logarithmic regression are shown. The black dashed line represents the
best-fit logarithmic regression.
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Therefore, SA and JA do not produce very different results even
when the inferred phylogenies contain many errors, except in
extreme cases.

4 Discussion

Phylogenomic datasets now contain many taxa and sites. The
large number of taxa increases the phylogenetic uncertainty, and
very long sequences can increase the time required for analysis. We
show that the little bootstraps can generate a collection of
phylogenies, followed by relaxed clock dating to capture the
phylogenetic uncertainty, similar to molecular dating using
Bayesian approaches. In this approach, the bag of little
bootstraps analysis can infer molecular timetrees that incorporate
phylogenetic uncertainty and alleviate the computational burden
caused by long sequences simultaneously. We observed good
performance of our new method to estimate divergence times
even without using calibrations, which allowed us to examine our
method’s power in dealing with phylogenetic uncertainty.

We found that the topological accuracy of the inferred timetrees
was very similar between SA and JA methods for Bayesian and
RelTime approaches. However, in the cases with significant
variations among tree topologies, such discrepancies resulted in
differences in estimated times. This can be attributed to the specific
method employed to infer the timetrees (SA or JA). We found that
topological shifts on internal, deep, and long branches and
substantial lineage rearrangements can generate a considerable
difference in time estimates between SA and JA methods.
Therefore, we suggest assessing the impact of phylogenetic
uncertainty on time estimates by comparing the timetree node
time estimates from SA and JA methods.

We show that our RelTime-JA with the little bootstraps method
generates reliable timetree topologies and time estimates.
Furthermore, it considerably decreases the computation time for
JA time estimation. In phylogenomics, these savings can be
substantial and remain low as the sequence alignment length
increases from thousands to millions of sites. We calculated the
computing time for RelTime-JA with the little bootstraps method
required to analyze the whole dataset used by Álvarez-Carretero
et al. (2022). We estimated a 614× time saving compared to the
required computing time for BEAST2 and a 704× time saving
compared to MrBayes. These analyses could be parallelized, but
for the Bayesian methods, this would still require a long computing
time per MCMC chain.

Although the primary focus of this article is to compare JA and
SA for the same software, it is crucial to acknowledge that different
software applications generated notably distinct time estimates.
Notably, we observed significant variations in estimates between
Bayesian software due to the different specifications of relaxed clock
models, such as independent rates in BEAST2 and autocorrelated
rates in MrBayes.

While the focus of this article is primarily on comparing JA and
SA for the same software application, it is important to note that
different software applications generated different time estimates. In
some cases, we observed a significant difference in estimates between
Bayesian software, which was partly caused by the different
specifications of the relaxed clock model, such as independent

rates in BEAST2 and autocorrelated rates in MrBayes.
Additionally, with short sequences, the tree prior tends to have
considerably more influence (May et al., 2021). For BEAST2, we
specified the birth–death tree prior, while for MrBayes, we used a
uniform tree prior. It has been reported that the uniform tree prior
implemented in MrBayes can be strongly informative in terms of
divergence time estimation (May et al., 2021). In RelTime, it is not
required to specify a tree prior or clock model for evolutionary rates
to account for the heterogeneity of branch rates. Instead, RelTime
directly calculates relative times and lineage rates based on the
inferred branch lengths obtained from molecular sequences. We
found that RelTime time estimates fell between BEAST2 and
MrBayes estimates for both SA and JA methods. Moreover, we
found that RelTime-JA generated node support values comparable
with Bayesian posterior node probabilities in BEAST2, with lower
values for timetrees inferred with higher topological error from
shorter alignments and higher values for timetrees inferred with
lower topological error from longer alignments. MrBayes, however,
generated much higher node posterior probabilities in all cases, even
for datasets with high topological error (Supplementary Table S3).

Overall, the results presented here demonstrate that
phylogenetic uncertainty can impact time estimates considerably
for some nodes in the phylogeny, particularly for datasets with short
sequences. This prompts us to use the JA approach that deals with
phylogenetic uncertainty. Ultimately, the complexities of how
evolution proceeds, and whether this is effectively described by
current dating methods, will determine whether the phylogenetic
uncertainty impacts time estimates or not.
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