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Latent tuberculosis is a clinical syndrome that occurs after an individual has been exposed
to the Mycobacterium tuberculosis (Mtb) Bacillus, the infection has been established and
an immune response has been generated to control the pathogen and force it into a qui-
escent state. Mtb can exit this quiescent state where it is unresponsive to treatment and
elusive to the immune response, and enter a rapid replicating state, hence causing infection
reactivation. It remains a gray area to understand how the pathogen causes a persistent
infection and it is unclear whether the organism will be in a slow replicating state or a dor-
mant non-replicating state. The ability of the pathogen to adapt to changing host immune
response mechanisms, in which it is exposed to hypoxia, low pH, nitric oxide (NO), nutrient
starvation, and several other anti-microbial effectors, is associated with a high metabolic
plasticity that enables it to metabolize under these different conditions. Adaptive gene reg-
ulatory mechanisms are thought to coordinate how the pathogen changes their metabolic
pathways through mechanisms that sense changes in oxygen tension and other stress fac-
tors, hence stimulating the pathogen to make necessary adjustments to ensure survival.
Here, we review studies that give insights into latency/dormancy regulatory mechanisms
that enable infection persistence and pathogen adaptation to different stress conditions.
We highlight what mathematical and computational models can do and what they should
do to enhance our current understanding of TB latency.

Keywords: Mycobacterium tuberculosis, latency and dormancy regulation, latency models, mathematical and
computational modeling

INTRODUCTION
The pathogenesis of Mycobacterium tuberculosis (Mtb) is complex
and involves an elaborate interaction with the host. Key factors,
including the ability to survive in macrophages, the predilec-
tion for the lung, the formation of granulomas and long-term
persistence, are poorly understood. The Mtb bacterial pathogen
generally infects its mammalian host through the aerosol route.
Inhalation of Mtb leads to phagocytosis by alveolar macrophages.
After the onset of cell-mediated immune response, surviving bac-
teria are believed to enter a period of non-replicating persistence
(NRP) in the phagosome until waning of host immunity results
in reactivation from the latent state and the onset of disease. The
ability of Mtb to persist for a long time in the latent state has been
associated with the ability of the pathogen to maintain resistance
against anti-microbial molecules and adaptation to host-induced
metabolic constraints such as low nutrients, nitrogen, and oxy-
gen stress (Wayne and Hayes, 1996; Betts et al., 2002; Hampshire
et al., 2004; Voskuil et al., 2004b; Deb et al., 2009). In latency, Mtb
are less metabolically active, and they have replication rates that
are drastically diminished compared to bacilli in an active infec-
tion (Lillebaek et al., 2002, 2003). Tubercle bacilli require oxygen
for growth; oxygen deprivation is lethal to them unless they have
time to adapt to its gradual depletion. In the oxygen deprived

environment if the bacteria are to survive, they need to alter their
program of gene expression (Park et al., 2003; Schnappinger et al.,
2003; Voskuil et al., 2003, 2004b; Rustad et al., 2008, 2009; Lars-
son et al., 2012), change their metabolic pathways, and depend
on anaerobic respiration or to develop alternative mechanisms for
generating energy. All these factors are potential contributors to
latent TB infection (LTBI) development in humans.

The interaction between a pathogen and its host occurs on dif-
ferent scales. These range from molecular interactions, including
the recognition of specific molecular patterns on innate immune
cells by toll-like receptors, to interactions between individual cells,
which, in turn, can range from the phagocytosis of bacteria by
macrophages to the spread of disease through a host population
and the emergence of different strains of pathogens in response
to different host conditions. Current approaches to detection,
prevention, and treatment of LTBI are inadequate, and rational
development of new tools has been limited by poor understanding
of the fundamental biology of LTBI, the Bacillus-host interaction,
the immunologic parameters that are involved in establishing per-
sistent infection, and the mechanisms of pathogen and host that
lead to reactivation of Mtb and development of active disease.

LTBI represents a state of equilibrium in which the host shows
no apparent symptoms, but is infected and where the immune
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system is only robust enough to contain the infection but is
unable to clear it. When the immune system gets compromised,
this balance is lost, leading to infection reactivation. From the
host perspective, LTBI is clinically considered to be an asymp-
tomatic, non-infectious state from which progression to active,
infectious disease may occur at any time. Such progression occurs
more often soon after the initial infection, and during times of host
immune-suppression (e.g., human immunodeficiency virus infec-
tion, aging, therapy with tumor necrosis-alpha blockers) (Stead
and Lofgren, 1983; Corbett et al., 2003; Gardam et al., 2003).
Although classically considered to be a state in which Mtb is either
contained or metabolically dormant, it is increasingly understood
that clinical LTBI may represent a wide spectrum of host responses
(Barry et al., 2009). Our lack of accurate and specific diagnostic
tools to differentiate these responses in vivo makes the develop-
ment of corresponding in vitro models similarly challenging.

GLOBAL PREVALENCE OF LATENT TB
The global prevalence of LTBI is commonly cited as approximately
1 in 3, although no population-based evidence exists to verify this
estimate. Such prevalence is roughly consistent with published
population models of TB in globally representative settings (Abu-
Raddad et al., 2009; Dowdy et al., 2013). The contribution of
LTBI to population-level epidemiology differs widely by region;
in high-incidence settings, recent infection contributes the major-
ity of new cases of active TB, whereas in low-incidence settings,
the majority of non-imported TB cases arise from reactivation
of remote infection. Thus, while diagnosis and treatment of LTBI
may substantially reduce the burden of active TB in settings of
low or declining incidence (Comstock et al., 1979), it is unlikely
to have similar population-level effects in high-burden areas until
the ongoing annual risk of TB infection can be reduced. Never-
theless, as discussions regarding TB elimination garner increasing
attention (Dye et al., 2012), it is becoming increasingly clear that
this goal cannot be achieved without a strategy to diagnose and
treat the massive reservoir of individuals with LTBI, in addition to
those with active TB disease.

The lifetime risk of developing active TB after latent infec-
tion is often quoted as 10%, but modeling analyses suggest that,
among individuals infected as adults, this number may be sub-
stantially higher (over 15%) (Vynnycky and Fine, 1997), and it is
certainly much higher (up to 10% per year) among people living
with untreated HIV (Corbett et al., 2003). The majority of this
reactivation risk is experienced within the first 2 or 3 years follow-
ing infection. Preventive therapy (traditionally with 6–9 months
of daily isoniazid) can reduce this risk of reactivation by 60–70%
(Smieja et al., 2000; Akolo et al., 2010) and is therefore a pub-
lic health priority among individuals at high-risk of reactivation,
including people living with HIV and people initiating biological
therapy (e.g., TNF-alpha inhibitors) (Gardam et al., 2003) that
affect the body’s ability to contain LTBI. However, in many parts
of the world, such high-risk individuals comprise a relatively small
proportion of the total population that will experience active TB
from reactivation of latent infection. Plans for expanding access to
preventive therapy among others with risk factors for reactivation
(e.g., malnutrition, diabetes mellitus, adult household contacts)
are therefore urgently needed and in most places lacking.

MACROPHAGES, GRANULOMA, Mtb PATHOGEN AND LTBI
DEVELOPMENT
Macrophages are phagocytes at the frontline of host immune
defense against microbial pathogens. They are the primary habi-
tat of Mtb, and the pathogen preferentially targets macrophage
vacuoles. Thus, the adaptation of Mtb to the phagosomal com-
partment of the macrophages is an essential component of its
pathogenesis, transmission, and continual survival (Smeulders
et al., 1999; Hampshire et al., 2004). This apparent incongruity
demands that Mtb either tolerate the macrophage’s anti-microbial
effectors, that is (i) low pH, (ii) reactive oxygen, and (iii) nitrogen
species, or actively subvert normal cellular mechanisms to avoid
being killed. It implies that for the pathogen to have extended
survival in the host in a state of latency, the pathogen must
somehow evade or interfere with the immune surveillance and
signaling pathways (Voskuil et al., 2003, 2004b; Bacon et al., 2004;
Berney and Cook, 2010; Taneja et al., 2010). Alternatively, the
Bacillus must tolerate host defense mechanisms, either through
mobilization of repair or detoxification pathways or through phe-
notypic tolerance developed as a result of metabolic adaptation
or quiescence. After Mtb phagocytosis by macrophages, phagocy-
tosed micro-organisms are rapidly transferred from phagosomes
to lysosomes, where there is fusion of the phagosome with the late
endosome and lysosome, and the microbes should be destroyed
(Clemens and Horwitz, 1996; Fratti et al., 2001; Dubnau and
Smith, 2003). The phagosomal environment is nitrosative, oxida-
tive, functionally hypoxic, carbohydrate-poor, and capable of
perturbing the pathogen’s envelope (Schnappinger et al., 2003).
However, pathogenic mycobacteria resist lysosomal delivery and
survive within macrophages inside mycobacterial phagosomes,
in an intraphagosomal environment that is friendly to the bac-
terium. Macrophages, instead of killing the pathogen, have been
shown to be manipulated by the bacilli, creating an environment
suitable for intracellular replication by progressively translocat-
ing from phagolysosomes into the cytosol. The bacilli have been
shown to be both anti-apoptotic, keeping the host cell alive to
avoid the anti-microbial effects of apoptosis, and pro-necrotic,
killing the host macrophage to allow infection of neighboring
cells. This Mtb induced macrophage death was shown to be depen-
dent on mycobacterial expression of ESAT-6 (van der Wel et al.,
2007; Abdallah et al., 2011; Yu and Xie, 2012). Inhibition of Mtb
phagosomal maturation was proposed as another mechanism for
the survival of the pathogen in macrophages (Clemens and Hor-
witz, 1996; Fratti et al., 2001). Mtb is among the micro-organisms
most successful at adapting to long-term residence in macrophage
phagosomes. Phagosome arrest is a complex process and is not
fully understood Taneja et al. (2010) (Clemens and Horwitz, 1996;
Fratti et al., 2001, 2003; Anes et al., 2003). It is also speculated
that pathogenic mycobacteria (including Mtb) might interfere
directly in host trafficking pathways through expression of their
own signal transduction molecules. The Mtb genome encodes
two eukaryotic-like serine/threonine kinases [reviewed in Av-Gay
and Everett (2000)] and protein kinase G (PknG), which con-
sists of a kinase domain flanked by a large N- and C-terminal
domain, and was shown to inhibit phagosome-lysosome fusion.
Rapid lysosomal transfer of mycobacteria lacking PknG results
in intracellular killing by bactericidal activities present in the
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lysosomes. Therefore, the ability of PknG to prevent lysosomal
transfer suggests that it may affect survival of bacteria that have
been internalized in macrophages (Walburger et al., 2004).

In latency, lipids have been found to be a major source of
nutrients to the Mtb pathogen (McKinney, 2000; Ehrt and Schnap-
pinger, 2007). Fatty acids have been hypothesized to constitute a
significant source of both carbon and energy for non-replicating
bacilli and the glyoxylate by-pass may serve in the formation of car-
bohydrates from fatty acids (Muñoz-Elías and McKinney, 2005;
Ehrt and Schnappinger, 2007, 2009). Mtb strain (H37Rv) has a
gene that encodes an isocitrate lyse, icl1, expressing ICL activity
in macrophage infection. Studies by Graham and Clark-Curtiss
(1999) and McKinney (2000) showed that a strain of Mtb in
which the icl gene had been insertionally inactivated, lost the abil-
ity to persist in tissues of mice or in activated macrophages even
though it did not appear to have diminished ability to survive
in vitro anaerobiosis (McKinney, 2000). Isocitrate lyases catalyze
an essential reaction of the glyoxylate shunt, an anaplerotic path-
way that by-passes the CO2-generating steps of the tricarboxylic
acid cycle, and enables bacteria to synthesize carbohydrates and
replenish tricarboxylic acid cycle intermediates from fatty acid-
derived acetyl-coenzyme A (Bishai, 2000; Ehrt and Schnappinger,
2007). For many bacteria, this pathway is required for growth on
fatty acids as a sole carbon source. The genomes of most Mtb
strains encode not one but two functional isocitrate lyases: ICL1
and ICL2. Muñoz-Elías and McKinney (2005) showed that both
icl1, icl2 Mtb mutants can grow on different carbon sources (e.g.,
glycerol, glucose, acetate, propionate).

Another important facet of LTBI development is the gran-
uloma. A granuloma is a multicellular structure comprised of
macrophages (resting, activated, and infected), immune effector
T cells on the periphery, chemokines, cytokines, adhesion mol-
ecules, and a caseous necrotic center (Lin et al., 2006; Lin and
Flynn, 2010). Macrophages within a granuloma have two main
functions (i) primarily to contain infection and (ii) for bacterial
multiplication (Mtb preferred environment for growth). In the
event that they fail to control infection, they end up harboring
large amounts of bacteria and the bacteria can persist for decades,
which is the case in LTBI. An impairment of the immune system
will result in the disruption of the granuloma structure and col-
lapse of the granuloma center, hence infection dissemination and
potential transmission of the bacteria to other individuals. LTBI
in humans comprise of a heterogeneous mixture of granulomas
in both lungs and lymph nodes that provide a range of physiolog-
ical micro-environments associated with bacterial replication and
persistence, and therefore the basis for TB clinical latency (Barry
et al., 2009).

MATHEMATICAL MODELING AND LATENT Mtb INFECTION
Mathematical and computational efforts just like biological exper-
iments have been key in unveiling many facets of infectious
diseases. Their applications have immensely contributed to and
shaped our current understanding of TB infection. In the same
fashion as biological experiments, constructing, validating and
analyzing mathematical, and computational models based on
empirical observations can provide new insights into biological
systems by making testable predictions and stir new directions for

designing of biological experiments. Computational methods are
our hope to handle and analyze vast amounts of high-throughput
data. They are an essential tool in predictive studies of disease
signatures, biomarkers, and vaccine and drug targets. Several
mathematical schemes have been developed to provide a platform
to study and understand host immune response mechanisms in
active TB infection (Wigginton and Kirschner, 2001; Marino and
Kirschner, 2004; Segovia-Juarez et al., 2004; Magombedze et al.,
2006b, 2009, 2010; Sud et al., 2006; Ray et al., 2008, 2009). How-
ever, there is no substantial effort through mathematical mod-
eling that has been put forth to enhance our understanding of
LTBI (Magombedze and Mulder, 2011, 2012; Hegde et al., 2012;
Magombedze et al., 2012).

In general, mathematical models have been useful in the eval-
uation, assessment, planning, and theoretical trial of vaccines
and disease control intervention strategies of several infectious
diseases and ailments (Scherer and McLean, 2002; Gandon and
Day, 2007; Magombedze et al., 2008b; Smith and Schwartz, 2008;
Heffernan and Keeling, 2009). The success or failure of a vac-
cine scheme can easily be predicted by use of such models when
they are carefully developed and analyzed. This approach provides
cost effective methods to give general insights and specific direc-
tion for implementing intervention programs (Long and Owens,
2011; Lugnér et al., 2012), hence providing direction for vaccina-
tions. Application of optimal control and optimization techniques
offers a platform to investigate and design optimal treatment, vac-
cine, and cost effective implementation protocols (Magombedze
et al., 2011a,c). On the other hand, the effect of how these vac-
cines enhance the immune response in shrugging off the infection
within the host has not been extensively studied compared to the
extent of studies carried out at the population-level. Therapeu-
tic and chemoprophylactic vaccines have been investigated in the
studies (Koff et al., 2005; Smith and Schwartz, 2008; Johnson et al.,
2011). Currently there is limited understanding for therapeutic
vaccines and most of these vaccines offer partial immunity, which
wanes over time. There has not been much new discovery for TB
vaccines and BCG is still the vaccine that is recommended by WHO
in infants. Several theories and debates exist as to what type of TB
vaccine will be most effective, either an innate based (dendritic,
macrophages, neutrophil) or a T cell based vaccine. A mathemati-
cal study (Magombedze et al., 2006a) was used to assess the efficacy
of TB chemotherapy first line drug regimen following the directly
observed therapy strategy (DOTs). This study was followed by
models in which effects of treatment adherence and treatment
when there is HIV coinfection were investigated (Magombedze
et al., 2010, 2011b; Ramkissoon et al., 2012). This was designed
to determine the possible treatment schemes when there are HIV
and TB drug interactions, and several sequences of combinations
of administering both HIV and TB drug cocktails, hence painting
a better understanding of potential treatment schemes.

The current understanding of how the immune system interacts
with the Mtb pathogen in TB infection owes credit to several math-
ematical studies (Wigginton and Kirschner, 2001; Marino and
Kirschner, 2004; Magombedze et al., 2006b, 2008a, 2009; Sud et al.,
2006; Ray et al., 2008, 2009; Day et al., 2009). However, the con-
tribution of these studies toward the understanding of LTBI is still
minimal. The first model of TB infection was in 1994 (Antia and
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Koella, 1994), which attempted to explain attributes of mycobacte-
rial evolution and maintenance of micro-parasite virulence. Antia
et al. (1996) developed another model on mycobacterial infec-
tions, where the mechanisms by which bacteria such as Mtb and
Mycobacterium leprae persist at low densities for extended peri-
ods and attain high densities much later in the presence of an
Ag specific immune response were investigated. Comprehensive
and detailed modeling of Mtb was carried out in the studies
(Wigginton and Kirschner, 2001; Marino and Kirschner, 2004;
Segovia-Juarez et al., 2004; Magombedze et al., 2006b, 2008a,
2009, 2010; Sud et al., 2006), which described the interaction of
the Mtb pathogen, macrophages, cytokines, and lymphocytes at
the site of infection (lung compartment), and lung and lymph
node compartments (Marino and Kirschner, 2004; Magombedze
et al., 2009). These studies predicted attributes of the pathogen
and immune response mechanisms that result in either LTBI or
active TB, however without deciphering the mechanisms of LTBI
development and persistence. Several other studies were carried,
which showed the effects of TNF-alpha in granuloma formation
and show how disruption of TNF-alpha mechanisms may enhance
infection dissemination (Ray et al., 2008, 2009; Fallahi-Sichani
et al., 2011). The mechanisms at the granuloma level that lead to
different configurations of cells, however differential containment
of the organisms are not well understood (Sharpe et al., 2009).
There are current modeling efforts and methods for measuring
and modulating TNF-alpha at the granuloma level to determine
the effects on local control of Mtb infection using non-human pri-
mate data [reviewed in Kirschner et al. (2010)]. The studies (Ray
et al., 2009; Fallahi-Sichani et al., 2011) present a way to study a sin-
gle granuloma and the multi-scale molecular, cellular, and tissue
events in the development of a granuloma, and show the critical
role of TNF-alpha in control of bacterial growth in the granuloma.

There are studies that have started to incorporate details about
signaling pathways into both immune cell and host-pathogen
models, with the potential of identifying new drug targets (Gold-
stein et al., 2004; Franke et al., 2008; see review Kirschner and
Linderman, 2009). Our study, Magombedze and Mulder (2011),
is a first attempt to combine gene expression data, multiple stress
factors, and bacterial cell densities using a mathematical frame
work to investigate and explain several hypotheses on how persis-
tence and reactivation of LTBI occurs. Results in this study echoes
the results in the studies (Hegde et al., 2012; Magombedze and
Mulder, 2012), were dynamics of several signaling and metabolic
pathways mechanisms were explained using Boolean network
modeling (Hegde et al., 2012), which used a bistable switch to
help explain a potential mechanism on how the pathogen can
switch between two different metabolic states. Our recent study
(Magombedze and Mulder, 2012) predicted the regulation of the
latency/dormancy program using a systems biology mathematical
framework to be orchestrated by dynamic gene regulatory net-
works constituted of several DosR-regulon genes (Voskuil et al.,
2003). This study predicted the role of DosR-regulon genes and
other several genes as central in the regulation and maintenance
of the latency program. In this study DosR-regulon genes were
predicted to cluster with adaptation, detoxification, and virulence
genes and several other genes of unknown or putative functions
(Rv3131, Rv0569, Rv2032, Rv2530c, and Rv2694c), some of which

were predicted both in the regulation of the stationary and non-
replicating phase of the bacteria. This study furthermore predicted
that other genes (Rv1133c, Rv2890c, Rv1177, Rv2710, Rv2532c,
and Rv0982) to be also involved in the regulation of latency. These
genes were shown in other studies (Sassetti and Rubin, 2003; Sas-
setti et al., 2003) to be essential for H37Rv growth and in vivo
bacterial survival. Some of the genes predicted to be central in the
regulation of latency are essential for bacterial growth (Rv3131),
making them an attractive drug target. Other genes are known to
have functions that are linked to human immune response mecha-
nisms, such as induction of interferon-c (IFN-c) and interleukin-2
(IL-2) (Rv2032, Rv3133c, Rv3131, and Rv2031c), oxidative stress
(Rv1909c), and nitrosative stress (Rv3131, Rv3133c, and Rv2031c).
The latter are associated with nitrogen and oxygen reactive inter-
mediate effector mechanisms of the immune response and were
shown in other studies (Leyten et al., 2006; Roupie et al., 2007;
Black et al., 2009) to have the potential to prime the human
immune response. However, these predictions remain to be tested
through biological experiments for potential LTBI drug design.
With vast generation of data sets from different TB experimental
infection models (mouse models, guinea pig, non-human primate
models, and culture models) as well as data from real cases of
infected people, mathematical and computational modeling (see
Table 1 for current mathematical and computational methods) is
our only hope to get sense of all data measured at different scales,
through developing virtual models that can integrate data from
different scales.

UNDERSTANDING LATENT Mtb AND IDENTIFYING NEW
DRUG TARGETS THROUGH COMPUTATIONAL EFFORTS
Several computational models and bioinformatics techniques have
revealed network interactions, metabolic, and signaling pathways
associated with the development of the latent infection; and with
prediction of gene functional groups, hence providing informative
data sets for future experiments (Mazandu and Mulder, 2011a,b;
Mazandu et al., 2011; Hegde et al., 2012; Magombedze and Mul-
der, 2012). Mazandu and Mulder (2011a) used a combination
of sequence and functional genomics data to generate a func-
tional interaction network for Mtb, which was used for drug target
prediction and function prediction for the proteins of unknown
function (Mazandu and Mulder, 2011b,c). The data integra-
tion method exploited sequence similarity and shared domains,
gene synteny, phylogenetic profiles, co-occurrence in abstracts,
co-expression and other protein–protein interaction prediction
techniques to predict functional interactions between all possible
protein pairs in the Mtb proteome. A combined score was attrib-
uted to each interaction based on the individual scores from each
evidence type. Using only medium to high confidence interac-
tions, a network of 4,136 proteins and 58,000 interactions was
generated, and was found to have a small world property, which
is common among biological networks. This network was used
to predict functions for uncharacterized proteins in Mtb, which
constitute a high percentage of the genome. Most of the unchar-
acterized proteins were found to have metabolic activities, but
others were predicted to be involved in transcription regulation,
signal transduction, and pathogenesis, suggesting that there are
many currently uncharacterized proteins that could play a role in
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Table 1 | LTBI mathematical and computational models.

LTBI mathematical and computational

models (in silico)

Advantages Disadvantages

Lung and lymph node models Simplify complicated biological systems that are difficult to

study experimentally in the lab

Results are dependent of model parameters

and available data

Complex to analyzeUse computer simulation

Help to design new experiments and derive new hypotheses

Not expensive and flexible

Granuloma models Not expensive and flexible Models the granuloma as an isolated

structure

Can be used to understand unknown mechanisms of the

granuloma with computer simulations

Results are dependent on model

assumptions and available data

Signaling and gene regulatory models Can predict gene regulatory mechanisms in Mtb

latency/dormancy adaptation

Depends on available data and the modeling

approach used

Easy to simulated with a computer Difficult to develop and analyze

Multi-scale models Link different scales: organs, tissues, cells, and molecules Difficult to develop, analyze, and simulate

Model latency in a more realistic way They are complicated

Computational methods (models) Ability to analyze data from different kinds of experiments Computationally intensive

Offer a platform to integrate data and mathematical models Depends on available data

Predictive tools for identifying vaccine and drug candidates Involves a combination of different

sophisticated mathematical, statistical, and

programing techniques

the survival and persistence of Mtb during infection and reacting
to changes in the environment (Mazandu and Mulder, 2011b,c).

Functional interaction networks provide the advantage of
enabling a systems level view of an organism. Proteins are not
viewed in isolation, and for each protein we can establish its rela-
tive importance in the biological system by assessing its network
properties. Network properties include degree (number of direct
interacting partners), betweenness, closeness, and other measures
of how well connected a protein is within the network and whether
its removal will have a substantial effect on the rest of the network.
Like mathematical modeling where we can model expression or
metabolic changes and determine the effect of “knocking out” a
gene or protein, in biological networks we can knock out proteins
and determine the effect on the network. Mazandu and Mulder
(2011a) used their Mtb functional interaction network to iden-
tify possible drug targets by ranking proteins by their betweenness
and centrality measures. Using this technique, they identified 881
possible drug targets, whose elimination would affect a number of
other proteins and interactions. These proteins included 114 pre-
viously identified drug targets in either UniProtKB or TDR targets
(http://tdrtargets.org), as well as targets for some of the currently
used anti-TB drugs (Mazandu and Mulder, 2011a). Zheng et al.
(2012) used protein–protein interactions networks from STRING
for identifying virulence proteins in several pathogens, includ-
ing Mtb. Using the interaction network, they identified virulence
factors based on number of neighbors and strength of interac-
tions and compared this to a feature selection method and BLAST
approaches. Their results were benchmarked against a database
of validated virulence factors and the network-based method was
found to out-perform the other two methods (Zheng et al., 2012).

These network studies, which are purely computational, allow
us to predict effects of perturbations on the whole biological sys-
tem and can help us to identify genes or proteins that known
dormancy genes interact with. For example, the DosR protein has
over 75 interactions with other proteins in the DosR-regulon, as
well as with other regulators and proteins whose functions are not
yet known. The host-pathogen interactions, which link two func-
tional interaction networks, allow us to then determine how these
proteins potentially interact with host proteins. Computational
tools have also been used to identify new vaccine candidates for
TB. For example, there are some new possible vaccine candidates
on the horizon, such as the latency antigens α-crystallin (HspX)
and Rv2660c of the DosR-regulon, which were identified from
studies of gene expression changes during dormancy (Wang et al.,
2013). In addition, Gideon et al. (2012), using a bioinformatics
and empirical approach, identified several novel TB proteins that
elicited an anti-tuberculosis T cell response.

Mtb LATENCY AND DORMANCY MODELS
The bacterial behavior during the growth phase (lag, log, station-
ary, and death phases) is well known, but little is known about
how they behave in LTBI. The ability of the pathogen to enter and
exit from different states has associated it with its ability to cause
persistent infection. In this state it is not clearly known whether
it will be in a persistent slow replicating state or a dormant non-
replicating state, thus ultimately causing a latent infection with
the potential to reactivate to active disease. The terminology for
latent TB state and dormant bacterial state is somehow confusing
and is used differently in different studies. TB Latency refers to an
in vivo situation where the bacteria and the host have established a
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balanced state without causing apparent symptoms. Whereas the
term dormant refers to the physiological and reversible metabolic
shutdown state of the bacteria, which is normally simulated in
in vitro culture models.

In vitro models have been used to model latency or inves-
tigate the adaptive processes of the Mtb to non-proliferating
conditions which can be achieved by limiting at least one of
the essential conditions required for Mtb growth (for a sum-
mary of the latency/dormancy models see Table 2). These include:
(i) starvation of essential nutrients, such as carbon, nitrogen, or
phosphorus and (ii) depletion of oxygen, which prevents aerobic
respiration by the obligate aerobe. The adaptation to oxygen is
the most widely studied of these conditions. Low-oxygen levels
have long been recognized to limit Mtb replication while pro-
moting long-term survival, which is associated with a distinct
physiologic adaptation and marked by bacteriostasis in addi-
tion to metabolic, chromosomal, and structural changes of the
bacilli (Wayne and Hayes, 1996; Wayne and Sohaskey, 2001).
These states can be distinguished using a resuscitation reculture
failure test (Sun and Zhang, 1999). Resuscitation of non-colony
forming cultures only confirms the difference between dead cells
and dormant cells. Truly dormant cells were shown to resume
replication after stimulation with a resuscitation promoting fac-
tor (Rpf), a 16-kDa protein derived from a Gram-positive coccus
Micrococcus luteus (M. luteus) [reviewed in Zhang (2004)]. The
studies (Mukamolova et al., 2002; Tufariello et al., 2004; Down-
ing et al., 2005; Shleeva et al., 2010) showed over-expression of
five of the Mtb Rpf genes that could stimulate the growth of
tubercle bacilli from an old culture with a small inoculum. It
may be concluded that the Rpf proteins are directly involved in

reactivation of persisting bacteria. However, the mechanism of the
activating effect of Rpf on dormant cells is still not completely
understood.

THE WAYNE MODEL
Wayne and Hayes (1996), established an “in vivo model for dor-
mancy” where in vitro growth TB cultures were subjected to
gradual oxygen depletion to mimic tubercle bacilli in vivo. A sealed,
standing culture is allowed to incubate over a period of days while
the bacteria deplete the available oxygen. The culture becomes
progressively more hypoxic with a concomitant shift in Mtb phys-
iology (Wayne, 1977; Wayne and Lin, 1982). Gentle stirring and a
defined culture-to-headspin ratio improve reproducibility (Wayne
and Hayes, 1996). Two distinct states of NRP that reflect discrete
metabolic and drug susceptibility states compared with log phase
growth are illustrated. The first stage, designated NRP 1, occurred
when the declining oxygen level reached 1% saturation. This stage
is characterized by increased production of glycine dehydrogenase
and steady ATP generation. The second stage, NRP 2, occurred
when the oxygen level reached 0.06% saturation and this stage is
characterized by a marked decline of glycine dehydrogenase and
susceptibility to metronidazole. The dormant cells in the Wayne
model remained responsive to heat shock and were culturable
when transferred to fresh aerated medium (Shleeva et al., 2004,
2010). Therefore, it is thought that the Wayne model probably
represents the initial stage of formation of a dormant state and
essentially reflects bacterial adaptation to low-oxygen level rather
than to the dormant state. A study by Shleeva et al. (2002) showed
that longer incubation time of several months in the Wayne model
can produce some dormant bacilli.

Table 2 | Latency/dormancy in vitro and in vivo models.

Latency/dormancy model Advantages Disadvantages

Wayne model (in vitro,

culture)

Can simulate different Mtb bacteria physiological dormant states Uses a single stress factor (hypoxia)
Inexpensive and easy to carry out Does not reflect what truly happens in vivo

Easy for expressed genes profiling Slow simulation of dormancy

Rapid anaerobic model

(in vitro, culture)

Inexpensive and easy to carry out Uses a single stress factor (hypoxia)
Rapid simulation of Mtb dormant state Difficult to correlate with in vivo latency

Easy for expressed genes profiling

Multi-stress model

(in vitro, culture)

Easily achieve the stationary and non-replicating phases of Mtb Difficult to correlate with in vivo latency
Not expensive and easy to carry out

Easy for expressed genes profiling

Cornell model (in vivo,

mouse model)

Inexpensive and easy to handle Latency development does not compare well to

human LTBIAvailability of genetic variant strains

Large number of immunological tools and reagents

Can simulate latency/dormancy

Guinea pig/rabbit model

(in vivo)

Easy to handle Limited availability of reagents
Show necrosis and granuloma structure similar to humans Lack of true latency which resembles human LTBI

Non-human primate model

(in vivo)

Similar immunological and infection pathology with humans Expensive
Develop LTBI similar to humans Require trained personnel (veterinary scientists) to

handle

Availability of reagents Ethical issues
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THE RAPID ANAEROBIC MODEL
There are several other studies (Honaker et al., 2009; Leistikow
et al., 2010) that have improved and modified the Wayne model to
yield consistent and more precise results. In these studies, a rapid
anaerobic dormancy model is implemented. This model differs
from the Wayne model in the larger size of stir bars and faster rate
of stirring resulting in a more homogeneous population of bacilli,
and even oxygen distribution throughout the culture. The model
exhausts available oxygen rapidly ensuring achievement of anaer-
obiosis in a relatively short time interval compared to the Wayne
model.

CORNELL MODEL
The most convincing evidence of dormant Mtb was demonstrated
by McCune Jr. et al. (1956, 1966) in a mouse model (Zhang, 2004;
Shleeva et al., 2010). Mice were infected with virulent Mtb and the
infection was allowed to establish for 2 weeks, followed by treat-
ment with a combination of INH and PZA for 3 months. Initially
no bacilli could be detected in the mouse spleen; however, one
third of the mice relapsed with culture-positive tubercle bacilli
when the treatment was discontinued for 3 months (McCune Jr.
et al., 1956; Hu et al., 2000) and more relapses were noticed after
administration of immunosuppressive steroids (McCune Jr. et al.,
1966). This was an indication that dormant bacilli insensitive to
antibiotic treatment persisted. There are variations of the Cor-
nell model that show the same disappearance and reappearance
phenomenon of tubercle bacilli in mice with different infectious
dose, route of infection (aerosol or intravenous), and different
drug combinations (Scanga et al., 1999).

MULTI-STRESS MODEL
The limitation with single stress models, like hypoxia, nutrient
starvation, and exposure to NO is that they cannot closely imitate
the in vivo latency/dormancy stimulating conditions. Unfortu-
nately there is no substantive repertoire of alternative models that
can model latency with multiple stresses. To date, the study of Deb
et al. (2009) is the only one that has achieved this. This multi-
ple stress model used a combination of low-oxygen (5%), high
CO2 (10%), low nutrients (10% Dubos medium), and an acidic
pH of 5.0. This study illustrates how the Mtb pathogen adapts
and prepares for the dormancy stage. Under these conditions the
pathogen was shown to lose its acid-fastness characteristics, while
at the same time it accumulated wax esters and lipids, a process
thought to be an energy storing strategy as it shifts from aerobic
respiration to anaerobic respiration. Several studies (Hampshire
et al., 2004; Deb et al., 2009; Berney and Cook, 2010) have sug-
gested that, continual survival of Mtb in the anaerobic respiration
state is sustained through energy generation from metabolism of
fatty acids. This model revealed high expression of genes involved
in the glyoxylate cycle and energy metabolism, which is a strong
indication that the pathogen had switched to anaerobic respiration
(Deb et al., 2009; Patel et al., 2011).

NON-HUMAN PRIMATE MODEL
There are several in vivo models that are currently used to exper-
imentally explain the development of LTBI. These include, (i)
mouse models (for example the Cornell model), (ii) the Guinea

pig/rabbit model, with the potential to simulate granulomas sim-
ilar to those observed in humans. Unfortunately it is difficult to
observe LTBI manifestation in Guinea pigs, which are highly sus-
ceptible to rapid disease progression proceeding low-dose aerosol
infection. Although the pathology in lungs of Guinea pigs and
rabbits is reminiscent of human pathology, there is relative lack of
immunologic reagents for these animals (Flynn et al., 2003). The
most attractive model to date is the non-human primate model.
Non-human primates (Cynomolgus macaque) have physiological,
infection pathology, immunological similarities with humans, and
they make it possible to carry out experiments that are difficult
or impossible to perform in the human population. Its ability to
generate clinical correlates of infection has made the non-human
primate model important in the study of LTBI. The downside
of this model includes cost, difficulty with handling animals,
containment of biohazards, and ethical considerations.

LATENCY AND DORMANCY REGULATION
Survival of Mtb bacilli in vivo is attributed to the pathogen’s abil-
ity to adapt to the changing environment. This is orchestrated by
a program of genes that sense changes of stress factors (hypoxia,
NO-exposure, heat shock, nutrient starvation, pH change, and low
iron) in its environment. The phagosome environment is associ-
ated with production of oxidative bursts, the synthesis of inducible
nitric oxide (NO) synthase resulting in the production of NO
and other reactive nitrogen intermediates, which are responsible
for the killing of intracellular bacteria. This changing environ-
ment within the macrophages should elicit new programs of gene
expression in the pathogen if it is to survive. The Mtb pathogens
possess mechanisms to detect the ambient oxygen tension based
on the DosT/DosS/DosR system and WhiB3 sensory systems, which
enable them to adapt to changes in oxygen availability by adjusting
their metabolism accordingly (Park et al., 2003; Kumar et al., 2007;
Rustad et al., 2008; Honaker et al., 2009).

The DosS/DosT and DosR response regulator is a two com-
ponent system, which consists of a sensor kinase (component 1)
which autophosphorylates histidine, then transphosphorylates a
conserved aspartate of its cognate transcriptional regulator (com-
ponent 2). Mtb has eleven complete systems and seven orphans
belonging to sensor kinase and response regulator families (Cole
et al., 1998). DosR has been shown to act as a transcriptional regu-
lator, which is responsible for the induction of nearly all hypoxia-
induced genes of Mtb (Park et al., 2003; Voskuil et al., 2003, 2004b;
Kumar et al., 2007; Rustad et al., 2008). It has been shown that,
recombinant sensor kinases DosS and DosT autophosphorylate to
stable phosphoproteins (Malhotra et al., 2006; Murphy and Brown,
2007), but rapidly ransphosphorylate DosR under conditions of
low-oxygen tension or in the presence of NO or CO (Voskuil et al.,
2003; Kumar et al., 2007; Sousa et al., 2007; Shiloh et al., 2008),
confirming these as members of the two component family. DosS
is a redox sensor and DosT is a hypoxia sensor. Aerobically, DosS is
in its inactive Fe3+ form, as a result of its rapid oxidation by O2.
When DosS is reduced to Fe2+, its autokinase activity is increased
and uses this oxidation state to signal DosR activation (Honaker
et al., 2009). DosT exists aerobically in the O2-bound form, which
is inactive and its resistance to oxidation removes the possibility of
its functioning as a redox sensor. The study of Honaker et al. (2009)

www.frontiersin.org August 2013 | Volume 1 | Article 4 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magombedze et al. Latent TB regulation, computational models

shows that the DosR-regulon is induced in stepwise manner with
DosT only important in early stages and DosS important in the late
stages. This is because DosT is not able to signal DosR expression
efficiently under low-oxygen. The early activity by DosT is thought
to kick start induction of DosR-regulon genes, among them DosS.
As the DosR-regulon is expressed, levels of DosS become elevated,
enabling further induction of the regulon.

The ability of the Mtb bacteria to adapt to changing oxygen
concentration has been linked with the role of the WhiB3 protein
implicated in sensing oxygen tension and redox state by mycobac-
teria. The WhiB3 gene was found to be strongly induced in Mtb
during acute infection of mouse lungs and also during growth
in resting bone marrow-derived macrophages, but repressed after
IFN-gamma activation of the macrophages (Banaiee et al., 2006).
The study of Singh et al. (2007) was able to show that WhiB3
contains a 4Fe–4S cluster, which can bind NO. In the presence
of oxygen, the WhiB3 [4Fe–4S]2+ cluster is degraded first to a
[3Fe–4S]+ cluster, then to [2Fe–2S]2+, and subsequently lost alto-
gether (Crack et al., 2004; Singh et al., 2007; Alam and Agrawal,
2008). WhiB3-mediated response to the presence of oxygen, there-
fore, is predicted to occur through direct control of the activity
of metabolic proteins or through modification of transcriptional
regulators (Alam and Agrawal, 2008). A role for WhiB3 in regu-
lation of the transcriptional machinery in mycobacteria may be
supported by the finding that WhiB3 interacts with the major
sigma factor, SigA (RpoV ) (Steyn et al., 2002), but the effect of this
interaction on SigA activity is not known, and further studies are
required to understand the precise role of WhiB3 in mediating any
adaptation of mycobacteria to changes in oxygen tension.

THE DosR-REGULON
The DosR-regulon is a significant regulator of genes in response
to hypoxia and NO [see Table 3 for the list of DosR-regulon genes
(Park et al., 2003; Kumar et al., 2008)]. This, combined with the
production of NO by host immune cells and the likely hypoxic
nature of the granuloma, makes a strong prediction that this reg-
ulon is a primary trigger of metabolic shift down to achieve the
non-replicative state. Latency and dormancy models (Park et al.,
2003; Voskuil et al., 2003, 2004b; Honaker et al., 2009) have pre-
dicted that LTBI is regulated through the DosR-regulon/system.
Roberts et al. (2004) showed that deletion of DosS or DosT in the
H37Rv strain causes a reduced expression of hypoxia reporter gene
and complete failure of hspX stimulation in the double mutant.
Studies (Voskuil et al., 2003; Kumar et al., 2007; Sousa et al., 2007;
Shiloh et al., 2008) predicted that without the NO signal, the DosR-
regulon will not be up-regulated, and cell division will continue.
The DosR-regulon was shown to be weakly induced in the station-
ary phase indicating partial stimulation of the dormancy genes.
With increased oxygen tension there is increased expression of the
transcripts fdxA, pfkB, narX, and narK2, which indicate a switch to
anaerobic metabolism from aerobic respiration (Bacon et al., 2004;
Voskuil et al., 2004b). These genes were also observed to be induced
in NO exposure and nutrient starvation (Betts et al., 2002; Bacon
et al., 2004; Hampshire et al., 2004; Deb et al., 2009). Dormancy
genes expressed in the stationary phase and the NRP were shown
(Voskuil et al., 2003, 2004b) to be located in “operon like clusters.”
One such cluster of genes (rsbW, Rv3288c, Rv3289c, and lat ) is

seen in the study Hampshire et al. (2004) and has previously been
identified as up-regulated in the stationary phase survival study
by Betts et al. (2002). Other gene clusters include Rv0982-Rv0984
(moaB2), Rv1460-Rv1463, Rv3138-Rv3141 (pflA, fadE24, fadE23,
and fadB4, respectively), and Rv3458c-Rv3460c. The largest cluster
of genes includes Rv3864, Rv3867-Rv3871, Rv3876, and Rv3878,
the majority of which fall within the RD-1 region deleted from
strain BCG Pasteur. A complete list of genes up-regulated and
down regulated in hypoxia, NO exposure, nutrient starvation, and
other stress conditions are found in the studies (Betts et al., 2002;
Park et al., 2003; Voskuil et al., 2003, 2004b; Hampshire et al., 2004;
Deb et al., 2009).

LATENCY/DORMANCY STATIONARY PHASE OPERONS
Using hierarchical clustering Voskuil et al. (2004b) showed that
most stationary phase-specific induced genes are transcriptionally
clustered and thus share a common regulatory profile. These genes
include Rv0106, PPE3, Rv1535, PE20, PPE31, rpsR2, rpsN2, rpmG1,
and rpmB2. The four ribosome encoding genes are separated from
the majority of ribosome encoding genes on the Mtb genome,
perhaps indicating a difference in function. By contrast, most ribo-
somal protein genes are repressed during stationary phase as well
as in NRP. It is thought that, the ribosomal proteins encoded by
rpsR2, rpsN2, rpmG1, and rpmB2 are involved in increasing riboso-
mal fidelity during non-proliferating conditions. The desA3 gene
(encoding a probable fatty acid desaturase) is highly induced in
the transition to stationary phase, but not during NRP. Interest-
ingly, the other two fatty acid desaturase genes found in the Mtb
genome are induced early during NRP (Bacon et al., 2004; Voskuil
et al., 2004b). Also, the desA genes are induced, with desA3 being
strongly repressed throughout NRP, while desA1 and desA2 are
only induced during stationary phase. The fact that all three genes
are induced during the transition to non-proliferating conditions
while the bacilli are still replicating indicates the bacilli may be
changing the degree of saturation of the cell wall mycolic acids in
preparation for a non-proliferating state. Genes of the PE and PPE
families (which constitute 8% of the genes in the Mtb genome) are
also differentially regulated between stationary phase and NRP.
PE3, PE20, and PPE31 are induced during stationary phase, while
PE11, PE34, PE-PGRS11, PE-PGRS14, PPE17, PPE47, and PPE48
are induced during NRP, and many PE/PPE genes are repressed
under both conditions (Voskuil et al., 2004a). There is speculation
on the functions of these proteins that involve their ability to pro-
vide antigenic variation and interfere with immune responses, in
addition to performing a purely structural role.

In addition to the dormancy regulon, several other genes are
strongly up-regulated in the NRP model. Most of these genes
are repressed late in the NRP model, with the exception of hsp,
Rv0678, Rv0841c, Rv1734c, Rv1874, mez, and Rv2660c (Voskuil
et al., 2003, 2004b). Interestingly, Rv1734c is a dormancy regulon
gene that is weakly induced early in NRP but is the only dormancy
gene that was noticed to remain expressed in the late stages of
NRP. The continued induction of Rv1734c, and the induction of
a few other dormancy genes, when most dormancy genes are no
longer induced, indicates there may be another level of control
for some of the dormancy genes other than through activation
by DosR. Two strongly induced genes early in NRP (ahpC and
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Table 3 | Mtb DosR-regulon genes.

Rv number Gene name Protein function (probable) Rv number Gene name Protein function (probable)

Rv0079 HP Rv2028c Universal stress protein

Rv0080 CHP Rv2029c pfkB Phosphofructokinase

Rv0081 Transcriptional factor Rv2030c CHP

Rv0082 Oxidoreductase Rv2031c hspX Heat shock protein

Rv0083 Oxidoreductase Rv2032 Acg CHP

Rv0569 CHP Rv2623 TB31.7 Universal stress protein

Rv0570 nrdZ Ribonucleotide red. Rv2624c Universal stress protein

Rv0571c CHP Rv2625c Leucine rich protein

Rv0572c HP Rv2626c hrp1 Hypoxic response protein

Rv0574c CHP Rv2627c CHP

MT0639 HP Rv2628 HP

Rv1733c Transmembrane protein Rv2629 CHP

Rv1734c CHP Rv2630 HP

Rv1736c narX Nitrate reductase Rv2631 CHP

Rv1737c narK2 Nitrite transporter Rv2830c vapB22 Antitoxin VapB22

Rv1738 CHP Rv3126c HP

Rv1812c Dehydrogenase Rv3127 CHP

Rv1813c CHP Rv3128c CHP

Rv1996 Universal stress protein Rv3129 CHP

Rv1997 ctpF Cation trans. ATPase Rv3130c tgs1 Triacylglycerol synthase

Rv2003c CHP Rv3131 CHP

Rv2004c HP Rv3132c dosS Sensor hist. Kinase

Rv2005c Universal stress protein Rv3133c dosR Two-comp. resp. reg.

Rv2006 otsB1 Trehalose phosphatize Rv3134c Universal stress protein

Rv2007c fdxA Ferredoxin Rv3841 bfrB Bacterioferritin

Rv2027c dosT Sensor hist. kinase

A list of dosR-regulon genes. dosT is part of the dosR-regulon but it is not up-regulated in response to many conditions tested to date. HP, hypothetical protein; CHP,

conserved hypothetical protein.

ahpD) encode the alkyl hydroperoxide reductase and are strongly
repressed throughout the adaptation to stationary phase. AhpC is
a peroxidase and peroxynitrate reductase is involved in antioxi-
dant defense mechanisms in Mtb. Genes encoding cytochrome bd
oxidase (cydA, cydB, cydC, and cydD) are also expressed early in
the NRP model. The cytochrome bd-1 oxidase is an alternative ter-
minal oxidase for the aerobic respiratory chain that is believed to
function at low-oxygen levels due to its higher affinity for oxygen
than the primary cytochrome c oxidase. Therefore, the induction
of these genes is consistent with the depletion of oxygen early
in the NRP model (Voskuil et al., 2003, 2004b; Hampshire et al.,
2004). Induction of the bfrB gene that encodes the iron storage
protein bacterioferritin, bfrB is repressed when the mycobactin
synthesis genes are induced under low iron conditions. The iron-
dependent regulation of bfrB and the mycobactin genes require
the presence of IdeR. The fact that the mycobactin and bfrB
genes are co-induced indicates that bfrB can be regulated by a
mechanism independent of the IdeR-dependent activation that is

observed during conditions of low iron. During NRP, the bacilli
may attempt to increase iron stores for use during long periods
of dormancy. Therefore, Mtb appears to induce both uptake and
storage functions simultaneously.

Transcriptome analysis of stationary phase Mtb cells incu-
bated under standard conditions (Betts et al., 2002; Voskuil et al.,
2004b; Shleeva et al., 2010) revealed activation of some of the
DosR-regulon genes, including those encoding the two component
regulatory system of stress response, as well as nitrate reductase,
nitrite binding protein, and alpha crystalline. It may therefore be
suggested that expression of the DosR-regulon not only acts as a
marker of a hypoxic state, but is also responsible for development
of the universal cellular stress response. However, transcriptome
analysis of Mtb under oxygen limitation revealed that enhanced
expression of the DosR operon genes under hypoxia was brief and
occurred only at the initial stage. A bigger group of genes was then
activated, reflecting the“true”cellular response to hypoxia (Rustad
et al., 2008; Shleeva et al., 2010).
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LATENCY AND Mtb ADAPTATION TO CHANGES IN pH
The macrophage intracellular environment is associated with pH
changes that are detrimental to bacterial survival, as such, a change
in expression of a large number of Mtb genes over a range of pH
values is noticed (Rao et al., 2001; Fisher et al., 2002; Saviola et al.,
2003). This implies that mycobacteria are able to perceive the pH
of their environment. Two adenylyl cyclases have been suggested to
fulfill that role in Mtb. Rv1264 was observed to have an increased
fold change of adenylyl cyclase activity at pH 6 compared to pH 8,
mediated through a pH-responsive catalytic domain (Tews et al.,
2005). In response to pH, the protein undergoes conformational
rearrangements and these may involve an unsaturated fatty acid
as a structural element (Tews et al., 2005; Findeisen et al., 2007).
In the closely related adenylyl cyclase Rv2212, pH-sensing activity
is strongly induced by binding of unsaturated fatty acids, but the
mechanism of this effect is not fully understood (Motaal et al.,
2006). While both Rv1264 and Rv2212 have increased activity at
acidic pH, the mechanism for activation was reported to be dif-
ferent between the two proteins (Tews et al., 2005; Motaal et al.,
2006).

ADAPTATION TO NUTRIENT DEPLETION
A rapid reduction in the ability of bacteria to synthesize proteins
leads to the accumulation of the stringent response signaling mol-
ecule (p)ppGpp which in turn reduces transcription of stable RNA
genes (Dahl et al., 2003; Jain et al., 2006). The enzyme relAb (the
only ppGpp synthase homolog in Mtb) is required for survival
of mycobacteria under long-term in vitro starvation conditions.
Microarray studies characterizing the response of Mtb to both a
fall in available nutrients and hypoxia, have demonstrated a rise
in relA (Betts et al., 2002; Hampshire et al., 2004). The study of
Hampshire et al., 2004, showed that relA is involved in initial nutri-
ent depletion adaptation in facilitating long-term survival (Primm
et al., 2000; Chatterji and Kumar Ojha, 2001). The type of regu-
latory pattern seen for relA was also observed for aceAb. It has
previously been suggested that increasing levels of (p)ppGpp in E.
coli may be the sole inducer of qor, a gene shown to be up-regulated
in response to conditions of stress, which seems to function by
reducing the quinone pool (Chang et al., 2002; Dürrschmid et al.,
2008). However, in the study of Hampshire et al. (2004), following
the drop in expression of relA early on, qor stayed up-regulated
throughout the time course and even showed a late substantial
increase, suggesting that other levels of regulation are present.

Different types of stress tend to up-regulate different sigma fac-
tors, however sigB, sigE, and sigH are a subset of sigma factors asso-
ciated with the entire period of stationary phase adaptation (Betts
et al., 2002; Hampshire et al., 2004). Alternative sigma factors
are a major category of transcriptional regulators responsible for
orchestrating the gene expression responses to non-proliferating
conditions in B. subtilis and E. coli. The sigma factor genes sigF,
sigB, and sigJ are the ones that are induced significantly during
stationary phase [reviewed in Wang et al. (2011)]. Voskuil et al.
(2004b) showed that only sigB is induced during stationary phase,
while sigF and sigJ are expressed relative to their levels in exponen-
tially growing bacilli and there is a weak induction of sigE. SigC is
induced early, while sigH is induced late in the NRP model. The
study (Voskuil et al., 2004b) spells out the need to determine if the

state of Mtb during clinical latency more closely resembles the E.
coli Sigma S model or the Bacillus sporulation cascade paradigm.

The genes involved in Mtb persistence in vivo are believed to
fall into two groups: those responsible for transition to the per-
sisting state and those responsible for its maintenance (Betts et al.,
2002; Shleeva et al., 2010). For example, the Mtb mutant lacking
the relA gene (its product in ppGpp), a “strong response” media-
tor, regulating cellular activity (Dahl et al., 2003) was capable of
normal growth in the macrophages and in vitro with citrate and
phospholipids as carbon sources, but did not survive transition
into the stationary phase or incubation under anaerobic condi-
tions (Primm et al., 2000; Shleeva et al., 2010). The expression
of a number of genes in the mutant strain and in the wild type
was different, including the genes encoding the reactivating pro-
tein: rpfA (enhanced expression) and rpfC (inhibited expression).
This demonstrates that the relA product is required for persistence
under starvation, oxygen limitation, and in an extensive stationary
phase, as well as in the chronic model and in the artificial granu-
loma in mice in vivo; it is one of the candidates for participation
in the persistent state in humans.

CONCLUDING REMARKS
Understanding the development and persistence of LTBI infec-
tion is complex. Despite many years of research and several strides
that have been made in identifying key Mtb persistence factors,
gene signatures for vaccine and drug design, eradication of TB
still seems to be out of reach. The main short coming of cur-
rent studies is the inadequacy of the current in vivo and in vitro
latency models [reviewed in Patel et al. (2011)] to closely imi-
tate latency development in humans. Nevertheless, these in vitro
single stress models have shaped our current understanding on
bacilli adaptation to the stationary and non-replicating stages.
This has revealed key functional groups of genes that regulate
latency and dormancy development. Most of these models are
not close to modeling the real human latency development, which
in humans can persistent for the entire life span until an oppor-
tune moment for reactivation, since they are designed to simulate
latency/dormancy over a few hours or days. Development of mod-
els that follow the framework proposed in the study Deb et al.
(2009), in which several stress factors are considered, has the
potential to illuminate and enhance our current understanding of
Mtb persistence. The use of the non-human primate model is more
encouraging since it simulates latency/dormancy close to that of
humans (Flynn et al., 2003), and has become the most attractive
model to study LTBI compared to other models. However, it is
marred with genotype variability and small sample sizes which
affects model results reproducibility. The complexity associated
with handling this model makes it expensive and unmanageable
for several scientists.

Several studies reviewed here suggest that under each different
stress condition the bacteria has a unique set of genes that sense
and report changes in its environment, hence facilitating necessary
changes for adaptation. These mechanisms seem to be dynamic
with the length of time spent in each condition as well as the type
of the stress. However, overlaps of genes expressed in hypoxia, NO-
exposure, and nutrient starvation are noticed (Betts et al., 2002;
Voskuil et al., 2003, 2004b; Hampshire et al., 2004). These kinds
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of experiments generate lots of data and this is where we think
mathematical and computational modeling should play a crucial
role. Studies (Magombedze and Mulder, 2011, 2012; Mazandu and
Mulder, 2011a,b,c; Hegde et al., 2012), show how computational
and mathematical methods can be used to analyze, learn more,
identify traits and properties of protein–protein interactions, gene
regulatory mechanisms, and metabolic pathways that are active in
latency development and maintenance, which cannot be identi-
fied by carrying out basic statistical analysis of the experimental
data. A few strides have been made so far to achieve this goal. The
study (Fallahi-Sichani et al., 2011) applied a multi-scale approach
to study the granuloma using a granuloma model with multiple
single cell entities modeled separately to understand TNF traffick-
ing within the granuloma and how this correlates to control of
infection. The studies (Magombedze and Mulder, 2011, 2012) are
the only recent studies to attempt to model gene cross talk and
regulation that occurs in latency adaptation and interface change
in gene expression with Mtb cell populations to show how these
gene regulations influence the final physiological and metabolic
stages of the pathogen. The future should see development of more
computational schemes that integrate data from different scales in
an endeavor to understand the dynamics of LTBI. A multi-scale
model that captures measurements of cells (T cells), cytokines
(influence of TNF-alpha and IFN-gamma), signaling mechanisms
of immune cells when there is an infection, pathogen mechanisms
of interfering with the immune signaling pathways, pathogen gene
regulatory mechanisms and how these mechanisms influence the

pathogen phenotypic characteristics and metabolic pathways into
one framework will be a good basis to generate and test several
hypotheses and has potential to usher the study of LTBI on to a
new level.

Existing models of the immune system do not cover much
detail at the molecular level such as protein sequences and struc-
tures and the effect of polymorphisms. The use of bioinformatics
is resourceful in this respect, it allows for analysis of pathogen
genome sequences and prediction of protein–protein interactions
within the pathogen, and between the pathogen and host (Leung
and Cavalieri, 2003; Kendall et al., 2004). Availability of the genome
sequence helps in compilation of all the potential gene products
encoded by a particular organism, identification of functions that
are missing or unique in a particular organism and identifying
genes that are common between prokaryotes and eukaryotes. This
enhances host-pathogen interaction studies which could provide
important clues for development of more rational and specific
methods to search for new drug targets, vaccine candidates and
diagnostic tests.
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