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Electron microscopy (EM) enables imaging at a resolution of nanometers and can
shed light on how cancer evolves to develop resistance to therapy. Acquiring
these images has become a routine task.However, analyzing them is now a
bottleneck, as manual structure identification is very time-consuming and can
take up to several months for a single sample. Deep learning approaches offer a
suitable solution to speed up the analysis. In this work, we present a study of
several state-of-the-art deep learning models for the task of segmenting nuclei
and nucleoli in volumes from tumor biopsies. We compared previous results
obtained with the ResUNet architecture to the more recent UNet++,
FracTALResNet, SenFormer, and CEECNet models. In addition, we explored the
utilization of unlabeled images through semi-supervised learning with Cross
Pseudo Supervision. We have trained and evaluated all of the models on sparse
manual labels from three fully annotated in-house datasets that we have made
available on demand, demonstrating improvements in terms of 3D Dice score.
From the analysis of these results, we drew conclusions on the relative gains of
using more complex models, and semi-supervised learning as well as the next
steps for the mitigation of the manual segmentation bottleneck.
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1 Introduction

Recent advances in cancer nanomedicine have made cancer treatment safer and more
effective (Shi et al., 2017). Nanotechnology has elucidated interactions between tumor cells
and their microenvironment showing key factors in cancer behavior and responses to
treatment (Hirata and Sahai, 2017; Tanaka and Kano, 2018). Gaining a deeper
understanding of the underlying mechanisms taking place during such interactions will
help us understand how cancer grows and develops drug resistance, and ultimately help us
find new, efficient, and safe therapeutic strategies aimed at disrupting cancer development
(Baghban et al., 2020).

To do this, high-resolution information collected from the cellular components at a
nanometer scale using focused ion beam-scanning electron microscopy (FIB-SEM) is
especially useful as it provides volumes of serially-collected 2D SEM images, creating
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volume EM (vEM) image stacks, and allowing access to 3D
information from tissues (Giannuzzi and Stevie, 2005). This fully
automated protocol avoids artifacts associated with serial
microtomies and enables voxels to be isotropic, thus yielding a
similar image quality in all dimensions, beneficial for feature
recognition and context within the volume (Bushby et al., 2011).

These advantageous features have made SEM desirable for use in
clinical programs. However, the analysis-limiting step is the
extraction of meaningful features, starting with the segmentation
of cellular components present in these images. This is currently
done by human experts through hand annotation. It is a tedious and
time-consuming task, making it unsuitable for medical applications
and decisions where time is a critical factor. To overcome this
limitation and fully make use of FIB-SEM in a clinical setting, the
development of automated and robust models is critical to speeding
up this task (Perez et al., 2014).

Segmenting images acquired via FIB-SEM is a difficult
problem. Indeed, these images differ considerably from natural
ones (images representing what human beings would observe in
the real world), and even from other microscopy techniques such
as fluorescence microscopy, due to increased noise, different
collection resolution, and the reduced number of image
channels. EM images are single-channel (grayscale) and tend
to have limited contrast between objects of interest and
background (Karabǧ et al., 2020). Furthermore, the
ultrastructure of tumor cells and their microenvironment vary
from those of normal cells (Nunney et al., 2015), and EM analysis
methods can be tissue type dependent; most current methods
have been developed for neural images (Taha and Hanbury, 2015;

Zhang et al., 2021). Therefore, segmentation methods designed to
assist other microscopy modalities or other tissue types cannot be
applied to ultrastructure segmentation of cancer cells imaged
by EM.

We expanded on previous work from Machireddy et al. (2021),
where authors showed that a sparsely manually annotated dataset,
typically around 1% of the image stack, was sufficient to train models
to segment the whole volume. While state-of-the-art in semantic
segmentation has been dominated by attention-based models for
natural images (Jain et al., 2021), convolutional architectures remain
mainstream with EM data, and were used in Machireddy et al.
(2021), and the companion paper within this journal volume. In this
paper, we compared architectures as well as training frameworks to
find the most suitable one for the task of semantic segmentation in
the aforementioned specific context of FIB-SEM images. By
optimizing the learning process, we expected to improve overall
segmentation results and minimize the manual annotation
bottleneck by reducing the number of manually labeled images
needed for training.

In this study, we focused on the segmentation of nuclei and
nucleoli in vEM image stacks acquired from human tumor samples,
as both are commonly used as cancer cell identifiers (Zink et al.,
2004) and have emerged as promising therapeutic targets for cancer
treatment (Lindström et al., 2018). Segmenting both structures
accurately has thus proven essential. We evaluated the selected
models on FIB-SEM images of three longitudinal tissue biopsy
datasets that are available on demand as part of the Human
Tumor Atlas Network (HTAN). A quick visualization of the data
and end results can be found in Figures 1, 2.

FIGURE 1
Example image slices and corresponding ground truth annotations from Volumes 1 and 3. The horizontal image width is equal to 25 µm. Nuclei are
in red and nucleoli in blue. (A) Volume 1 example image. (B) Volume 1 example image annotations. (C) Volume 3 example image. (D) Volume 3 example
image annotations.
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2 Materials and methods

2.1 Image collection and preprocessing

2.1.1 Dataset collection
In a sanctioned observational study approved by the

institutional review board, we obtained volumes 2 and 3 at two
distinct time points during cancer treatment from a patient
diagnosed with metastatic ER + breast ductal carcinoma.
Additionally, volume 1 was procured from a patient with
pancreatic ductal adenocarcinoma. All biopsies underwent
acquisition and analysis in accordance with the OHSU IRB-
approved Molecular Mechanisms of Tumor Evolution and
Resistance to Therapy protocol (IRB#16113). The HTAN sample
IDs for volumes 2 and 3 are HTA9-1 bx1 and HTA9-1 bx2,
respectively. Informed written consent was secured from all subjects.

The samples were preserved using Karnovsky’s fixative [2.0%
PFA, 2.5% Glutaraldehyde (Karnovsky, 1964)], post-fixed utilizing
an OsO4-TCH-OsO4 staining protocol, and embedded in Epon
resin (Riesterer et al., 2019). Post-fixation staining involved binding
heavy metals to lipid-rich membranes to enhance contrast in
electron microscopy imaging. To achieve high-resolution, charge-
free, high-contrast, and low-noise images, a conductive coating with
an 8 nm-thick layer of carbon was applied. The imaging process was
carried out using a FEI Helios NanoLab 660 DualBeam™ FIB-SEM
to collect high-resolution 3D volumes of the resin-embedded blocks.

Targeted volumes were obtained through the use of a Ga + FIB
source, sequentially slicing a few nanometers from the sample to
expose a fresh surface for subsequent imaging. The slicing/imaging
cycle was automated through the FEI AutoSlice and View™ software
extended package, with image collection during 3D data acquisition
utilizing the in-column detector (ICD). The isotropic resolution for
imaging metastatic breast cancer and primary pancreatic tissues was
4 and 6 nm, respectively.

2.1.2 Image preprocessing
Following data acquisition, images within the stack underwent

translational alignment in the XY-plane using an internally
developed stochastic version of TurboReg affine transformation

(Thevenaz et al., 1998). During the alignment step, zero-padding
was applied to the images to maintain a consistent size, after which
they were cropped to generate the final 3D image volumes. The
registration and edge cropping procedures resulted in a final
resolution of 6065 × 3976 × 792 for volume 1, 5634 × 1912 ×
757 for volume 2, and 5728 × 3511 × 2526 for volume 3.

At times, the brightness of certain images in the stack exhibited
variability, introducing complexity and rendering segmentation
more challenging. To ensure uniformity across the stack and
mitigate image complexity, histogram equalization was
implemented.

2.2 Training and evaluation

Previously, we trained a model for each dataset using a subset of
manually labeled images spaced evenly along the volumes and
evaluated on remaining unlabeled images. We reported results on
using 7, 10, 15, and 25 training images on all datasets, which
represents between 0.3% and 3.3% of all image slices depending
on the dataset. Volume 1, 2, and 3 have a total of 792, 757, and
2526 slices respectively; all slides except for the training ones were
used for producing evaluation Tables 3–6. As these EM images had
large dimensions (typically around 6000 × 4000 pixels), they were
cropped to 512 × 512 tiles. We followed the same procedure as
(Machireddy et al., 2021) of extracting tiles of size 2048 × 2048 and
downsampling them to 512 × 512 as a way to capture larger spatial
context. We applied standard random flip and rotation data
augmentations. When training with nucleoli, as they account for
a small area in the total image, taking random crops effectively
resulted in most crops being empty, and models collapsing to the
prediction of background. To address this issue, we ensured that
more than 99% of crops in a batch contain nucleoli.

Moreover, we selected the Dice score as an evaluation metric
because it can be seen as a harmonic mean of precision and recall,
and is fitted when dealing with imbalanced class settings, which is
our case. However, we also report the 3D Dice score rather than the
average of individual Dice scores across all slices as reported in
Machireddy et al. (2021). Indeed, we found the latter to be biased

FIGURE 2
Ground truth (A) and segmentation by SSL-UNet++-CutMix (B) 3D visualizations for Volume 1. Nuclei are in yellow and nucleoli in red.
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towards giving more importance to slices with fewer foreground
pixels, while the former effectively reflects the captured percentage
of the target structure. For the sake of comparison, we reported the
averaged version in our results section in addition to the 3D Dice
scores. We recommend however to use the latter. The 3D Dice and
average dice are more precisely defined as follows:

3D Dice � Dice Predicted Volume, Ground Truth Volume( )
Average Dice � Sum Dice Predicted Slice, Ground Truth Slice( )( )

Number of slices in volume

All models were trained and evaluated on one NVIDIA V100 GPU,
as we strongly believe we should keep our clinical end goal in mind
and aim to reflect image analysis capabilities available to teams with
reasonable computational power. To this end, we also report
training times and the number of parameters in Table 1.

2.3 Fully-supervised framework

2.3.1 ResUNet
We used previous work from Machireddy et al. (2021) as the

baseline for nuclei and nucleoli segmentation. The model used was a
Residual U-Net (ResUNet) (He et al., 2015), a simple yet robust fully
convolutional encoder-decoder network. U-net and its variants are the
most prominent architectures for image segmentation, as the residual
connections solve the gradient vanishing problem faced when working
with very deep models (Glorot and Bengio, 2010), while the different
levels allow feature refinement at different scales. These features have
made U-nets widely used inmany computer vision problems, including
analysis of medical data (Siddique et al., 2020; Su et al., 2021).

2.3.2 UNet++
UNet++ (Zhou et al., 2018) was the first model we decided to

compare to the baseline. Our motivation to use this model came
from the fact that it was heavily inspired by ResUNet, and was
especially designed for medical-like image segmentation. The major
differences from ResUNet are the presence of dense convolution
blocks on the skip connections and deep supervision losses. Dense
convolution blocks aim at reducing the semantic gap between the
encoder and decoder, while deep supervision loss enables the model
to be accurate (by averaging outputs from all segmentation
branches) and fast (by selecting one of the segmentation maps as
output). In our work, as we were primarily focused on accuracy, we
used the average of all branches. We used the implementation
available in the Segmentation Models Python library1 with
ResNet34 as the encoder backbone, and the soft Dice loss (DL)

function which is commonly used in semantic segmentation for
images when background and foreground classes are imbalanced
and is defined as follows for a ground truth y and prediction p̂:

DL y, p̂( ) � 1 − 2yp̂
y + p̂

(1)

2.3.3 FracTALResNet
FracTALResNet (Diakogiannis et al., 2021) was also used for

comparison. While the original model presented is designed for the
task of semantic change detection, it can be adapted for semantic
segmentation, and such architecture is in fact available in the authors’
official implementation2. It was heavily inspired by ResUNet as well,
but makes use of a multi-head attention layer (FracTAL block). It also
makes use of boundaries and distance maps calculated from the
segmentationmasks in order to improve performances, but at the cost
of both memory and computational time during training. It is trained
using the Fractal Tanimoto similarity measure.

2.3.4 CEECNet
CEECNet was also introduced in Diakogiannis et al. (2021) and

for the same purpose as FracTALResNet but managed to achieve
state-of-the-art performances by focusing on context. Indeed, the
CEECNet block stands for Compress-Expand Expand-Compress and
is comprised of two branches. The first branch (CE block) processes a
view of the input in lower resolution, while the second branch (EC
block) treats a view in higher spatial resolution. The motivation
behind using this model came from the fact that, as described in
Section 2.2, feeding more context by down-sampling to a lower
resolution is beneficial to segmentation accuracy. Since the core
block of CEECNet is based on the compress and expand
operations, we believed this network would be able to leverage
contextual information in order to achieve better segmentation
performances. Similar to FracTALResNet, it was trained with the
Tanimoto similarity measure and needs computed boundaries and
distance maps.

2.3.5 SenFormer
SenFormer (Bousselham et al., 2021) (Efficient Self-Ensemble

Framework for Semantic Segmentation) was the last fully-
supervised method tested. It is a newly developed ensemble
approach for the task of semantic segmentation that makes use
of transformers in the decoders and the Feature Pyramid Network
(FPN) backbone. Our motivation behind using this model came
from the fact that it is almost purely attention-based, which by
definition adds spatial context to the segmentation.

TABLE 1 Number of parameters and training times for one volume. SSL-trained models require double the number of parameters because two models are trained
at the same time.

UNet++ FracTALResNet CEECNet SenFormer SSL-ResUNet SSL-UNet++

# of parameters 26,072,337 18,199,919 58,964,079 163,100,906 4,283,201 * 2 21,954,705 * 2

Average training time ~48 h ~70 h ~90 h ~144 h ~60 h ~64 h

1 https://github.com/qubvel/segmentation_models.pytorch 2 https://github.com/feevos/ceecnet
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2.3.6 Supervised model choice
Since model architecture is orthogonal to using a semi-

supervised framework, we picked the best-performing model
using Dice scores, as can be seen in Table 2. UNet++
performed better on average, exhibited a low variance, often
performed the best out of fully-supervised architectures, and
almost never underperformed (as shown by the average rank).
Detailed results were reported in Tables 3, 4. For these reasons, it
was the model we chose to compare to the baseline in the semi-
supervised framework.

2.4 Semi-supervised learning (SSL)
framework

2.4.1 Cross pseudo supervision (CPS)
As described in Section 2.2, roughly 1% of the collected images

were manually annotated and used for training the fully-supervised
methods. To take advantage of the potential semantic information
contained in the unlabeled images, we used the CPS framework
described in Chen et al. (2021). It trained two networks and in
addition to using the standard pixel-wise cross-entropy loss on

TABLE 2 Average, standard deviation, and average rank for dice score over all volumes.

ResUNet UNet++ FracTALResNet CEECNet Senformer

Average 0.9200 0.9270 0.9250 0.9036 0.9146

Standard deviation 0.0107 0.0083 0.0072 0.137 0.0099

Average rank 2.625 2.6042 3.1875 3.54 3.0417

Bold values represent best results.

TABLE 3 Nuclei segmentation dice scores. Columns labeled 7, 10, 15, and 25 in the second line represent the number of training images for each volume.

Volume 1 Volume 2 Volume 3

7 10 15 25 7 10 15 25 7 10 15 25

ResUNet 0.9805 0.9846 0.9846 0.9847 0.9845 0.9875 0.9878 0.9933 0.9597 0.9737 0.9738 0.9745

UNet++ 0.9746 0.9791 0.9801 0.9844 0.988 0.9908 0.9922 0.993 0.9606 0.9625 0.9705 0.985

FracTALResNet 0.9724 0.9796 0.9817 0.9885 0.9756 0.9836 0.9871 0.9887 0.9655 0.9698 0.976 0.9825

CEECNet 0.9702 0.9688 0.9825 0.9742 0.9847 0.9894 0.9928 0.9948 0.9457 0.9499 0.9509 0.98

Senformer 0.9821 0.9851 0.9877 0.9897 0.9835 0.987 0.9898 0.9927 0.971 0.9722 0.979 0.9858

SSL-ResUNet 0.988 0.9889 0.9882 0.9902 0.9938 0.9931 0.9941 0.9958 0.9703 0.9702 0.977 0.9822

SSL-ResUNet-CutMix 0.9892 0.9898 0.9903 0.9912 0.9951 0.9952 0.9954 0.9957 0.9726 0.9747 0.9799 0.9822

SSL-UNet++-CutMix 0.9903 0.9910 0.9912 0.9923 0.9951 0.9952 0.9954 0.9959 0.9804 0.9839 0.9859 0.9872

Bold values represent best results.

TABLE 4 Nucleoli segmentation dice scores. Columns labeled 7, 10, 15, and 25 in the second line represent the number of training images for each volume.

Volume 1 Volume 2 Volume 3

7 10 15 25 7 10 15 25 7 10 15 25

ResUNet 0.9686 0.9733 0.9664 0.9712 0.8811 0.9019 0.9108 0.9182 0.7054 0.7014 0.6906 0.7166

UNet++ 0.9576 0.9624 0.9652 0.9671 0.8957 0.9168 0.9139 0.9216 0.638 0.7321 0.7893 0.8282

FracTALResNet 0.9662 0.9613 0.9464 0.9671 0.8809 0.8778 0.8775 0.9237 0.6892 0.7547 0.7677 0.8307

CEECNet 0.9779 0.9775 0.9772 0.9797 0.7615 0.8608 0.8339 0.8565 0.586 0.6567 0.7321 0.8036

Senformer 0.9353 0.9384 0.9413 0.9442 0.8385 0.8594 0.8818 0.907 0.6695 0.6678 0.7538 0.8084

SSL-ResUNet 0.9775 0.9783 0.9767 0.9782 0.9007 0.9196 0.9344 0.9401 0.6714 0.7447 0.8041 0.8176

SSL-ResUNet-CutMix 0.9781 0.9782 0.9787 0.9791 0.9193 0.9218 0.9339 0.9440 0.7763 0.8013 0.8159 0.8266

SSL-UNet++-CutMix 0.9777 0.9783 0.9781 0.9793 0.9292 0.9256 0.9349 0.9473 0.7887 0.8071 0.8240 0.8390

Bold values represent best results.
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labeled images, used pseudo-labels generated from the segmentation
confidence map of one network to supervise the other as can be seen
in Figure 3. Loss for unlabeled images in CPS is defined as follows
with Du denoting unlabeled data, pi the segmentation confidence
map, yi the predicted label map, ℓce the cross-entropy loss, 1, and
2 representing each network:

Lcps � 1
Du| | ∑X∈Du

1
W × H

∑W×H

i�0 ℓce p1i, y2i( )( +ℓce p2i, y1i( )) (2)

The total loss is thus defined as follows with Ls the standard pixel-
wise cross-entropy loss:

L � Ls + λLcps (3)
We trained both ResUNet and UNet++ models with this framework
and used the same number of labeled images as in the supervised
setting, treating the remaining images in each volume as unlabeled
data. In our study, we noticed that models trained with a loss more
similar to the evaluation metric performed better. As a consequence,
we replaced all of the cross-entropy losses originally used in Chen
et al. (2021) with the soft Dice loss 1. We also noticed that learning
needed to be driven by the supervised loss during the first epochs. At
the beginning of training, models had no prior knowledge of the
segmentation task, and thus, could not yield relevant pseudo-labels
resulting in frequent collapsing to predict only the background,
especially when working with nucleoli. To resolve this, we
implemented a linear warm-up to λ, the parameter used to
balance the CPS loss with the supervised loss, so that the latter
has priority over the former during the early steps of training. We
used a value of 1 for λ in all of our experiments and the following
function for linear warmup.

y �
0.00001 if epoch ≤ 5
0.067x − 0.335 if 6≤ epoch ≤ 19
1 otherwise

⎧⎪⎨
⎪⎩

2.4.2 Integration of CutMix data augmentation
CutMix (Yun et al., 2019) is a popular data augmentation

method for training classifiers that shuffles information
throughout the training batch, and has recently been used in
semi-supervised segmentation tasks. It boosts accuracy by making
the models focus on less discriminative parts of objects to segment,
in our case we can imagine that some part of a nucleus is replaced
with background, then models have to use something other than the
nuclear membrane to detect the nucleus, forcing them to learn other
features such as texture. In the authors’ implementation, when using
the CutMix strategy in the CPS loss, the latter is only optionally
computed on labeled data. However, in our case, not having labels
meant not being able to ensure the CPS batch contained any nucleoli
as we did for supervised methods (see Section 2.2). This made the
loss unstable as models performed poorly on empty images. To solve
this issue, we trained all models with both the supervised and
unsupervised CPS loss, and ensured that at least half of the CPS
batch contained nucleoli. We tried using CutMix in the fully
supervised setting, however, it did not yield any significant
improvement. We believe this to be due to the fact that the
number of images we trained on was so limited in the fully-
supervised setting, CutMix could not add much new information
during augmentation.

3 Results and discussion

3.1 Accurate segmentation of nuclei and
nucleoli

For comparison with previous results (Machireddy et al., 2021),
we first used the same average of 2D dices (Tables 3, 4) while also
providing the unbiased 3D Dice metric results (Tables 5, 6). The 3D
dice scores are almost always higher than their average counterpart,
which is positive as they are more representative of the segmentation

FIGURE 3
Illustration of the CPS training framework. X are inputs with the same data augmentation. θ1 and θ2 are two segmentation networks with the same
structure and differently initialized weights. Pi is the segmentation confidence map, Yi is the predicted label map.→means forward operation, −−→ loss
supervision, and // on → stopping the gradient.
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quality. This is particularly visible for nucleoli (compare Tables 4, 6).
As can be observed in Tables 3, 4, all evaluated models were able to
accurately segment both nuclei and nucleoli. Despite the
introduction of attention enabling models to gain a marginal
edge over the baseline introduced in Machireddy et al. (2021), a
clear advantage was obtained only when using SSL, especially when
paired with CutMix data augmentation. The best results are given by
UNet++ with SSL and CutMix, which indicates bothmodel selection
and using a semi-supervised framework help improve segmentation
performance.

3.2 Benefits of semi-supervised learning

While fully-supervised models could sometimes outperform
SSL ones on specific datasets (for example, CEECNet on Volume
1 nucleoli), SSL remained stable over all structures and volumes. It
outperformed the baseline for all datasets, most noticeably on
Volume 3 nucleoli, with an average gain of 0.11 in Dice,
representing a 15.6% performance increase. One of the reasons
behind this performance gain is the high heterogeneity in Volume
3 nucleoli, and most models struggled segmenting unseen
structures, as can be observed in Figure 4. As the performances
of different fully-supervised methods varied highly depending on

the volumes (for example, Senformer under-performed in
segmenting Volume 1 nucleoli), the SSL methods remained
stable.When evaluating our models, we noticed that fully
supervised methods performed really well around the images
they were trained on (see Figure 5), yielding a near perfect Dice
score. However, performances dropped as soon as evaluation
images start being dissimilar to the training images, thus
forming dips visible in the plot. This is a clear sign of over-
fitting that SSL prevented thanks to the regularization added by
the CPS loss. This stability and consistency across image volumes
allows, in addition to the performance gain, an easier post-
processing of the segmented volume by manual inspection and
interpretation or algorithmic analysis. These result made us believe
semi-supervised frameworks were key in attaining better
generalization performance in our sparse annotation setting.
Indeed, the Dice score of UNet++ with SSL and Cutmix are
better most of the time with only 7 training images than what
was achieved previously with 25 images inMachireddy et al. (2021)
or with supervised models in this study.

Seeing that the semi-supervised framework yielded way more
consistent results, we looked into whether segmentation networks
trained under this framework would be able to generalize across
samples. To test this, we trained amodel on two of our three volumes
and evaluated on the third. We noticed that the performance

TABLE 5 3D nuclei segmentation dice scores. Numbers 7, 10, 15, and 25 in the second line represent the number of training images for each volume.

Volume 1 Volume 2 Volume 3

7 10 15 25 7 10 15 25 7 10 15 25

UNet++ 0.9787 0.9816 0.9845 0.9867 0.9882 0.9913 0.9927 0.9933 0.9639 0.9702 0.9767 0.9849

FracTALResNet 0.9761 0.9825 0.9841 0.9899 0.9765 0.9843 0.9874 0.9934 0.9722 0.976 0.9804 0.9853

CEECNet 0.9749 0.9688 0.985 0.977 0.9852 0.9897 0.993 0.9949 0.9571 0.9592 0.9699 0.9834

Senformer 0.9858 0.9873 0.9897 0.9908 0.9838 0.9872 0.99 0.9927 0.9767 0.9774 0.9829 0.9878

SSL 0.9897 0.9906 0.9898 0.9915 0.9939 0.9931 0.9942 0.9958 0.9687 0.9763 0.9757 0.9848

SSL + CutMix 0.9910 0.9914 0.9918 0.9924 0.9951 0.9952 0.9955 0.9957 0.9785 0.9793 0.983 0.9849

SSL-UNet++-CutMix 0.9917 0.9922 0.9924 0.9932 0.9951 0.9953 0.9954 0.9959 0.9832 0.986 0.9878 0.9887

Bold values represent best results.

TABLE 6 3D nucleoli segmentation dice scores. Numbers 7, 10, 15, and 25 in the second line represent the number of training images for each volume.

Volume 1 Volume 2 Volume 3

7 10 15 25 7 10 15 25 7 10 15 25

UNet++ 0.9626 0.9647 0.9664 0.9681 0.9073 0.9321 0.9333 0.9362 0.734 0.8115 0.8438 0.869

FracTALResNet 0.9755 0.9657 0.9522 0.9685 0.8814 0.8722 0.8761 0.9371 0.7523 0.8044 0.8365 0.8672

CEECNet 0.9788 0.979 0.979 0.9806 0.7852 0.8902 0.8436 0.8899 0.6629 0.7186 0.7927 0.8419

Senformer 0.9396 0.9398 0.9425 0.9453 0.8585 0.8734 0.8962 0.9144 0.7556 0.7778 0.8231 0.8473

SSL 0.9789 0.9797 0.9782 0.9792 0.9109 0.9152 0.9436 0.9513 0.7662 0.806 0.8545 0.8614

SSL + CutMix 0.9797 0.9797 0.98 0.9801 0.9167 0.9231 0.946 0.9525 0.8235 0.8415 0.8558 0.8667

SSL-UNet++-CutMix 0.9794 0.9798 0.9793 0.9803 0.9415 0.9198 0.9475 0.9536 0.8421 0.8436 0.8626 0.8726

Bold values represent best results.
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dropped significantly (with dice scores between 0.4 and 0.6)
depending on the volume. We hypothesize that two volumes
worth of data is not enough to generalize across samples and

leave to future work exploration of ways to deal with this issue
such as expanding the dataset, data normalization, knowledge
distillation or style transfer.

FIGURE 4
Qualitative results with Dice score for a difficult nucleolus in Volume 3, from (A) ground truth, (B) UNet++, (C) FracTALResNet, (D) CEECNet, (E)
Senformer, (F) SSL-ResUNet, (G) SSL-ResUNet-CutMix, and (H) SSL-UNet++-CutMix.

FIGURE 5
Comparison of Dice scores for nuclei segmentation along all 757 slices in Volume 2 with 7 training images. Training slices are marked with vertical
black lines. We can clearly observe the seven peaks in performance and drops in between for fully-supervised methods (beige to brown) as opposed to
the stability of the SSL models (blue).
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4 Conclusion

In this work, we investigated the segmentation of nuclei and
nucleoli in vEM images of cancer cells. We studied the
performances of several leading deep-learning models and
assessed the relative performance gains of each method. We
provided insight as to why semi-supervised methods were able
to yield more robust results and managed to improve on previous
work both in terms of reducing the amount of data needed and
segmentation performances, with an improved Dice on all
Volumes. We believe the key components that make these
improvements possible in our pipeline are the combination of
exploiting unlabeled data information (SSL framework), carefully
picking a segmentation model, effective data augmentation
methods (CutMix), efficient losses, and keeping dataset
specificities in mind (e.g., adapting the batch selection and
CPS framework to nucleoli sparsity (see Sections 2.2, 2.4.1,
2.4.2). We made the experiment code available at3 and the
complete manual annotations for the data have been provided
through the HTAN data portal. We believe that semi-supervised
methods are a key component in segmentation with sparse
annotations as they proved to be superior in both quantitative
and qualitative evaluations.
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