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Synthetic biology aims at translating the methods and strategies from engineering into
biology in order to streamline the design and construction of biological devices through
standardized parts. Modular synthetic biology devices are designed by means of an ade-
quate elimination of cross-talk that makes circuits orthogonal and specific. To that end,
synthetic constructs need to be adequately optimized through in silico modeling by choos-
ing the right complement of genetic parts and by experimental tuning through directed
evolution and craftsmanship. In this review, we consider an additional and complementary
tool available to the synthetic biologist for innovative design and successful construction
of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent
property in biological systems that arises from the concerted action of multiple factors
producing an amplification or cancelation effect compared with individual actions alone.
Synergies appear in domains as diverse as those involved in chemical and protein activ-
ity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic
biology designs, synergistic cross-talk between parts and modules is generally attenuated
in order to verify their orthogonality. Synergistic interactions, however, can induce emer
gent behavior that might prove useful for synthetic biology applications, like in functional
circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design
principles are therefore complementary to those coming from orthogonal design and may
provide added value to synthetic biology applications. The appropriate modeling, character
ization, and design of synergies between biological parts and units will allow the discovery
of yet unforeseeable, novel synthetic biology applications.

Keywords: synthetic biology, synergy, polypharmacology, multi-drug resistance, metabolic engineering, metabolic
networks, synthetic lethality, coupling

INTRODUCTION

Synthetic biology is an emerging discipline that proposes the appli-
cation of engineering principles to design and construct biological
systems with innovative and useful functionalities, usually not
found in nature. To that end, synthetic biology circuits and devices
are basic functional units obtained through the composition of
genetic parts that are used in order to build more complex biolog-
ical systems. Many successful synthetic biology applications have
been reported to date, including genetic circuits with specific trans-
fer functions such as oscillators, delayers, inducers, and synthetic
metabolic pathways (Wang and Buck, 2012). Due to its engineer-
ing roots, the concept of modularity is central to the synthetic
biology practice, as modularity is regarded as a key feature that
can make biology close to synthetic disciplines such as computer
science and engineering (Hartwell et al., 1999; Alon, 2003). Mod-
ularity dictates that circuits or devices should be designed in a
way that allows their operation to be performed in a modular or
plug-and-play fashion, thus allowing the reuse of these modules in
different and often unrelated applications. To that end, synthetic
biology modules try to satisfy as much as possible the condition of
orthogonality, in which modules work as functional units whose
intrinsic properties are independent of their environment (Lucks

et al., 2008). Such goal is attained through the adequate attenu-
ation of cross-talk between the elements of the circuits and the
host or chassis organism (Del Vecchio et al., 2008). Modules built
in that way should meet a standard collection of specifications
allowing the application of automated design techniques to syn-
thetic biology devices (Kitney and Freemont, 2012). One of the
striking features of synthetic biology applications is their capac-
ity for innovation by implementing new functionalities that were
not observed before, at least in their final form, in natural bio-
logical systems (Endy, 2005; Lanza et al., 2012). Such innovative
behavior is obtained through the rewiring of genetic elements
in rather creative ways that often lead to unexpected emergent
properties (Benner and Sismour, 2005). Notably, the resulting
new behavior can in many cases be regarded as the by-product
of a powerful latent property that is present among biological
systems, namely the faculty of inducing synergies between con-
stitutive elements toward the emergence of novel or reinforced
activities. Even when direct relationships between units are min-
imized, indirect dependences are still possible to exist in which
synergies may arise. Synergy, thus, is a concept inherent to modu-
lar systems, which has however not yet been exploited in synthetic
biology to the same level of maturity as in other allied fields. By
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learning how synergies are unveiled and used, not only in nature
but also in many technologically related disciplines such as drug
design or metabolic engineering, we might pave the road toward
accelerated innovation in synthetic biology applications. Various
examples of synergies exist in nature and, in biology, synergy has
been recognized as a driving force in evolution (Corning, 2013).
Examples of synergies in biology include cooperative interactions
between genes or the concerted effect of individuals in bacter-
ial colonies (Wintermute and Silver, 2010). Synergies of scale,
functional complementarities, symbiotic relationships, division of
labor, etc., are also found everywhere in living systems. Synergies
can provide an evolutionary advantage, like in secondary metabo-
lites in plants that act synergistically against pathogens (Challis
and Hopwood, 2003), or in the case of the emergence of resistance
during multi-drug therapy (Hegreness et al., 2008). Certain genes
act in synergy in the expression of a given phenotype. For a set
of alleles, synergistic epistatic interaction is defined when the con-
certed effect of mutants is stronger than the “sum” of the effect of
each mutant if considered as independent (Nordwald et al., 2013).
Similarly, antagonist epistasis (equivalently alleviating or buffering
synergy) is defined when the effect of all mutants together is less
severe than the sum of the effect of single mutations (Perez-Pinera
etal.,2013). This additive model for null-hypothesis independency
is often used when the effect of each mutation can be mea-
sured with a log-type scoring such as in measuring drug efficacy
for example. Otherwise, multiplicative or min models are used
(Mani et al., 2008). In pharmacology, a synergistic/antagonistic
drug combination is defined when the efficacy of two drugs is
larger/smaller than the sum of the individual effects. The Loewe
(additive) and Bliss (multiplicative) models are the correspond-
ing independency models for drug combinations (Cokol et al.,
2011).

This review explores how synergies are exploited in several dis-
ciplines for a possible adoption of such an approach in synthetic
biology applications. The benefits will be multiple, since taking
advantage of the synergies found in biological systems will allow
us to develop innovative, efficient, and more reliable synthetic
biology devices. In the next sections, we will first define first the
concept of synergy, giving a formal definition, and then we will
look at several techniques used for predicting synergies in silico.
We will then review important cases of synergies found in drug
design, toxicity, and metabolic engineering, as well as the main
instances in synthetic biology where synergies were involved as
major components in the conception of innovative applications.

THE ROOTS OF SYNERGY IN BIOLOGY

Synergy is a general mechanism that reflects the concerted action
of two or several factors on a given outcome of a system. This
concerted action produces an amplified or a cancelation (neg-
ative amplification) effect compared to the effect produced by
each factor individually. Synergy can be defined in multiple ways
depending upon the underlying model. In general terms, a prop-
erty x has synergistic effects on an observed activity f(x) in the
system if the dependency of the property with respect to the
activity shows superadditivity:

fxa4+x)=f()+f(x)

Synergy can be in that way measured as the difference between the
overall effect and the sum of the individual effects:

Syn (x1, x5 f) = f (1 + x2) — (f (x1) + f (x2))

More interestingly, synergies can also be defined in the context of
aggregated effects from a set of elements. Two subsets X; and X,
from a set X display synergistic effects for the activity f(A) when
this set function fshows supermodularity (Topkis, 1998):

fXUX) +f X NXp) = f(X)+f(X2)

Syn (X1, X3 f) =f (X1 UXo) +f (X1 NXp) — (f (X1) + f (X2))

For instance, the superadditivity and supermodularity models
correspond respectively to the Loewe additivity model and Bliss
multiplicative models of independent drug effect in drug synergy
(Cokol et al.,, 2011). In an information theory framework, syn-
ergy between two factors X; and X, with respect to the activity
fis defined by the difference between the mutual information of
each factor simultaneously and independently with respect to f
(Anastassiou, 2007):

Syn (X1, Xo5f) =1 (X1, X3 f) — (I (Xi:f) +1(Xa25f))

In physics, specially in Quantum Electrodynamics (QED) (Feyn-
man, 1988), synergy is described in terms of phase concordance
between two events, for instance in the case of light interference,
through the concept of amplitudes of probability represented by
complex numbers (Box 1; Figure 1). Similarly, the phenomena of
resonance as seen in spectroscopy or in phase transitions captures
the notion of synergy. This coupling phenomenon of resonance
is also used in electronics in order to build oscillator circuits. The
basic principle consists of establishing a synergy between two fil-
tering elements through a feedback loop that positively amplifies
the signal at the frequency of resonance. An oscillator circuit is
obtained when the feedback effect cancels the damping effect, so
that any small noise perturbation is enough to make the system
start to oscillate. Oscillators following that principle are present
in many biological systems. Natural oscillators include circadian
rhythms, heartbeats, as well as gene expression, metabolic, and
neuronal systems (Hess, 2000). Similarly to the electronic circuit
oscillator, they are internally controlled through regulatory feed-
back loops (Bell-Pedersen et al., 2005; Thekwaba et al., 2005), a
concept that has been exploited in synthetic gene oscillators by
using activator/repressor systems (Atkinson et al., 2003; Stricker
et al., 2008; Tigges et al., 2009).

Other examples are the divergence or amplified effect of ther-
modynamical variables observed in critical phenomena. At phase
transitions, a “resonance” can be seen between the macroscopic
and microscopic variables at the different length scales present
in the system. Nobel laureate physicist by K. Wilson (Kadanoff,
2013) found a way to connect them through a hierarchical frame-
work using a zooming multiscaled parameter (Yeomans, 1992).
This concept of scaling has a nice correspondence in biology and
is often named as an emergent property. For example, some prop-
erties of the lichen emerge when bacteria and microalgae enter in
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Box 1| Synergy in Young’s experiments.

In the QED theory, to any given event corresponds an amplitude of probability, a complex number |r|efe, the square of which gives the
probability of this event to occur. On a complex plane, this complex number is represented by a vector of length |r| and angle 6 with respect
to the real axis. Two vectors pointing toward the same direction have the same phase. Synergy comes into play when we decompose the
event into sub-events. When we add or multiply the amplitudes of probabilities of each sub-event (depending on whether the sub-events
happen in alternative or in independent successive ways), the resulting vector may have a greater module if all the vectors of the sub-events
point more or less toward the same direction, i.e., when all the vectors have similar phases. The canceling effect arises for example, when
an event is decomposed into two alternating (parallel) and equivalent sub-events that are in opposite phases. Such synergistic positive or
negative amplification effects could be observed in the famous experiment of light interference by Young (Figure 1). The message of this
example is that all physical phenomena concerning photons and electrons are explained in QED in terms of amplitude of probability. The
complex number view of probability seems to be an ideal tool at least in QED to study synergy.

S—A—0D
S)—B)—D

A & B independent: classical view

Detector

Constructive Interference

FIGURE 1 | Synergistic effects in Young’s interference experiment. In
Young's experiment, a source S sends photons to a detector D that is
located behind a wall with two tiny slots A and B on each side of the line
between S and D. (A) When the two slots A and B are independent (by
disconnecting the entanglement in measuring the photons emerging from
one slot with a detector behind A or B), there is no interference, and the
distribution of photons on the z-direction of the screen is just Gaussian.
This is the classical view of the experiment. (B) In quantum view, using
amplitude of probability, the photon emerging from S and going to D has
two alternating ways: slot A or slot B. The probability of the total event is
the square of the amplitude of probability given by the sum of the two
amplitudes for each alternating event Prob(S-D) =|(S-A-D) + (S—B—D)[?,

Large Diameter:
Additive phase

A/S\B

A & B in synergy: quantum view

D

Small Diameter:
Cancelling phase

Destructive Interference

where (.) is the amplitude of probability of the event. (C) The probability of
the total event will correspond to an amplified synergistic effect if the two
arrows of the two independent events points toward the same direction,
e., if the photons are in phase between each other which occurs when
the difference between the two trajectories corresponds exactly to an
integer number of time period difference between the two photons. This is
symbolically represented by a “watch clock” for each photon that turns
with a specific speed depending upon the frequency of the light. If the
arrows of these two watches point toward the same direction, then the
photons are in phase, and we get constructive interferences.
(D) Destructive interference is observed when the arrows are in the
opposite direction (opposite phase).

synergy (symbiosis). Conceptually, this means that at certain con-
ditions of the system the properties of the “forest” do not emerge
from studying the properties of the “tree” alone. In biology this
scaling property suggests a hierarchical embedding from a single
cell to a full organism. Scaling is therefore an additional concept
to be integrated in synthetic biology to study, at certain critical
conditions, for instance the emergent properties of a population
of cells from a single cell.

IN SILICO PREDICTION OF SYNERGIES IN BIOLOGICAL
NETWORKS

It is increasingly clear that complex interconnections between
components can lead to the emergence of global effects resulting

from a synergy between components or from a concerted ensemble
of components called modules. This modular view of biologi-
cal systems introduces the notion of synergy between modules
at a given hierarchical level but also between different hierar-
chical levels. In analogy with phase transition at critical state,
where all length scales are present (Yeomans, 1992), biological
systems might reveal synergies between various modular hierar-
chical levels that explain global biological functions of the entire
system (or dysfunctions like in the case of disease states in the
organism).

We can think of two types of synergies: the “horizontal” one
that corresponds to the concerted actions of modules at a given
hierarchical level; and the “vertical” one that can be viewed as a
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resonance effect between components or modules at various hier-
archical levels. Depiction of synergy depends therefore on the way
the biological system is represented. Graph modeling of biologi-
cal networks captures the relationships between the components,
usually at a given length scale. These relationships are usually mod-
eled from the local interactions observed experimentally such as
protein—protein interactions or metabolic networks. The goal of
the in silico model is to unravel the indirect effects or depen-
dences within this large set of interacting components. In silico
prediction of synergy is therefore based on two components: (i)
hierarchical and/or modular description of the biological network;
(if) implicit or explicit incorporation of the biological response
into the model.

Biological response can be included implicitly into the model
by constructing for example a disease genes network when look-
ing for a synergy between drug actions (Vitali et al., 2013), or
explicitly as for example with a cost function in flux optimiza-
tion of metabolic networks or as a statistical probability of a
functional node in a Bayesian Network approach. Once a biolog-
ical response is incorporated into the biological network, synergy
between components can be deduced directly from the graph
topology property of the biological network or by inferring the
behavior of conjugate agents on the output response of the system
from metabolic fluxes (see Metabolic Synergies below) or Bayesian
Network approaches.

The graph-topological approach to explain synergy consists of
establishing a relation between the graph property and the biolog-
ical response in order to define a synergy score from topological
graph descriptors. In the case of polypharmacology, the response
is modeled through a bi-partite graph and corresponds to the
effect of a molecule (drug) on a target or on a disease. This bi-
partite graph is made of two kinds of nodes (e.g., drug nodes

and target nodes) with no link between nodes of the same class
and can therefore be seen as an interacting graph between the
two class of elements, drug and target in this case. In order to
deduce the neighborhood description amongst nodes of a same
class, like the similarity of behavior of drugs or targets, a co-graph
from the bi-partite graph is constructed that connects two nodes
of the same class if they share the same partner in the other
class. For example, two drugs are connected in the drug-graph
if they interact with the same target. Similarly, two targets are
connected in the target-graph if they bind a given drug (Yildirim
et al., 2007; Li et al., 2011). Li et al. (2011) deduces synergistic
drug combinations by analyzing the corresponding disease gene
network for that specific disease. Their method, called NIMS (Net-
work target-based Identification of Multicomponent Synergy),
calculates drug synergy score using graph-topological descriptors
that reflect the type of connection a drug-related gene (node)
is making with the rest of the gene network. It includes graph-
topological notions like hubs and betweenness centrality (Li et al.,
2011; Vitali et al., 2013). This approach has been tested on a set
of five agent pairs with known synergy in every 62 pairs for a
given agent in the therapeutic area of angiogenesis and rheumatoid
arthritis.

Another topological approach presented by Vitali et al. (2013)
proposes an efficient identification of multicomponent synergies
that rely on the particular topological properties of the nodes
(Disease-Protein) in the disease network that are constructed
from protein—protein interactions and expression data for the dis-
eases under study. The selection of potential protein candidates
for pharmaceutical synergy is based on topological properties
of the network (Table 1; Figure 2). Then, a set function called
Topological Score of Drug Synergy (TSDS) assigns a score to each
combination of secondary proteins. Such a score is computed for

Table 1 | Synergy score estimation from network topological properties.

Type of score Definition

Example of application

Bridging centrality BR(p) = B(p) x BC(p)

B(p) is the betweenness centrality given by the fraction of

Network-based characterization of
drug-related genes (Kotlyar et al., 2012)

shortest paths between node pairs that pass through the node p

d(p)~!

Bridging coefficient -
ZveN(p) d(v)iw

BC(p) =

Network identification of robust
bridged nodes (Hwang et al., 2008)

Discriminates if a node p connects hub nodes, based on the

degree d(p) of neighbors N(p)

Nsn (p,d)

Ny Nsh Wi

Node reachability index DP(p)= " @
d=1 Nsn(p)

Network-based prioritization of drug
targets (Chua et al., 2011)

Sum of the weights wj; of each shortest pathway between the

source protein p and the diseases d divided by the number of

pathways Ngp

Topological score of drug synergy TSDS(p1, p2. p3) = I1

PE(P1.P2.P3)

DP(p)

Product of the reachability index DP(p) for each triplet of source

proteins (p1, p2, p3)

Network-based target ranking for
polypharmacological therapies (Vitali
etal., 2013)
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FIGURE 2 | Selection of protein candidates for pharmaceutical synergy.
The selection of source proteins that are potential candidates for
pharmaceutical synergy is based on topological properties, favoring the
in-between nodes with respect to hubs. Hubs proteins are highly
connected nodes that tend to be more essential than non-hub proteins but
targeting them might produce a large number of side effects. The drug
combination strategy consists of targeting less important proteins to have
less impact on the overall system alone while maintaining drug efficacy
thanks to the synergistic effect on several points of the biological network.
These secondary proteins correspond to in-between nodes in the network.
They are identified using bridging centrality index that is computed as the
product of its betweenness centrality and a bridging coefficient that
evaluates if a node is located between high degree nodes (Table 1).

each triplet of secondary proteins as the product of the node reach-
ability index computed between the protein and each disease node
(Table 1). These biological network-based approaches provide
proof of concepts that will be further validated as larger sets of
drug pairs with known experimental synergies become available
for set of diseases.

SYNTHETIC LETHALITY: SYNERGIES AS TARGETS

A class of synergy observed in biological systems that has received
much attention is synthetic lethality. Synthetic lethality describes
a deadly synergistic effect on a cell due to the presence of two
or more non-allelic mutations that are non-lethal on their own.
However, the combined mutations within these specific genes will
produce cell death. Synthetic lethality has become a promising
strategy in cancer therapy to target mutations that are not present
in normal cells. Genes can be targeted by small molecules or small
RNAs, leading to loss of function, that becomes lethal when the
complementary gene is mutated, i.e., in cancer cells only (Kaelin,
2005; Canaani, 2009; Scholl et al., 2009; Weidle et al., 2011). These
complementarity targets may be part of (i) a uniquely redun-
dant essential function; (ii) two subunits of an essential protein
complex; (iii) the same essential pathways; or (iv) parallel path-
ways that are together essential for the studied phenotype (Kaelin,
2005). Complementary genes can be found experimentally from
the investigation of hits obtained from high throughput screens

of large compound or genome-wide RNAI collections (Dent et al.,
2009; Suthers et al., 2009).

The synthetic lethality approach based on primary drug resis-
tant cell lines has led to a multi-drug strategy to target secondary
complementary lethal genes. Drug resistance might emerge from
mutated cell lines after a long treatment period with a specific
primary drug. Searching for secondary genes that are lethal for
these resistant cell lines can be found by secondary screening of
a compound collection against these resistant cell lines (Canaani,
2009; Dent et al., 2009). Attacking a complex disease such as can-
cer using drug combinations acting on multiple targets is likely to
be more efficacious as the concept of synthetic lethality assumes
a synergistic effect on essential targets or pathways. The synergis-
tic action of drugs on multiple lethal genes is also less prone to
drug resistance as it is more difficult for the cell to develop resis-
tance simultaneously to targets that are also lethal complements
to each other. Such therapeutic synergistic effects can be accom-
panied by synergistic side effects. However, large scale simulations
of bacterial metabolism using multi-dose experiments relevant to
diverse diseases, has provided evidence that synergistic drug com-
binations are generally more specific to particular cellular contexts
than are single agent activities (Lehar et al., 2009; Neumann and
Neumann-Staubitz, 2010). Moreover, synergistic combinations of
two or more agents can overcome toxicity and other side effects
associated with high doses of single drugs by countering biolog-
ical compensation, allowing reduced dosage of each compound,
or accessing context-specific multi-target mechanisms (Roth et al.,
2004; Sharom et al., 2004; Kaelin, 2005; Keith et al., 2005; Hopkins,
2008).

Growing efforts on the experimental determination of syn-
ergy are being made in the field of polypharmacology to deter-
mine optimum drug combinations or dual drugs for pairs of
synergistic targets that would increase the overall efficacy of dis-
ease treatment (Yildirim et al., 2007; Hopkins, 2008; Li et al.,
20115 Csermely et al., 2013; Vitali et al., 2013). While synergis-
tic toxicity may arise, drug combinations are expected to have
less secondary effects due to amplified efficacy at lower doses
for each drug. Synergy is evaluated experimentally by compar-
ing with the action of the sum of the components using the
Loewe additive model (Loewe, 1953), or the Bliss independence
model (Bliss, 1956). A Drug Combination Index (Chou and
Talalay, 1983) can be defined according to these two models
depending whether the response of the drug is linearly related
to the log of the dose or to the dose itself. Systematic investiga-
tion of relevant combinations of therapeutic targets can be done
experimentally using cell-based screening on large sets of com-
pounds (Canaani, 2009). However, this requires cell lines that
have retained the essential phenotype of the disease as well as
multi-dose preparations for all pairs of drug combinations or
single-dose combinations of drug cocktails, as suggested by Tan
et al. (2012). Computer approaches to predict highest scored
combinations of targets or drugs that need to be validated exper-
imentally are based either on topological graph analysis of bio-
logical networks (Vitali et al., 2013), as discussed in the previous
section, or on flux balance analysis (FBA) of metabolic networks
(Lehar et al., 2009), which are reviewed in more detail in the next
section.
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METABOLIC SYNERGIES: PATHWAY COMPLEMENTARITIES
Synergies are often found in organisms at the level of metabo-
lism. Observed metabolic phenotypes in the organism’s metabolic
network can be seen as emergent properties resulting from the
tradeoff balance between competing objectives such as growth and
energy consumption under Pareto’s optimality condition (Schuetz
etal.,2012). Perturbations in the network will induce adjustments
in order to achieve optimality under the new conditions. Syn-
ergies appear when the simultaneous perturbation of two nodes
in a metabolic network induces a readjustment of flux distribu-
tions that corresponds to an augmented effect at a distant site in
the network. Identifying such types of effects through FBA can
be used either to design metabolic interventions increasing the
production of a desired target metabolite in metabolic engineer-
ing or, in the opposite direction, to disrupt the metabolism of
a pathogen or a cancer cell by multi-target and synthetic lethal
drugs (Box 2). Synergies can also be observed at the systems level
in the concerted operation of metabolic networks, like in the case
of symbiotic and parasitic relationships (Christian et al., 2007) or
in ecosystems (Klitgord and Segre, 2011), where the metabolism
of different species act in cooperation.

As discussed in the previous section, synergies are stud-
ied through metabolic networks in order to identify combina-
tions of drug targets that have increased efficacy. For instance,
compounds that inhibit enzymes in the pathway can target
multiple enzymes in the pathway, since often they have con-
served binding motifs interacting with similar metabolites act-
ing as intermediates. This was the case for the shikimate path-
way of Helicobacter pylori, where through a screening procedure
compounds were found that could target both the shikimate
dehydrogenase and shikimate kinase (Hsu et al., 2013). Stud-
ies of synthetic lethality can be performed in silico through
FBA. In a reconstructed model of Mpycobacterium tuberculo-
sis, all pairs of double-deletion mutants (synthetic lethal pairs)
were tested through FBA. Drugs associated with such synthetic
lethal antimicrobial targets can represent drug synergy (Chavali
et al., 2012). Similarly, the observation that many cancer cells
adapt their metabolism has led to the identification of synthetic
lethal drugs trough FBA of metabolic networks; these syner-
gies were thereafter validated using available drug efficacy and
gene expression measurements (Folger et al., 2011; McCarthy,
2011).

Box 2 | Finding synergies in metabolic engineering.

In flux balance analysis (FBA), metabolic reactions are represented as a stoichiometric matrix S, where each row represents a compound
and each column represents one reaction. The flux through the reactions in the network is represented by v and it is constrained between
vMin and vMa* FBA estimates the optimal flux solution that maximizes an objective function vy, such as biomass, energy consumption,
etc., expressed as a combination of fluxes, among the allowable space of flux distributions (Orth et al., 2010):

maximize Vpjo
subject to
Sv=0

max

vt < v <

!

The solution to the previous constraint-based optimization can be found through the application of linear programing algorithms. Interest-
ingly, in order to find synergies between nodes in the previous network that maximize (or minimize) the flux, vy associated with the desired
activity, the optimization problem can be augmented into a mixed integer linear programing (MILP) problem where pairs, triplets, and so on
of gene deletions are tested in order to find the best synergy that simultaneously maximize vy and vy, stated as follows:

maximize vy
Yi

subject to
maximize Vpio
subject to

Sv=0

v/mm S V/' S v/max

dY-yy=K y={01

where K is the number of allowable deletions. Depending upon the type of synergy (positive or negative), two types of applications are at
least possible:

1. In synthetic lethality studies, vy is a negative flux that corresponds to the synergistic drug target, for instance in order to determine
essential genes that impair growth in cancer cells (Folger et al., 2011).

2. In metabolic engineering, the goal is to introduce metabolic interventions such as gene knockouts that modify the fluxes so that the flux
vy through the desired final product is maximized (Shen and Liao, 2013).
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Synergies in metabolic networks are also a valuable tool for
metabolic engineering. One of the implicit objectives of metabolic
engineering is to employ synergies in order to achieve optimal
production of a desired metabolite. Such synergies between meta-
bolic pathways arise when the requirements of the pathways, such
as energy, redox, or cofactor exchanges, are complementary (Shen
and Liao, 2013). To that end, network analysis can be performed
in order to determine simultaneous gene knockouts, knockdowns,
and overexpression (knock-ins) in the host organism leading to
overproduction of the target. For instance, a synergistic effect was
observed on the production of S-adenosyl-L-methionine in Pichia
pastoris by simultaneously using knocking in and knocking out
techniques (He et al., 2006). In another example, a synergistic
increase in plant oil levels was attained by simultaneously engi-
neering genes involved in the biosynthesis of fatty acids (Vanhercke
et al., 2013).

Such studies are based on the estimation of changes in the
equilibrium of fluxes through FBA when multiple genes encoding
enzymes are deleted in the network (Ranganathan et al., 2010). In
addition, synergies in metabolic engineering can also be obtained
through synergistic fine control of gene expression of the enzymes
in the pathway in order to allow the reduction of bottlenecks and
of growth inhibition from accumulation of intermediates (Flow-
ers et al., 2013). Developing regulatory parts such as promoters,
ribosome binding sites (RBS), and riboswitches have been shown
to be useful for achieving such synergies (Arpino et al., 2013). Fur-
thermore, another type of synergy that is naturally found in meta-
bolic pathways are the ones induced by enzyme co-localization
when reactions are brought into close proximity through a mul-
tifunction enzyme that couples sequential conversion steps in the
pathway, allowing by this means substrate channeling. Benefits are
multiple; namely, enzyme co-localization reduces intermediate’s
diffusion distance, can keep local concentrations high, and can
reduce cross-talk between competing pathways. Many examples
exist where synergistic improvements in comparison with individ-
ual enzyme activities were obtained through co-localization (Con-
rado et al., 2008). Interestingly, this strategy has been mimicked by
engineers in the design of synthetic protein scaffolds that physically

link enzymes in a way that allowed the effective concentration of
each component of the desired pathway to be increased (Dueber
etal., 2009).

SYNERGISTIC DESIGN FOR SYNTHETIC BIOLOGY
INNOVATION
Synergy is a concept that permeates much of synthetic biology.
Although in a rather non-systematic way, synthetic biology has
often taken advantage of existing synergies, either natural or those
found in experimental screening, in order to create new behav-
ior from the combination of biological elements (Agapakis and
Silver, 2009; Khalil and Collins, 2010). Synergies in synthetic biol-
ogy applications can be grouped into three main types (Table 2;
Figure 3): (i) constitutive synergies, which are found when the
emergent behavior of the device comes from synergies among its
internal elements; (ii) induced synergies, which occur if the output
activity of two or more synthetic biology devices induce a syner-
gistic effect in a host or external organism; (iii) modular synergies,
which appear when the independent behavior of multiple modules
gives birth to a synergistic outcome once they are interconnected.
Constitutive synergy is established between parts of a synthetic
biology module in order to provide its desired function. They are
obtained by the skillful application of genetic circuit design prin-
ciples. Such cooperative interactions among genetic parts enabled
many of the early synthetic biology devices. Among others, toggle
switches (Gardner et al., 2000) and oscillator gene circuits such as
the repressilator (Elowitz and Leibler, 2000) were early examples of
gene cooperativity giving birth to a well-defined emergent behav-
ior. The resulting cooperative behavior between genes is most
often linked to feedback relationships (To and Maheshri, 2010;
Jayanthi et al., 2013), i.e., genes that are combined through repres-
sion/activation interconnections in a way that allows generation
of the desired synthetic behavior (Rollie et al., 2012). In order to
establish a synergistic effect between the genes, properties for each
part need to be carefully selected. For instance, it has been shown
that to obtain oscillations, it is necessary to impose a time-scale
design condition with a repressor that is sufficiently slow in com-
parison with the activator (Jayanthi and Del Vecchio, 2012). Once

Table 2 | Examples of synthetic biology synergistic applications.

Type of synergy Elements showing

synergistic effects

Main analysis and

Synthetic biology applications

design methodologies

Constitutive Circuit's genetic parts

Induced Organism'’s biological elements Systems biology
(drugs, mutations, pathways, etc.)
Network analysis
Metabolic network analysis
Modular Synthetic modules Biosensor design

Interface design

Systems and control theory

Genetic circuit design

Toggle switch (Gardner et al., 2000)

Repressilator (Elowitz and Leibler, 2000)

Combinatorial antibiotic treatment (Lu and Collins, 2009;
Weber and Fussenegger, 2009; Kohanski et al., 2010)
Synergic treatment of metabolic disorders (Ye et al., 2013)
Bistability in bacterial populations (Tan et al., 2009)

Auxin biosensor from a mammalian and a plant circuit
(Wend et al., 2013)

Sensor and delivery for killing pathogens (Saeidi et al., 2011)

Analog (Daniel et al., 2013) and multicellular computation
(Goni-Moreno et al., 2013)
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FIGURE 3 | Synergies in synthetic biology applications. Several types of
synergies used in synthetic biology circuits engineered in E. coli.

(A) Constitutive synergy: the repressilator (Elowitz and Leibler, 2000)
represents a type of genetic circuit with constitutive synergy, where a cycle
of three repressor proteins causes a synergy leading the network to oscillate
(adapted from Chandran et al., 2008). (B) Induced synergy: an engineered
bacteriophage that overexpresses lexA3 to suppress the SOS DNA repair (Lu

@

[ ) [
<@ @
N
P. aeruginosa
and Collins, 2009) can induce the synergistic effect of lowering tolerance to
antibiotics. Thus, the antimicrobial effect of an engineered genetic circuit
producing antibiotics (Planson et al., 2011) can be significantly increased.
(C) Modular synergy: a combination of three modules that sense the
presence of P aeruginosa, produce the antibiotic pyocin S5 and deliver the

antimicrobial by triggering lysis of the cell, respectively, acts synergistically to
kill the pathogen when its presence is detected (Saeidi et al., 2011).

a constitutive synergy has been appropriately designed and tuned
in the circuit, the resulting functional device can potentially be
employed in multiple synthetic biology applications.

A second level of synergy used in synthetic biology is induced
synergy, i.e., synergy that is created between the outputs of syn-
thetic biology devices. As discussed in previous sections, many
useful synergistic events in biological systems have been identified
through systems biology and network analysis. Synthetic biology
modules are here used in cooperation in order to trigger exter-
nal synergistic events (either in the host organism or in a external
pathogen) that might be useful for biological applications. For
instance, to this category belong applications that use drug syner-
gies through the delivery of multiple drugs by synthetic biology
devices. Essential genes appear here as a basic tool used in order to
identify synergistic targets, for example with antimicrobial activity
(Juhas et al., 2012). One example is the use of engineered bacte-
riophages to attack gene networks that are not directly targeted by
antibiotics (Lu and Collins, 2009; Lu et al., 2009). By modifying
the oxidative stress response or the inhibition of DNA damage
repair systems in Escherichia coli, the antimicrobial effect of sev-
eral antibiotics such as quinolone, gentamicin, and ampicillin was
enhanced. Furthermore, control of biofilm formation and inhi-
bition of mechanisms involved in antibiotic resistance were also

enhanced by the engineered bacteriophages (Weber and Fusseneg-
ger, 2009; Kohanski et al., 2010). In yet another example, a first
molecule (guanabenz) was used in order to activate a synthetic
signal cascade that stimulated the secretion of a fusion protein that
regulates the metabolism based on the synergistic action of a pep-
tide (GLP-1) and the hormone leptin (Ye et al., 2013). The authors
showed that it was by this means possible to regulate the metabolic
syndrome states linked to several diseases (obesity, hypertension,
hyperglycemia, etc.). Besides these examples of induced synergy
between the outputs of synthetic biology circuits, other induced
synergies might appear between the inserted circuit and the host
organism because of variations in global host resources (Cardinale
etal., 2013) or cell growth (Scott et al., 2010), leading to different
circuit performances. Interestingly, such synergistic effects have
been used to generate bistability in bacterial populations through
growth-rate dependent gene expression (Tan et al., 2009; Klumpp,
2011), opening the possibility to another type of synthetic biology
applications based on the induced synergy between circuits and
the host organism.

In the third group of synthetic biology synergies belong those
that emerge at the modular level, i.e., emergent behavior elicited
by the concerted operation of multiple synthetic biology devices.
If the two previously described groups of synergy were established
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either internally (constitutive) or externally (induced) with respect
to the inserted synthetic biology modules, modular synergy is a
synergy that is specifically established between the modules. Here,
each synthetic biology module operates in a rather independent
or orthogonal way from the others except at the input/output
interface where the actual synergy is formed. The resulting circuit
interferences or cross-talk can be characterized through prop-
erties such as retroactivity, a property analog to output imped-
ance in electronic circuits (Del Vecchio et al., 2008; Jiang et al.,
2011), and fan-out (Kim and Sauro, 2010). Theoretical studies
have shown that these properties can be finely tuned through
an appropriate insulation and time-scale separation (Jayanthi
and Del Vecchio, 2011). For instance, insulation mechanisms for
module interfaces have been proposed based on phosphorylation-
dephosphorylation cycles (Del Vecchio et al., 2008), the appropri-
ate selection of DNA target sites for transcription factors (Jayanthi
and Del Vecchio, 2012) or through the signaling metabolite acetyl
phosphate in order to generate oscillations (Fung et al., 2005). In
general, introducing delays at the circuit’s interface through tran-
scription and translation control (riboregulators, RBS, etc.) (Pur-
nick and Weiss, 2009), regulatory regions, degradation, inducible
promoter regulation (Jayanthi and Del Vecchio, 2012) or enzy-
matic processes (Cookson et al., 2011) constitute flexible methods
to tune synthetic biology circuits. These genetic elements work
very often in a synergistic way (Perez-Pinera et al., 2013). There-
fore, models that precisely estimate synergistic activities are needed
in the synthetic biology design toolbox. Some examples are operon
calculators (Salis et al., 2009) as well as others ways of control-
ling gene expression from genetic elements (Meng et al., 2013;
Mutalik et al., 2013). Synthetic biology applications that have used
modular synergies include for instance an E. coli strain that was
engineered to sense and kill Pseudomona aeruginosa. A first mod-
ule consisted of a sensing device that detected the presence of P.
aeruginosa through its quorum sensing signal. A second module
was responsible for the production of pyocin, an antibiotic and
of E7 lysis protein causing the chassis to lyse and resulting in the
release of pyocin (Saeidi et al., 2011). In this application, the con-
certed operation of both modules resulted in the killing activity.

In another example, a synergistic mammalian and plant synthetic
biology approach was used to develop a ratiometric luminescent
biosensor with wide applications including study of auxin metab-
olism, transport, and signaling (Wend et al., 2013). More advanced
applications of modular synergy are circuits performing complex
computations, such as synthetic analog gene circuits (Daniel et al.,
2013) and multicellular computation (Gofi-Moreno et al., 2013).

PERSPECTIVES

Synergies have been driving innovation both in nature and in syn-
thetic designs. They have served to implement innovative solutions
in fields as diverse as drug design, where drug synergies provided
new ways to overcome urgent problems such as resistance, and
in metabolic networks, where synergies have found their way in
pathway complementarity toward amplified targeted effects. By
pushing forward the concept into synthetic biology, we would
argue that new promising applications may emerge in the near
future.

To date, synergy has already been successfully used in synthetic
biology to induce non-natural behavior in synthetic constructs, to
empower the outcome of biological circuits, or to enable the con-
certed operation of modules into an emergent function. The next
frontier will be in the development of a systematic characterization
of synergistic effects in synthetic biology devices in a similar man-
ner as synergies are characterized through modeling and screening
in other disciplines such as drug design and metabolism. Beyond
the concept of orthogonality in modular design, synergistic cross-
talk between modules arises here as a valuable feature that should
be appropriately characterized in the specifications found in bio-
logical circuit catalogs. The adoption of such proposed practice
of synergistic synthetic biology, thus, will require a design para-
digm shift toward circuit topologies that will deliberately display
the ability of emergent behavior once operating in concert.
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