

BIOENGINEERING AND BIOTECHNOLOGY
METHODS ARTICLE

published: 30 July 2014
doi: 10.3389/fbioe.2014.00025

Anima: modular workflow system for comprehensive
image data analysis
Ville Rantanen, Miko Valori and Sampsa Hautaniemi*

Research Programs Unit, Genome-Scale Biology and Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland

Edited by:
John Hancock, University of
Cambridge, UK

Reviewed by:
Peter Horvath, ETH Zurich,
Switzerland
Dhananjai M. Rao, Miami University,
USA

*Correspondence:
Sampsa Hautaniemi, Research
Programs Unit, Genome-Scale
Biology and Institute of Biomedicine,
Biochemistry and Developmental
Biology, Room B524b, PO Box 63,
00014 University of Helsinki, Helsinki,
Finland
e-mail: sampsa.hautaniemi@
helsinki.fi

Modern microscopes produce vast amounts of image data, and computational methods
are needed to analyze and interpret these data. Furthermore, a single image analysis project
may require tens or hundreds of analysis steps starting from data import and pre-processing
to segmentation and statistical analysis; and ending with visualization and reporting. To
manage such large-scale image data analysis projects, we present here a modular work-
flow system called Anima. Anima is designed for comprehensive and efficient image data
analysis development, and it contains several features that are crucial in high-throughput
image data analysis: programing language independence, batch processing, easily cus-
tomized data processing, interoperability with other software via application programing
interfaces, and advanced multivariate statistical analysis.The utility of Anima is shown with
two case studies focusing on testing different algorithms developed in different imaging
platforms and an automated prediction of alive/dead C. elegans worms by integrating sev-
eral analysis environments. Anima is a fully open source and available with documentation
at www.anduril.org/anima.

Keywords: quantification, automated analysis, image analysis, high-throughput, superplatform

1. INTRODUCTION
Automated microscopes and image acquisition systems enable
experiments that can easily produce millions of images in a sin-
gle experiment (Tanasugarn et al., 1984; Conrad and Gerlich, 2010;
Shamir et al., 2010). Manual analysis of such vast amount of image
data is impossible, and a wide array of computational methods
is needed to translate raw data files into biological and medical
knowledge (Eliceiri et al., 2012). Accordingly, a number of image
analysis tools, most notably CellProfiler (Carpenter et al., 2006),
ImageJ (Schneider et al., 2012) and its extension Fiji (Schindelin
et al., 2012), and several others as reviewed by Eliceiri et al. (2012),
have been introduced. They have been used successfully especially
in extracting intensity and shape features from various biological
objects.

A key challenge with the existing methods is that their
concurrent use is hindered by different input/output require-
ments. For example, it is challenging to add new algorithms
to the analysts’ use as a new implementation needs to be pro-
gramed(Cardona and Tomancak, 2012). Furthermore, existing
software typically do not include options for high-order statis-
tical or computational downstream analyses (Huang, 2010), and
the use of various software without systematic framework leads
easily to delays and errors. In order to overcome these issues,
there is a need for a modular image analysis workflow envi-
ronment in which individual analysis methods are considered
as components of a pipeline and can be joined together seam-
lessly. Even though the role of data analysis workflow systems
in genomics analysis has been recognized (Almeida, 2010), in
the biological image analysis there are currently no image analy-
sis focused integrated workflow systems available (Eliceiri et al.,
2012).

We describe here an open source and modular analysis work-
flow system, Anima (ANduril IMage Analysis), for development of
comprehensive image processing and multivariate statistical analy-
sis of image data. Anima allows the combination of tools from
different fields of informatics to a coherent workflow environ-
ment. It is targeted mainly for analysis and algorithm developers.
Once an application is built with Anima, it may be executed by
a wider audience. The main design principles are to enable rapid
development and incorporation of new methods, without the need
to port them from their original implementations. With Anima, an
image analysis developer may systematically test different methods
and include newly published ones regardless of the programing
language the methods have been implemented in.

In order to gain scalability and flexibility, Anima has been
designed to maximize portability, which rules out any server based
frameworks (Rex et al., 2003; Berthold et al., 2007; Bauch et al.,
2011; Rouilly et al., 2012). In addition, to remove the need of
tedious porting to a specific language (HIPI, 2014), the framework
needs to be able to run processes or scripts created with different
languages. Thus, the most suitable framework architecture engine
is the generic pipeline based solution (Ovaska et al., 2010; Wilde
et al., 2011). Anduril is a generic workflow engine that contains a
large library of bioinformatics related functionality and integra-
tion to several programing languages. Accordingly, Anima allows
both rapid and flexible image data analysis as well as the use of
powerful statistical methods. We demonstrate here the utility of
Anima via two case studies. They display Anima in testing segmen-
tation methods published on multiple, otherwise incompatible,
platforms. In addition, we show seamless integration of image data
extraction to a standard supervised prediction algorithm. Anima is
an open source project available at http://www.anduril.org/anima.

www.frontiersin.org July 2014 | Volume 2 | Article 25 | 1

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00025/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00025/abstract
http://www.frontiersin.org/people/u/117565
www.anduril.org/anima
http://www.anduril.org/anima
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive
mailto:sampsa.hautaniemi@helsinki.fi

Rantanen et al. Anima: modular imaging workflow system

2. IMPLEMENTATION
2.1. SPECIFICATIONS
The major design principles in creating Anima framework were
that it integrates new algorithms with minimal implementation
effort, it is command prompt friendly, and focuses on batch pro-
cessing. To reuse existing software, the framework was built to
extend an established pipeline engine, that:

1. provides a convenient mechanism to integrate existing soft-
ware, not just libraries, as components of pipelines.

2. maintains the datatypes of the data flow, by preventing the
wrong type of files being sent to a component.

3. creates an abstraction barrier between the programing code
and the analysis design.

4. has a rich collection of existing data analysis components.
5. automatically parallelizes independent parts of the pipeline.
6. provides dynamic pipeline branching, to adjust the pipeline

based on input data
7. does not rely on a server-client architecture, for easy deploy-

ment of smaller pipelines.
8. is able to resume analysis in the event of failures, prevents run-

ning of parts that have been already run, and reports and helps
to solve failures.

Anima, in addition, extends the pipeline engine with:

1. the ability to use the image formats generated by majority of
microscope image acquisition software.

2. interfaces for popular image analysis platforms, to further easen
the integration.

3. convenience components for the commonly used parts of a
typical image analysis.

4. file data types needed to represent the common image analysis
objects.

The specifications are met by using the Anduril work-
flow engine (Ovaska et al., 2010) that facilitates the flow
handling. Anduril engine executes components of an analysis
pipeline and provides a simple workflow configuration language
(AndurilScript). The components in the Anduril workflow are sep-
arate programs that in principle could be run independently and
can be of any of the languages that have an application program-
ing interface (API) in Anduril, such as Java, Bash, Perl, Python,
R, or MATLAB, or in principle, any binary launched from the
command line. The API includes a set of tools to read and write
standard data types defined in Anduril. With the AndurilScript
language, the user sets data sources and parameters and connects
data to components, while Anduril engine passes the parameters
on to the components and starts the processes. AndurilScript is
a very simple language that abstracts the data flow and does not
contribute to the low level processing itself. The analysis devel-
oper can concentrate on creating the data flow and see which tools
are used, while the algorithm developer creates the components,
which can be used in many different analyses.

Anduril engine makes development fast, since it stores the state
of the analysis, allowing continuation where the processing ended
in the case of a failure or other interruptions. The same mech-
anism also prevents any reruns of the parts of the analysis that

do not require rerunning. This evaluation style is similar to lazy
evaluation, like found in Haskell (2002), but forward propagated.
In addition, it provides a syntax check for the component inputs,
and file level datatyping. Any error situation is reported in a log
file, and on the standard output.

2.2. ANIMA ARCHITECTURE
Anima is built on top of Anduril, and therefore shares its archi-
tecture. The architecture is visualized in Figure 1. At the top level
of the architecture is AndurilScript, the language, the user uses
to build applications. Anduril Engine is the core Java software
that parses the script, checks the syntax, and creates the data flow
network. The engine also inspects the component interfaces for
standard data types, ensuring the data flow is sensible in terms
of file types. The components and libraries provide the actual
data processing algorithms. They are programs developed with
different languages. Anduril provides the components with API
functions that help the component developers in reading and
writing the standard data types.

Anima and Anduril are designed with extreme programing phi-
losophy (Beck and Andres, 2004). Both of them are continuously
developed with small steps, and have collective code ownership.
The engine and components are required to have test cases, the
design encourages test driven development, and the test cases are
constantly run in a continuous build environment. Most of the
developers are also heavy users of the system, creating a very close
developer-customer relationship.

Anima extends Anduril by adding more functionality to the
component and API levels of the architecture. The APIs are
extended by image data handling functions. The most significant

FIGURE 1 | Anima software architecture diagram. Anima extends Anduril
architecture by adding more functionality to multiple layers.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology July 2014 | Volume 2 | Article 25 | 2

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Rantanen et al. Anima: modular imaging workflow system

extension to Anduril is the selection of components that pro-
vide either a convenient functionality, like segmenting images
or extracting features, or give access to a freely scripted plat-
form, such as ImageMagick (2014) or Fiji. Currently, we provide
48 components, which are updated as features are required or
requested. The latest versions are always available in the pub-
lic code repository. The components are fully documented and
accessible in a searchable component reference at http://anduril.
org/pub/bundles/image_analysis/doc/.

2.3. DATA FLOW IN ANIMA
The main design concept of Anima is to function as a super plat-
form, i.e., to take advantage of existing software and not to replace
them. Anima is ideal for developing and testing new methods,
while it can also be used to run established standard analysis.
Anima encourages horizontal data flow schematic, which means
that each step (e.g., segmentation) is processed with all of the
images, as shown in Figure 2. Horizontal data flow ensures that
each step produces sensible results before performing the down-
stream analyses, for example setting segmentation parameters that
are suitable for all of the images. Anima is designed to comply with
the concepts of openness and usefulness as suggested by Carpenter
et al. (2012).

Processing images is often case specific, and thus Anima pro-
vides components that allow the user to execute custom proce-
dures in popular image processing tools. For example, several
standard procedures for processing microscopy images, such as
background subtraction and overlaying gray scale images to color
images, have been added. The more complex steps (e.g., segmen-
tation and feature extraction) have been written as components
that contain several individual methods and their parameters. The
components and their parameters are documented in an easy-
to-search HTML page structure. Highlights of components and
application pipelines included in Anima that are directly useful in
image analysis are given in Table 1.

FIGURE 2 | An example of the horizontal data flow, where images are
segmented and extracted for numerical features. The horizontal data
flow allows the inspection of the suitability of the thresholding step for all of
the images, before continuing with the time consuming feature extraction.

The executed components are separate processes launched from
the Anduril engine. Thus, the steps that are independent can be
launched simultaneously and in parallel. Accordingly, parallelizing
processes allows to fully utilize the modern processors’ multicore
and multithreading technologies or to send the processes to a clus-
ter computing environment. Two cluster environments, SLURM
(Yoo et al., 2003) and Oracle Grid Engine (Oracle Inc., CA, USA),
have been successfully tested with Anima.

2.4. SOFTWARE INTEGRATION
Anima has the advantage of supporting multiple programing lan-
guages. It is straightforward to take an existing software or library
and merge it to the workflow. In addition to the standard Anduril
API collection, Anima provides environments to run CellProfiler
workflows, as well as MATLAB, Fiji, and ImageMagick scripts.
Anima is not dependent on any of the other platforms – only the
ones the developer chooses to use.

A key issue in using multiple software concurrently is the def-
inition of file formats in component input/output relations. The
communication between components in an Anima workflow is
done via files. Typically, the file is a table of values in the Comma
Separated Values (CSV) format or an image file in the Portable
Network Graphics (PNG) format. Anima can process various com-
mon image formats, but PNG is preferred because it is a flexible
and open source image format. It supports many bit depths and
provides lossless compression, which is especially suitable for two
color mask images. Anima provides a converter from all major
image formats via the Bio-Formats library (Linkert et al., 2010).
Since the image processing steps are typically fast (a few seconds
per image), the components mediate results by folders of images,
not as individual image files. This approach reduces the overhead
of starting new processes and is the basis of horizontal data flow.

To enable complex analyses, Anima introduces two standard
object representations in addition to conventional black and white
mask images. The first one is the MaskList, which is a folder of
images. Each image represents a single object mask, allowing non-
connected and overlapping objects. The second one is an Ellipse
CSV or a table of ellipse coordinates. The ellipse is a compact and
robust model for various shapes, such as cell nuclei, in molecular
biology. The ellipses are used in the description of Gaussian Blob
objects as explained in the feature detection schema presented by
Lindeberg (1998).

In our case study, we show integration of the WEKA [Waikato
Environment for Knowledge Analysis (Hall et al., 2009)] software
to the image analysis pipeline. WEKA provides access to a number
of machine learning implementations in Java, which are included
in the Anduril default installation. We use here a Naïve Bayesian
Classifier, a classic machine learning algorithm (John and Lang-
ley, 1995), and the Random Forest algorithm, which is a powerful
ensemble classification algorithm (Breiman, 2001).

2.5. SCRIPTING
Anima takes advantage of the Anduril workflow engine, which is
based on command line interface. It allows the design and imple-
mentation of scalable and flexible analysis workflows. Even though
most of the image processing and analysis tools are graphical user
interface based, they can typically be scripted and run from the

www.frontiersin.org July 2014 | Volume 2 | Article 25 | 3

http://anduril.org/pub/bundles/image_analysis/doc/
http://anduril.org/pub/bundles/image_analysis/doc/
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Rantanen et al. Anima: modular imaging workflow system

Table 1 | Component categories and their applications in the Anima bundle.

Task Description

Segmentation A set of segmentation tools provided cover majority of cases. Masks can be created by global, local, or seeded algorithms. Masks

can be further fine tuned through shape filtering or active contour algorithm (Kumar, 2010). Ellipses and line-objects are created by

separate components.

Object

management

Objects in an image mask can be removed by any measured or calculated feature value. For example, by clustering the values of

intensity and area, the objects that belong to a cluster where both values are small can be removed from the mask images.

Object relation Any two masks can be related to each other. For example, a cell contains one or more nuclei. The cell and its nuclei have a

parent–child relation. Further, nucleoli can be related to parent nucleus, creating a chain of primary, secondary, and tertiary objects.

Feature

extraction

Anima has a pre-defined set of intensity, texture, and morphological features that can be extracted with different components.

Features can be extracted from masks, ellipses, and line object representations.

Visualization These components can add annotations on images from tabular data or merge images and color mask objects by clusters or other

values. Time lapses or time varying plots can be rendered in GIF animations or common video formats. A web site publisher exists

to present the result data and visualizations.

command line. Anima is controlled with the AndurilScript lan-
guage. An example script extracting morphological features from
labeled cell nuclei is presented in Table 2.

AndurilScript allows the data analyst to have a permanent
record of all steps used in the analysis. This, together with sav-
ing the original images, is crucially important in image processing
analysis (Nature, 2006, 2013; JCB, 2013). Furthermore, as parts
of a script can be easily transferred to a new project, the script-
ing approach offers an easy solution to efficient code reuse. Since
the scripts are conventional text files, and the intermediate results
standard CSV and image files, the developer may use any of their
favorite tools to work with Anima.

It should be emphasized that AndurilScript is not a new pro-
graming language replacing others in the analysis. The image
processing is executed in components running the original code
in their respective languages. AndurilScript is only used to control
the flow of data between the components.

An important feature in Anduril, not generally found in work-
flow systems, is the ability to use for-loops, which allows sev-
eral options to make advanced pipelines. For example, script-
ing with for-loops can be used to test a method over a range
of parameter values, test a range of different implementations
for the same method, or parallelize a computationally heavy
analysis.

3. MATERIALS AND METHODS
3.1. DATA DESCRIPTION FOR CASE STUDIES
We provide two case studies of the use of Anima with the bench-
mark data available at the Broad Bioimage Benchmark Collection
(Ljosa et al., 2012).

In the first case study, the source image dataset (BBBC005v1)
contains 9,600 synthetic cell images (600 images× 16 different
simulated levels of out-of-focus effect). This dataset is ideal for
testing segmentation methods’ robustness for incorrect focus in a
high-throughput application.

For the second use case, we used the C. elegans infection
live/dead image set BBBC010v1. The set consists of 97 bright
field microscopy images annotated to belong to either live or dead

Table 2 | An example pipeline script extracting morphological features

by segmenting cell nuclei.

/* Define a folder of RGB color images. */

list= INPUT(path= “path/to/images”)

/* Extract the blue channel. (3rd) */

blue= ImageExtract(dir= list, ch= 3)

/* Cell segmentation based on the blue channel,

finding round shapes with areas of 200–2000

pixels. */

cells= ImageSegment(dir= blue.channel,

method= “Shape”,

minround= 0.90, maxround= 1,

minsize= 200, maxsize= 2000)

/* Extract morphological features. */

morph= ImageMorphFeatures(mask= cells.mask)

/* Create a visualization to confirm the segmentation.

* Blue signal with 460nm wavelength color.

* Object mask perimeter lines with white color. */

visualization= ImageRGBMerge(dir1= blue.channel,

color1= 460,

dir2= cells.perimeter,

color2= “W”)

/* Create a brief summary, averaging the features

of each image. */

summary= CSVSummary(csv= morph.table,

summaryType= “mean”,

clusterCol= “File”)

class. The annotation makes the dataset ideal for testing machine
learning applications.

3.2. DERIVED MEASURES IN THE CASE STUDIES
In the first case study, the aim is to compute the number of cor-
rectly segmented objects. Segmentation methods, watershed in
particular, may oversegment the objects producing more objects
than the actual count. Thus, direct comparison of count (measured

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology July 2014 | Volume 2 | Article 25 | 4

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Rantanen et al. Anima: modular imaging workflow system

count /validation count) may lead to ratio >100%, which hinders
interpretation of the results. Therefore, we used the non-incorrect
object ratio that overcomes this issue:

1−
‖ measured count − validation count ‖

validation count
. (1)

In the second case study, the objective is to classify images based
on the curvature of worm-like objects. This requires two measure-
ments: the length of an object measured along its center line and
the distance between the end points of the object as shown in
Figure 3. With these two values, we can construct a derived fea-
ture; the distance-length ratio (DLR) that describes normalized
curvature,

DLR =
end − to − end distance

skeleton length
. (2)

4. RESULTS
We show two case studies developed with the Anima workflow
system. In the first case, the objective is to segment objects in a
large number of images using several existing algorithms. This
example demonstrates the use and parallelization of existing plat-
forms Fiji, MATLAB (Mathworks Inc., MA, USA), and FARSIGHT
(Bjornsson et al., 2008), without the need of re-implementation
of the algorithms. In the second case, the workflow objective is to
predict whether C. elegans worms are dead or alive based on fea-
tures extracted from images. This case displays the integrated use
of image processing with MATLAB, data processing with CRAN
R (Ihaka and Gentleman, 1996) and supervised machine learning
with WEKA library (Hall et al., 2009). All data and Anima scripts
are available in Supplementary Material.

4.1. CASE STUDY I: HIGH-THROUGHPUT SEGMENTATION
Segmentation is one of the most crucial operations in biomedical
image analysis. It establishes the measurement of the objects of
interest. Here, we conduct cell nucleus segmentation and count-
ing using three different image analysis platforms. The pipeline
segmented, counted, and produced visualizations of the segmen-
tations by overlaying the mask perimeter on the original signal
image. The process diagram is shown in Figure 4.

The first of the three platforms used here was Fiji. The nuclei
were segmented with the Global Otsu thresholding method (Otsu,
1979), corrected with a constant multiplier of 1.3, which was set by
visual inspection. The thresholding was followed by a watershed.
We compared the results of the Otsu segmentation to a graph
cut method developed by Al-Kofahi et al. (2010) and a wavelet
based segmentation developed by Padfield et al. (2011). The graph
cut method is implemented in C and distributed as an executable
binary with the FARSIGHT toolkit, whereas the wavelet method
is distributed as a MATLAB function.

The ratios of non-incorrect cells (Equation 1) with each focus
parameter are shown in Figure 5. On average, the Fiji Otsu seg-
mentation accuracy was 94% of the number of objects in the
annotation. For comparison, the graph cut approach accuracy
was 94% and the wavelet method accuracy 98%. The out-of-focus
affects Otsu segmentation the most and the accuracy starts to drop
quickly. In contrast, the Wavelet method is very robust to misfocus.

A B

FIGURE 3 | Distance-length ratio in a straight/dead (A) and
curved/alive (B) C. elegans. The values for the DLR are (A) 116/112=1.04
and (B) 21/104=0.20. The skeleton length is represented by the number of
pixels in the skeleton, and therefore, the ratio may exceed 1. The cyan line
represents the skeleton length, and the yellow line the end-to-end length.

FIGURE 4 | Block diagram of the analysis of the BBBC005 image set.
The source folder contains N files. The user sets the partitioning constant P
to, e.g., the number of processor cores. The for-loop, in dashed rectangle,
iterates over index i, automatically parallelizing the components.

Segmentation of 9,600 images with the three methods used
in this case study took 5 h 6 min wall-clock time using a single
thread process on a 3.40 GHz clock speed Intel i7-2600 proces-
sor. The benefit of using Anima, instead of running the tasks with
Fiji directly, is that Anima provides tools to partition the data and
to use parallelized computation. When using hyper-threaded four
core CPUs with six threads and partitioning the data in 24 parts to
maximize parallelization, the analysis lasted 1 h 44 min. In addi-
tion, when running the analysis on a three node SLURM cluster,
where each node runs 24 threads on 24 cores, the running time

www.frontiersin.org July 2014 | Volume 2 | Article 25 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Rantanen et al. Anima: modular imaging workflow system

FIGURE 5 | Comparison of segmentation accuracies in the BBBC005v1
benchmark set. The ground truth contains 30,300 cells for each focus level.
The graph is generated in the pipeline analyzing the data.

decreased to 1 h 2 min. The running time does not decrease further
with increased parallelization, due to increase of communication
through the filesystem. The full pipeline, providing the images and
validation statistics, is available in Supplementary Material.

The inherent property of Anima using Anduril is to speed
up development via running only the parts of analysis that are
affected after a change in the pipeline configuration. For example,
if the developer wants to use a different metric for the validation
statistics, re-executing the pipeline after modification takes mere
seconds to run, as only the very last few steps would be processed.

4.2. CASE STUDY II: PREDICTION OF C. ELEGANS VITAL STATUS
Predicting whether a C. elegans worm is dead or alive from
images requires automated image processing and the use of
machine learning methods. The phenotype description suggests
us that live worms appear curved, while the dead ones are mostly
straight (Figure 3). Thus, we first segmented and skeletonized the
brightfield images and then measured the skeleton features.

To describe the morphologies of the skeleton features in an
image, we calculated two image descriptors: the median of end-
to-end distances and distance-length ratios. The two-dimensional
value was then used as the training value for a Random Forest
classifier. Half of the images (48 images) were used in training and
the other half in validation.

Out of the 48 validation images, only one was predicted wrong
with the Random Forest classifier, leading to ROC area under
curve (AUC) of 0.979. In comparison, the Naïve Bayesian classifier
produces the same AUC of 0.979.

The pipeline uses MATLAB, CRAN R, and WEKA based com-
ponents provided by Anima and Anduril. The running time on
an Intel i7-2600 processor, using two threads, was 3 min. The
full pipeline analyzing the images, training, and validating the

Table 3 | Applications built with Anima.

Application Description

Computer

aided analysis

Extracting features from a manually segmented set

(Cheng et al., 2011; Jalkanen et al., 2012)

Granular

objects and

neighbors

Exploring novel analysis methods by using granular

point-like objects and their neighbors for data source

(Blom et al., 2012).

Alternative

segmentation

Finding Gaussian Blob-like objects (Aarne et al., 2013)

Time-series Time lapse cell analysis with time-series data analysis

(Moore et al., 2011)

Decision

making

Using machine learning for a subjective decision

maker (Enzerink et al., 2010; Jäämaa et al., 2010, 2012)

Artificial image

source

Protein array image segmentation, quality metrics and

analysis (Savilahti et al., 2010)

classifiers with their parameters, is available in Supplementary
Material.

5. DISCUSSION AND CONCLUSION
We have introduced here Anima, which is a modular image analy-
sis focused workflow system. Instead of being a monolith software
that consists of complex complete solutions for image analysis
applications, Anima is a flexible, scalable, and extendable modular
platform. The main benefit of developing with a modular platform
design is the easiness of adding any new functionality the devel-
opers find or develop themselves, independent of the platform
the method is implemented on. Anima is designed to maximize
reusability. The existing components for well-established proce-
dures, such as segmentation, come with easily modifiable source
scripts. To this date, Anima has been used in several image analysis
applications as shown Table 3.

The use of command prompt and scripting requires some com-
puter science background. Thus, Anima is targeted mainly for
algorithm and analysis developers. Anima is best suited for rapid
and systematic development of novel methods, combining tools
from existing platforms, prototyping a full analysis pipeline, and
systematic testing of analysis methods. While composing an analy-
sis pipeline requires some computer science expertise, the use and
modification of existing pipelines, and their parameters is easy
even for non-experts.

The flow architecture in Anima is horizontal, which has several
advantages over the more common vertical flow, in which each
image is processed through the whole pipeline before moving on
to the next image. Horizontal flow allows us to make sure the pro-
cessing in each step produces sensible results before performing
downstream analyses. Furthermore, it allows the measurement of
features based on all images and the use of them later on in the
analysis workflow. For instance, it is possible to choose a threshold
level based on the mean of intensities throughout all of the objects
detected in the workflow.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology July 2014 | Volume 2 | Article 25 | 6

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Rantanen et al. Anima: modular imaging workflow system

When any framework is wrapped around the actual programs
needed to process data, overhead is presented. With Anduril, the
overhead in the computer memory is large compared to con-
ventional scripting environments, such as Python or Perl. The
memory overhead is mainly due to the loading of Java Virtual
Machine and building the component repository; a list of all the
available components with their data types and parameters. When
starting a run, the data flow network is built and checked for
file and parameter data type consistencies and the current state
is saved. These steps require time, although typically only a few
seconds. Because of the consistency check, Anduril prevents illegal
calls of components. On the other hand, one of the major bene-
fits of implementing Anima on Anduril, compared to many other
scripting environments, is that Anduril runs only the parts that
need running. The decision to run may be because of changed
input files, changed parameters, or an error returned by a compo-
nent in a previous execution. The overhead comparison of Anima
versus Bash scripting in the Supplementary Material demonstrates
the time saved by using Anima.

The communication between components in Anduril is done
via files. While the file-based communication between the com-
ponents may be slower and require more hard disk space than
keeping everything in memory, the benefit is gained during the
development of the workflow – any change in the configuration
apply only to changed components, which allows the skipping of
steps that have already been processed. Since each step is saved, it
is easy to inspect their intermediate results and change parame-
ters accordingly. The file-based communication allows the Anima
to be a superplatform because different scripting or programing
languages can be used simultaneously. The drawback of file-based
communication is that in a cluster environment Anduril has to
rely on a shared network file system approach.

The ability to run the most popular platforms within one envi-
ronment ensures that the developers do not have to spend time
porting existing methods to the language of their working envi-
ronment. Even if an interesting novel method is not implemented
in these platforms, it may be used as an executable binary, which
again is easy to incorporate into Anima. In addition to being a
super platform that allows executing third-party software, sev-
eral common image processing tasks can be completed with the
existing Anima components.

ACKNOWLEDGMENTS
Funding: this work has been funded by the EU FP7 project FLU-
ODIAMON (grant agreement no. 201837), Biocentrum Helsinki
and Academy of Finland (Center of Excellence in Cancer Genetics
Research).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00025/
abstract

REFERENCES
Aarne, N., Laine, J., Hänninen, T., Rantanen, V., Seitsonen, J., Ruokolainen, J.,

et al. (2013). Controlled hydrophobic functionalization of natural fibers through
self-assembly of amphiphilic diblock copolymer micelles. ChemSusChem. 6,
1203–1208. doi:10.1002/cssc.201300218

Al-Kofahi, Y., Lassoued, W., Lee, W., and Roysam, B. (2010). Improved automatic
detection and segmentation of cell nuclei in histopathology images. IEEE Trans.
Biomed. Eng. 57, 841–852. doi:10.1109/TBME.2009.2035102

Almeida, J. S. (2010). Computational ecosystems for data-driven medical genomics.
Genome Med. 2, 67. doi:10.1186/gm188

Bauch, A., Adamczyk, I., Buczek, P., Elmer, F. J., Enimanev, K., Glyzewski, P., et al.
(2011). openBIS: a flexible framework for managing and analyzing complex data
in biology research. BMC Bioinformatics 12:468. doi:10.1186/1471-2105-12-468

Beck, K., and Andres, C. (2004). Extreme Programming Explained: Embrace Change,
2nd Edn. Boston, MA: Addison-Wesley Professional.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., et al.
(2007). “KNIME: the konstanz information miner,” in Studies in Classifica-
tion, Data Analysis, and Knowledge Organization (GfKL 2007), eds C. Preisach,
H. Burkhardt, L. Schmidt-Thieme, and R. Decker (Berlin: Springer), 319–326.
doi:10.1007/978-3-540-78246-9_38

Bjornsson, C. S., Lin, G., Al-Kofahi, Y., Narayanaswamy, A., Smith, K. L., Shain, W.,
et al. (2008). Associative image analysis: a method for automated quantification
of 3D multi-parameter images of brain tissue. J. Neurosci. Methods 170, 165–178.
doi:10.1016/j.jneumeth.2007.12.024

Blom, H., Rönnlund, D., Scott, L., Spicarova, Z., Rantanen, V., Widengren, J., et al.
(2012). Nearest neighbor analysis of dopamine D1 receptors and Na(+)-K(+)-
ATPases in dendritic spines dissected by STED microscopy. Microsc. Res. Tech.
75, 220–228. doi:10.1002/jemt.21046

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi:10.1023/A:
1010933404324

Cardona, A., and Tomancak, P. (2012). Current challenges in open-source bioimage
informatics. Nat. Methods 9, 661–665. doi:10.1038/nmeth.2082

Carpenter, A., Jones, T., Lamprecht, M., Clarke, C., Kang, I., Friman, O., et al. (2006).
CellProfiler: image analysis software for identifying and quantifying cell pheno-
types. Genome Biol. 7, R100. doi:10.1186/gb-2006-7-10-r100

Carpenter, A. E., Kamentsky, L., and Eliceiri, K. W. (2012). A call for bioimaging
software usability. Nat. Methods 9, 666–670. doi:10.1038/nmeth.2073

Cheng, F., Pekkonen, P., Laurinavicius, S., Sugiyama, N., Henderson, S., Gunther,
T., et al. (2011). KSHV-initiated notch activation leads to membrane-type-
1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal
transition. Cell Host Microbe 10, 577–590. doi:10.1016/j.chom.2011.10.011

Conrad, C., and Gerlich, D. W. (2010). Automated microscopy for high-content
RNAi screening. J. Cell Biol. 188, 453–461. doi:10.1083/jcb.200910105

Eliceiri, K. W., Berthold, M. R., Goldberg, I. G., Ibanez, L., Manjunath, B. S., Martone,
M. E., et al. (2012). Biological imaging software tools. Nat. Methods 9, 697–710.
doi:10.1038/nmeth1012-1031b

Enzerink, A., Rantanen, V., and Vaheri, A. (2010). Fibroblast nemosis induces angio-
genic responses of endothelial cells. Exp. Cell Res. 316, 826–835. doi:10.1016/j.
yexcr.2009.11.012

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). The weka data mining software: an update. SIGKDD Explor. 11, 10–18.
doi:10.1145/1656274.1656278

Haskell. (2002). Haskell 98 Language and Libraries – The Revised Report. Available
at: http://haskell.org/onlinereport/haskell.html

HIPI. (2014). Hipi. Available at: http://hipi.cs.virginia.edu/
Huang, S. (2010). Statistical issues in subpopulation analysis of high content imaging

data. J. Comput. Biol. 17, 879–894. doi:10.1089/cmb.2009.0071
Ihaka, R., and Gentleman, R. (1996). R: a language for data analysis and graphics.

J. Comput. Graph. Stat. 5, 299–314. doi:10.2307/1390807
ImageMagick. (2014). Imagemagick. Available at: http://imagemagick.org/
Jäämaa, S., Af Hällström, T. M., Sankila, A., Rantanen, V., Koistinen, H., Sten-

man, U. H., et al. (2010). DNA damage recognition via activated ATM and p53
pathway in nonproliferating human prostate tissue. Cancer Res. 70, 8630–8641.
doi:10.1158/0008-5472.CAN-10-0937

Jäämaa, S., Sankila, A., Rantanen, V., Peltonen, K., Järvinen, P. M., Af Häll-
ström, T. M., et al. (2012). Contrasting DNA damage checkpoint responses in
epithelium of the human seminal vesicle and prostate. Prostate 72, 1060–1070.
doi:10.1002/pros.21509

Jalkanen, S. E., Lahesmaa-Korpinen, A. M., Heckman, C. A., Rantanen, V., Porkka,
K., Hautaniemi, S., et al. (2012). Phosphoprotein profiling predicts response to
tyrosine kinase inhibitor therapy in chronic myeloid leukemia patients. Exp.
Hematol. 40, 705–714. doi:10.1016/j.exphem.2012.05.010

JCB. (2013). Instructions for Authors. Available at: http://jcb.rupress.org/site/misc/
ifora.xhtml

www.frontiersin.org July 2014 | Volume 2 | Article 25 | 7

http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00025/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00025/abstract
http://dx.doi.org/10.1002/cssc.201300218
http://dx.doi.org/10.1109/TBME.2009.2035102
http://dx.doi.org/10.1186/gm188
http://dx.doi.org/10.1186/1471-2105-12-468
http://dx.doi.org/10.1007/978-3-540-78246-9_38
http://dx.doi.org/10.1016/j.jneumeth.2007.12.024
http://dx.doi.org/10.1002/jemt.21046
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1038/nmeth.2082
http://dx.doi.org/10.1186/gb-2006-7-10-r100
http://dx.doi.org/10.1038/nmeth.2073
http://dx.doi.org/10.1016/j.chom.2011.10.011
http://dx.doi.org/10.1083/jcb.200910105
http://dx.doi.org/10.1038/nmeth1012-1031b
http://dx.doi.org/10.1016/j.yexcr.2009.11.012
http://dx.doi.org/10.1016/j.yexcr.2009.11.012
http://dx.doi.org/10.1145/1656274.1656278
http://haskell.org/onlinereport/haskell.html
http://hipi.cs.virginia.edu/
http://dx.doi.org/10.1089/cmb.2009.0071
http://dx.doi.org/10.2307/1390807
http://imagemagick.org/
http://dx.doi.org/10.1158/0008-5472.CAN-10-0937
http://dx.doi.org/10.1002/pros.21509
http://dx.doi.org/10.1016/j.exphem.2012.05.010
http://jcb.rupress.org/site/misc/ifora.xhtml
http://jcb.rupress.org/site/misc/ifora.xhtml
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Rantanen et al. Anima: modular imaging workflow system

John, G. H., and Langley, P. (1995). “Estimating continuous distributions in
bayesian classifiers,” in Eleventh Conference on Uncertainty in Artificial Intel-
ligence, eds P. Besnard and S. Hanks (San Mateo, CA: Morgan Kaufmann),
338–345.

Kumar, R. (2010). Snakes: Active Contour Models. Available at: http://www.math
works.com/matlabcentral/fileexchange/28109-snakes-active-contour-models

Lindeberg, T. (1998). Feature detection with automatic scale selection. Int. J. Com-
put. Vis. 30, 79–116. doi:10.1023/A:1008097225773

Linkert, M., Rueden, C. T., Allan, C., Burel, J. M., Moore, W., Patterson, A., et al.
(2010). Metadata matters: access to image data in the real world. J. Cell Biol. 189,
777–782. doi:10.1083/jcb.201004104

Ljosa, V., Sokolnicki, K. L., and Carpenter, A. E. (2012). Annotated high-throughput
microscopy image sets for validation. Nat. Methods 9, 637. doi:10.1038/nmeth.
2083

Moore, H. M., Bai, B., Boisvert, F. M., Latonen, L., Rantanen, V., Simpson, J. C.,
et al. (2011). Quantitative proteomics and dynamic imaging of the nucleolus
reveal distinct responses to UV and ionizing radiation. Mol. Cell Proteomics 10,
M111.009241. doi:10.1074/mcp.M111.009241

Nature. (2006). Not picture-perfect. [Editorial]. Nature 439, 891–892. doi:10.1038/
439891b

Nature. (2013). Image Integrity. Available at: http://www.nature.com/authors/
policies/image.html

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans. Syst. Man Cybern. 9, 62–66. doi:10.1109/TSMC.1979.4310076

Ovaska, K., Laakso, M., Haapa-Paananen, S., Louhimo, R., Chen, P., Aittomäki,
V., et al. (2010). Large-scale data integration framework provides a
comprehensive view on glioblastoma multiforme. Genome Med. 2, 65. doi:10.
1186/gm186

Padfield, D., Rittscher, J., and Roysam, B. (2011). Coupled minimum-cost flow
cell tracking for high-throughput quantitative analysis. Med. Image Anal. 15,
650–668. doi:10.1016/j.media.2010.07.006

Rex, D. E., Ma, J. Q., and Toga, A. W. (2003). The LONI pipeline processing envi-
ronment. Neuroimage 19, 1033–1048. doi:10.1016/S1053-8119(03)00185-X

Rouilly, V., Pujadas, E., Hullár, B., Balázs, C., Kunszt, P., and Podvinec, M. (2012).
iBRAIN2: automated analysis and data handling for RNAi screens. Stud. Health
Technol. Inform. 175, 205–213.

Savilahti, E. M., Rantanen, V., Lin, J. S., Karinen, S., Saarinen, K. M., Goldis, M., et al.
(2010). Early recovery from cow’s milk allergy is associated with decreasing IgE

and increasing IgG4 binding to cow’s milk epitopes. J. Allergy Clin. Immunol.
125, 1315–1321. doi:10.1016/j.jaci.2010.03.025

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.
Methods 9, 676–682. doi:10.1038/nmeth.2019

Schneider, C., Rasband, W., and Eliceiri, K. (2012). NIH image to ImageJ: 25 years
of image analysis. Nat. Methods 9, 671–675. doi:10.1038/nmeth.2089

Shamir, L., Delaney, J. D., Orlov, N., Eckley, D. M., and Goldberg, I. G. (2010). Pattern
recognition software and techniques for biological image analysis. PLoS Comput.
Biol. 6:e1000974. doi:10.1371/journal.pcbi.1000974

Tanasugarn, L., McNeil, P., Reynolds, G. T., and Taylor, D. L. (1984). Microspectro-
fluorometry by digital image processing: measurement of cytoplasmic pH. J. Cell
Biol. 98, 717–724.

Wilde, M., Hategan, M., Wozniak, J. M., Clifford, B., Katz, D. S., and Foster, I. (2011).
Swift: a language for distributed parallel scripting. Parallel Comput. 37, 633–652.
doi:10.1016/j.parco.2011.05.005

Yoo, A., Jette, M., and Grondona, M. (2003). “Slurm: simple linux utility for resource
management,” in Job Scheduling Strategies for Parallel Processing, Volume 2862
of Lecture Notes in Computer Science, eds D. Feitelson, L. Rudolph, and U.
Schwiegelshohn (Berlin: Springer), 44–60.

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 14 May 2014; accepted: 15 July 2014; published online: 30 July 2014.
Citation: Rantanen V, Valori M and Hautaniemi S (2014) Anima: modular workflow
system for comprehensive image data analysis. Front. Bioeng. Biotechnol. 2:25. doi:
10.3389/fbioe.2014.00025
This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Bioengineering and Biotechnology.
Copyright © 2014 Rantanen, Valori and Hautaniemi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology July 2014 | Volume 2 | Article 25 | 8

http://www.mathworks.com/matlabcentral/fileexchange/28109-snakes-active-contour-models
http://www.mathworks.com/matlabcentral/fileexchange/28109-snakes-active-contour-models
http://dx.doi.org/10.1023/A:1008097225773
http://dx.doi.org/10.1083/jcb.201004104
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1074/mcp.M111.009241
http://dx.doi.org/10.1038/439891b
http://dx.doi.org/10.1038/439891b
http://www.nature.com/authors/policies/image.html
http://www.nature.com/authors/policies/image.html
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1186/gm186
http://dx.doi.org/10.1186/gm186
http://dx.doi.org/10.1016/j.media.2010.07.006
http://dx.doi.org/10.1016/S1053-8119(03)00185-X
http://dx.doi.org/10.1016/j.jaci.2010.03.025
http://dx.doi.org/10.1038/nmeth.2019
http://dx.doi.org/10.1038/nmeth.2089
http://dx.doi.org/10.1371/journal.pcbi.1000974
http://dx.doi.org/10.1016/j.parco.2011.05.005
http://dx.doi.org/10.3389/fbioe.2014.00025
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

	Anima: modular workflow system for comprehensive image data analysis
	Introduction
	Implementation
	Specifications
	Anima architecture
	Data flow in Anima
	Software integration
	Scripting

	Materials and methods
	Data description for case studies
	Derived measures in the case studies

	Results
	Case study I: High-throughput segmentation
	Case study II: Prediction of C. elegans vital status

	Discussion and conclusion
	Acknowledgments
	Supplementary material
	References

