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A systems-biology approach to complex disease (such as cancer) is now complementing
traditional experience-based approaches, which have typically been invasive and expen-
sive. The rapid progress in biomedical knowledge is enabling the targeting of disease with
therapies that are precise, proactive, preventive, and personalized. In this paper, we sum-
marize and classify models of systems biology and model checking tools, which have been
used to great success in computational biology and related fields. WWe demonstrate how
these models and tools have been used to study some of the twelve biochemical path-
ways implicated in but not unique to pancreatic cancer, and conclude that the resulting
mechanistic models will need to be further enhanced by various abstraction techniques to
interpret phenomenological models of cancer progression.
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1. INTRODUCTION

The defeat of cancer was envisioned, somewhat optimistically, after
just a few years of research starting with extensive genomic and
transcriptomic data collection. Such portrayal of the future might
have been inspired by on-going research that has focused on char-
acterizing cancer as a disease of the genome and has galvanized
massive data-collection projects, such as the ICGC (International
Cancer Genome Consortium) (Zhang et al., 2011) and TCGA
(The Cancer Genome Atlas): an atlas “to systematically explore
the entire spectrum of genomic changes involved in more than 20
types of human cancer” (TCGA, 2013). Such projects have pro-
vided an impetus for developing genomics and bioinformatics
tools to study genomic aberrations, driver mutations, loss of het-
erozygosity, copy number fluctuations, epigenomic modifications,
and identifications of classes of oncogenes and tumor-suppressor
genes. However, the recent focus has begun to shift to a much more
amorphous and dynamic model of cancer, as it has become appar-
ent that a better characterization of the disease must also include
the evolution of cancer phenotypes in a heterogeneous population
of cells, whose individual types and states need to be understood
from single-cell measurements of DNA and RNA, at the very least.
The picture of natural somatic evolution of cancer, emerging from
recent studies, is quite complex: cancer is driven by numerous
pathways, by interactions among multiple heterogeneous subpop-
ulations, the immune system and the microenvironment, and also,
by intricate “signaling games” played among cancer stem and
progenitor cells, further tempered by metabolic constraints. To
treat cancer as a “disease of the phenome,” cancer systems biology

research will need to analyze and model complexities of both
cell-autonomous and cell-population-level processes.

Consequently, models of cancer evolution may need to deal
with state-space trajectories of thousands of rapidly evolving cell-
types in a heterogeneous tumor population. The experimental
setup to harvest and feed the data to such an algorithm is challeng-
ing: itis not yet possible to routinely sample multiple single tumor-
cells (either in situ or circulating) from a single human patient at
multiple stages of their natural progression (unperturbed by any
therapy). Our approach may circumvent this problem by using
computational systems biology to simulate this progression on
phenomenological and mechanistic models.

Primary challenges for cancer systems biologists, as corrobo-
rated (Reya et al., 2001; Jordan et al., 2006; Shackleton et al., 2009;
Marjanovic et al., 2013) by prominent research biologists, are as
follows: (1) The nature and origin of heterogeneity in cancer are
not well understood. (2) Cancer stem cells, their interactions with
the stroma (normal cells) and the roles they play in the population,
especially in choreographing cancer progression are computation-
ally complex and require sophisticated algorithms and modeling
techniques. (3) Disentangling how and which cell-autonomous
processes manifest at the population level require new analysis
tools. Succinctly generating hypotheses and efficiently correlating
them to experimental data require highly sophisticated algorithms,
which will very likely involve multiple levels of abstraction, compo-
sition of qualitative and quantitative models, and symbolic model
checking tools that rely on notions of simulation and bisimula-
tion (exact or approximate). These new challenges in modeling
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and analysis will spur on new research in theoretical computer
science. The possible approaches to these challenges are discussed
further with illustrative examples.

The paper intends to motivate a disparate group of researchers
from multiple disciplines to attack a problem that has not only
remained undefeated despite a decades-long all-consuming war
against cancer but also has recently revealed new complexities,
against which our arsenal has no effective weapons. We wish to
inspire game theorists, control engineers, and computer scien-
tists to modify their traditional tools to tame and contain cancer
as in many other chronic diseases. We wish to encourage sys-
tem biologists, bioinformaticists, and oncologists to familiarize
themselves with the newer and more powerful tools that rely on
abstraction and meta-analysis to overcome the challenges posed
by heterogeneity and temporality.

In what follows we focus on the new algorithmic strategies
developed to address heterogeneity and temporality as well as
other future challenges and obstacles: we start with a summary
of classes of models (stochastic, differential, finite-state models,
hierarchical, rule-based, and multi-scale) and computational tools
(based on execution, simulation, bisimulation, abstraction, com-
position, and model checking) that are being actively developed
by computer scientists. We discuss how these models and tools can
be applied to cancer using examples of some of the biochemical
pathways implicated in pancreatic cancer (e.g., TGF-f signaling).
We also identify critical gaps in the currently available toolkits and
future research directions.

The most common form of pancreatic cancer, pancreatic duc-
tal adenocarcinoma (PDAC), is still one of the least understood
and most difficult to diagnose and treat of cancers. A central ques-
tion to ameliorating these difficulties is to identify the genetics
drivers behind the origins and progression of PADC. Although
PADC is known (Delpu et al., 2011) to arise from 3 different
types of precursor lesions, pancreatic intraepithelial neoplasia
(PanIN), intraductal papillary mucinous neoplasms (IPMN), and
mucinous cystic neoplasms (MCN), the genetic events that char-
acterize the lesions and the transition from lesion to tumor are
unknown. It is well accepted that while particular genomic events
drive tumorigenesis, it is the change in cellular function caused by
that event that is selected for through somatic evolution. Intra-
cellular signaling pathways are common targets of these events.
Because of their well understood relations to cellular function,
pathways are more consistent and regular markers of tumori-
genesis. To better understand which pathways are affected in
PDAGC, Jones et al. (2008) examined several candidate pathways
and found 12 primary ones most common in PDAC tumor sam-
ples. In particular, they implicated the pathways associated with
apoptosis, DNA damage control, regulation of the G1/S transition
in the cell cycle, hedgehog signaling, homophilic cell adhesion,
integrin signaling, c-Jun N-terminal kinase signaling, KRAS sig-
naling, regulation of invasion, small GTPase-dependent kinase
signaling, TGF-B signaling, and Wnt/Notch signaling. A better
understanding of these pathways, how they interact, and how they
are affected in PDAC will lead to better clinical diagnosis and
intervention.

The rest of the paper is organized as follows. Section 2 sum-
marizes models and tools currently used to represent and analyze

dynamical systems in systems biology. Section 3 discusses the need
for novel tools to deal with the influx of new personalized data. In
Sections 2 and 3, we also turn to several systems biological exam-
ples, all related to cancer, which we have explored in the context of
a National Science Foundation Expedition-in-Computing project.
Our team focused and developed systems for model checking,
robustness analysis, multi-scale analysis, etc., which have played a
strong role in improving our understanding of the pancreatic can-
cer phenotypes. Our starting point was with the twelve pathways
identified by Jones et al. (2008), described above. We describe a
few examples using these pathways to motivate the use of the new
modeling and analytical tools described above and the additional
use of techniques and tools for abstracting, combining, and other-
wise manipulating models. We discuss the biological significance
of each example, followed by a brief explanation of the results
obtained from the application of the chosen tool. Lastly, Section
4 concludes with a discussion on how the new class of tools we
propose will affect biological modeling and clinical practice in
cancer.

2. MODELS AND TOOLS FOR CELL-AUTONOMOUS
DYNAMIC PROCESSES

Despite their apparent variety, all computational models of
dynamic systems are just abstract, succinct, and formal repre-
sentations of reality; their form almost always consists of two
components: state, which describes the most relevant parts of
the configuration of the system at some time, and flow, which
describes how the configuration will change in the near future.
Usually, we will prefer models with succinct state-space descrip-
tion, but only to the extent that this need for succinctness does not
introduce unacceptable distortion in the dynamic behavior of the
model. Within a framework comprising such models, researchers
have developed powerful tools to compare, translate, and com-
bine formal models of disparate types. Two important weapons
in a systems biologist’s arsenal are the processes of abstraction
and composition: abstraction facilitates translations among rep-
resentations, as needed, while composition enables construction of
complex, multi-scale, and systems-level models built from simpler
component structures.

Analytical tools comprise the other half of the toolkit. They
allow for the examination of model properties beyond basic simu-
lation. However, tool applicability is inherently limited by the fact
that a specific tool might have been developed originally for use
in one specific class of models. Table 1A provides a sense of the
compatibility of some key analytical tools for a broad variety of
model classes. To construct this table, we relied on an extensive lit-
erature survey of each model class and tool (White, 1977; Dytham,
1995; Bengtsson et al., 1996; Henzinger et al., 1997; Cozman, 1997;
Ghosh and Tomlin, 2001; Alur et al., 2001; Bandini et al., 2001;
Barton and Lee, 2002; Sutner, 2002, 2009; Wang et al., 2002; Anto-
niotti et al., 2003a,b; Shmulevich et al., 2003; Ghosh et al., 2003;
Friedman and Koller, 2003; Lincoln and Tiwari, 2004; Janes et al.,
2004; Friedman, 2004; Li and Chan, 2004; Kwiatkowska et al., 2004;
Thekwaba et al., 2004; Hagiya et al., 2004; Das et al., 2004; Pe’er,
2005; Fauré et al., 2006; Reeves et al., 2006; Langmead et al., 2006;
Kim et al., 2006; Chaouiya, 2007; Saez-Rodriguez et al., 2007; Frian-
zle and Herde, 2007; Narasimhan and Biswas, 2007; Wilkinson,
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2007; Sandmann, 2007; Mukherjee and Speed, 2008; Clarke et al.,
2008; Sandmann and Wolf, 2008; Ryu et al., 2008; Donaldson and
Gilbert, 2008; Figueirédo et al., 2008; Yuceer et al., 2008; Qian
and Dougherty, 2009; Tatyana et al., 2009; Wartlick et al., 2009;
Sobie, 2009; Langmead, 2009; Didier et al., 2009; Miissel et al.,
20105 Sarkar and Sobie, 2010; Campagna and Piazza, 2010; Bor-
tolussi and Policriti, 2010; Garmaroudi et al., 2010; Yang and Lin,
2010; Donzé et al., 2010; Gunawardena, 2010; Vikram et al., 2010;
Kobayashi and Hiraishi, 2010, 2011; Gong et al., 2010, 2011a,b,c;
Dimitrova etal.,2011; Grosu et al., 2011; Alfieri et al., 2011; Fischer
and Kaiser, 2011; Aldinucci et al., 2011; Brim et al., 2011; Sarkar
etal, 2012; Horvath, 2012; Iyengar et al., 2012). In this table, each
row represents a class of models. From top to bottom, the models
range over Bayesian networks, Boolean networks, ordinary dif-
ferential equations (ODEs), stochastic models, Petri nets, hybrid
automata, cellular automata, and partial differential equations
(PDEs), each with differing notions of states (discrete, continu-
ous, hybrid, etc.) and flows (transition, evolution, dynamics, etc.).
In addition, we chose these models to represent a broad range of
model features, including deterministic, non-deterministic, spa-
tial, non-spatial, continuous, discrete, temporal, and logical. Each
column, on the other hand, represents a tool. From left to right
(in order of increasing complexity), they encompass: parameter
estimation, sensitivity analysis, reachability analysis, and model
checking of properties describable in propositional temporal logic.

Each entry represents the availability of the tool for the model
class. Red implies that the tool is unavailable or inapplicable. Yellow
denotes limited applicability. Green denotes wide-spread applica-
bility across models in that class. For obvious reasons, the simpler
tools generally have a wider range of applicability than do the com-
plex ones. The most complex tools have proven difficult to adapt
to novel circumstances, thus motivating the use of abstraction to
broaden their range of applicability. Traditionally, model abstrac-
tion has been used to create models that are structurally simpler,
but that have the advantage of facilitating rapid analysis by effi-
cient algorithms and provide easily comprehensible explanations
of properties and counter-examples. Table 1B provides examples
of implementations of these tools.

2.1. EXAMPLES

Abstraction provides simplification. For examples, models and
analyses that can be constructed and performed, we briefly sum-
marize the findings of two studies on some of the 12 pathways
implicated in pancreatic cancer. More details are included in
Sections 2.1.1 and 2.1.2, and for more information on the tools
used, see Section 2.2.

The first study (Gong et al., 2011c) uses a Boolean circuit as an
abstraction of several interacting pathways, including MDM2, P53,
NFkB, and HMGBI, and performs symbolic model checking on
the resulting abstract circuit. Among many findings, it confirmed,
as expected, that P53 can induce the transcription of MDM2, while
MDM2 is a negative regulator of P53, and that NFkB’s activation is
not a necessary checkpoint that the cancer cell must go through to
achieve both proliferation and immortality. Other local analyses
related to such abstraction involve: reachability analysis, local and
global robustness analysis, parameter identification, and analysis
of their sensitivity, etc.

Table 1 | Tools tables. (A) A table of references for the use of each
analytical tool in each model type, where available. The colors denote
availability, as specified in the legend. (B) A (non-exhaustive) table of
available implementations of analytical tools described in the previous
sections.

(A)

Parameter
estimation
Sensitivity
analysis
Robustness
Reachability
Model
checking

Bayesian networks
Boolean networks
Ordinary differential
Equations
Stochastic models

Petri nets

Hybrid automata
Cellular automata
Partial differential

Equations
(B)

Analytical tool Resource

Parameter estimation Simbiology
JSim, Polynome, and PyMorph
PARES

Sensitivity analysis MATLAB - systems biology toolbox
Simbiology

MATLAB - systems biology toolbox
R sensitivity package

BIOCHAM

MATLAB - robust control toolbox
PROD, TReX, and RAMAS

SMV, HyTECH, and HySAT
UPPAAL, PRISM, and NuSMV

Robustness analysis

Reachability analysis

Model checking

[ Available.
Wl Unavailable.
Partially available.

The second study investigates a published model of extrinsically
induced apoptosis (Albeck et al., 2008) using parameter sensitiv-
ity analysis based on a popular statistical tool called partial least
squares regression. The analysis reveals 6 enzymatic reactions that
contribute substantially to the time it takes the cell to commit
to apoptosis from the initial ligand binding event. Interestingly,
all 6 reactions occur prior to the permeabilization of the mem-
brane, confirming the accepted theory that permeabilization is the
non-reversible step that commits the cell to apoptosis.

2.1.1. Model checking Boolean model of pancreatic cancer
pathways
While there is a plethora of chemical reagents in a cell, which, in

principle, can react with one another, most of these reactions do
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not happen under normal physiological conditions (temperature,
pH, etc.). Instead, they are tightly regulated by reaction-specific
enzymes and the genes that code for them. Thus, gene regula-
tory networks are characterized by sharp transitions, in which
some subset of reactions is turned on, while the others turned off.
Thomas et al. have used Boolean models to describe and analyze
this behavior of gene regulatory networks (Thomas, 1991, 1998;
Bornholdt, 2008), and have shown that it can be well approx-
imated by asynchronous Boolean networks, in which genes are
represented as nodes and the regulation by wiring.

A recent study used model checking of a Boolean model of
the HMGBI1 pathway to verify several experimentally observed
behaviors of cancer cells and to suggest further hypotheses for

experimental study (Gong et al., 2011c). Figure 1 shows a circuit
diagram representation of this Boolean network. One analytical
result was that over-expression of HMGB1 would increase pro-
liferation and decrease apoptosis. This has been experimentally
observed, as reported in Kang et al. (2009). Another analytical
result is that once the protein Cyclin E is activated by the HMGB1
pathway, and DNA synthesis has commenced, the cell will continue
to proliferate, and thus be relatively independent of external con-
trols. This has been identified by Weinberg and Hanahan (2000)
as one of the hallmarks of cancer. Another analytical result, which
NFkB oscillates after release of HMGB1, had been observed by
Hoffmann et al. (2002). Some additional analytical results suggest
that P53 can induce the transcription of MDM2, while MDM?2

FIGURE 1 | Schematic view of signal transduction in the pancreatic
cancer model. Blue nodes represent tumor-suppressor proteins, red nodes
represent oncoproteins/lipids. Arrow represents protein activation,
circle-headed arrow represents deactivation. The acronyms in each rectangular

node stand for signal transduction proteins. The rounded rectangular nodes
on the top of the figure stand for ligands that activate the pathways. Finally,
the rounded nodes at the bottom stand for a cell behavior activated by the
connected effector proteins. Figure adapted from Gong et al. (2011¢).
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is a negative regulator of P53, and that NFkB’s activation is not
a necessary checkpoint that the cancer cell should go through on
the path to proliferation and immortality.

These results show that model checking can be a powerful tool
for the understanding of biological behaviors, just as it has been
a powerful tool for understanding complex electronic circuits.
Over the past three decades, as the complexity of the engineered
circuits have approached that of the natural biological systems,
the engineering community had to develop design automation
tools built upon powerful algorithms for circuit validation and

model checking, first introduced by Clarke and Mishra (1984).
Model checking has now become standard protocol for validating
electronic circuits.

2.1.2. Sensitivity analysis of TRAIL-induced apoptosis ODE model

A partial least squares regression (PLSR) on a well established
model for TRAIL-induced apoptosis (Albeck et al., 2008) estab-
lished the key reactions responsible for the time it takes for the
effector protein cPARP to attain its half saturation. Figure 2A
represents the reaction network. Each reaction is depicted in the

FIGURE 2 | Figures accompanying the sensitivity analysis.
(A) Schematic of the extrinsic apoptosis reaction model. Each color
represents a functional pathway. Adapted from Albeck et al. (2008).
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compartment (membrane, cytoplasm, or mitochondria) in which
it takes place.

Programed cell death, or apoptosis, is crucial in the devel-
opment and maintenance of a multi-cellular organism, but also
provides a critical ingredient to the character of cancer progres-
sion, its dominant phenotypes and heterogeneity. Once certain
apoptotic proteins are triggered in a cell, whether from intrinsic or
environmental signals, a normal cell commits to a program that
results in its eventual cell death. Changes in the cell’s ability to
respond to apoptotic signals and the timing behind its response
can cause major disturbances in cellular population homeostasis.
Itis important to understand how robust this response is to genetic
mutations.

For this purpose, we analyzed extrinsic apoptosis signal trans-
duction pathway models using tools designed for sensitivity analy-
sis, to identify the key proteins that may be rate-limiting. Rate-
limiting proteins are postulated to have the greatest effect on
the apoptotic response, and thus suggest important mutations
responsible for diseases in which this response is diminished.

In the ODE model, cleavage of the effector protein PARP into
cPARP is the indicator of apoptosis. Ty, the time from ligand-
receptor binding to the point at which half of all PARP is cleaved,
represents the response time of the cell to the apoptosis-inducing
signal. Figure 2B shows the typical dynamics of PARP cleavage as
well as how to estimate T;.

Our sensitivity analysis of T to all the kinetic rate parameters
is based on a linear regression that illustrates the promise of this
approach, as indicated by the regression results in Figure 2C.

The reactions with the most impact on Ty are described
in Table 2. We found that the most important reactions are
those that precede the permeabilization of the mitochondrial
membrane. These results suggest that the flood of mitochondr-
ial proteins into the cytoplasm is difficult to control, and that
the most effective drugs would target reactions upstream in the
cascade.

2.2. REVIEW OF FIRST GENERATION TOOLS

This section includes a brief description of types of models
that have been used to simulate dynamic systems in biology as
well as the types of tools that have been used to analyze these
models.

22.1. Model descriptions

2.2.1.1. Rule-based model. Rule-based models provide a con-
cise way to specify highly complex, parameterized interaction
networks between agents (e.g., molecules). The user needs only to
encode the possible behaviors of complex molecules and the mod-
eling software automatically generates an ODE (Ordinary Differ-
ential Equations) or CTMC (Continuous Time Markov Chains)
model to simulate directly. Agent interactions can be aggregated
into macroscopic behaviors, capturing temporal changes to sta-
tistical properties only, and abstracting away the details of the
rules.

2.2.1.2. Dynamic Bayesian network. These models represent
the joint distribution of all variables in the system over time (a
global time). The network (represented graphically) arises from

Table 2 | Reactions discovered to affect T4 the most in sensitivity
analysis.

Reaction Description

k-
L+R=L:RY R

-1

Ligand-receptor binding and unbinding
and receptor activation

R* + C8§ R*: C8 Caspase-8 binding to active receptor

C8* + Barg C8* : Bar Caspase-8 binding to Bar

C8* + B/dk—@ C8* : Bid Caspase-8 binding to Bid
k

Bid + Bc/zké Bid : Bcl2
-1

Bid binding and unbinding to Bcl2

tBid + Baxﬁf tBid : Bax Activated Bid binding to Bax

a factorization of this joint distribution into conditional distri-
butions through the application of Bayes’ rule. An edge in the
network graph represents a conditional dependence between two
variables. Conditional dependences may change over time, so that
this is a time-varying graph.

2.2.1.3. Boolean network. This model is characterized by the
fact that each variable can only take one of two values, usu-
ally on/off or high/low. Boolean networks are commonly used
to model gene regulatory networks, in which genes are considered
on or off at any given time.

2.2.1.4. Ordinary differential equations (ODEs). Each variable
in this model is characterized by an ordinary differential equation
that describes how its rate of production and decay are governed
by the concentrations of the ensemble of molecules. Such a system
of equations is particularly useful for modeling a large biochem-
ical reaction system, in which the average concentrations of each
molecule type can be described through mass action dynamics.

2.2.1.5. Continuous time Markov chain (CTMC). This class
of stochastic models considers objects as stochastic Markov
processes, in which state changes are probabilistic rather than
deterministic. Markov processes have no memory, that is, the prob-
ability of any given state change depends only on the current state,
and not on the history of the states.

These models are useful for capturing the dynamics of small
reactive systems, in which small stochastic fluctuations have large
effects.

2.2.1.6. Petri network. Historically, Petri Nets (PNs) were
developed to model chemical reactions, but have been used exten-
sively to reason about resource sharing in concurrent systems (in
computer science). Thus, as they are capable of describing variables
and consumption/production transformations among variables in
terms of a simple bipartite graph, they have been used in describ-
ing biological processes involving small number of molecules. This
basic formulation has been further extended to include various fea-
tures that arise in systems biology, such as continuous and hybrid
dynamics, stochastic fluctuations, and a notion of real time.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology

August 2014 | Volume 2 | Article 27 | 6


http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Korsunsky et al.

Systems biology of cancer

2.2.1.7. Hybrid automata. Inahybrid automata model, system
dynamics are continuous in the short term but in the longer term
may switch between discrete modes. Hybrid automata can also
simplify a system of complex non-linear equations into several
simpler interacting components.

2.2.1.8. Cellular automata. Cellular automata (CA) are spa-
tially and temporally discrete models, whose dynamics are con-
trolled by a set of rules, based on the state of the site and those in
its neighborhood. Cellular automata are especially useful in mod-
eling spatial processes such as morphological evolution of tumor
growth or cell migration.

2.2.1.9. Partial differential equations. PDEs are a widely stud-
ied topic in mathematics and generally describe the continuous
dynamics of some variables with respect to 2 or more other vari-
ables. In systems biology, PDEs are most commonly used to model
system dynamics over time and space. They are thus useful for the
same kinds of systems as cellular automata.

222. Tool descriptions

2.2.2.1. Parameter estimation. The dynamical behavior of
a model is dependent on all parameter choices, incorporating
numerical parameters to topological ones (e.g., the structure of
a network).

Experimental measurements are frequently unavailable for
important parameters of a model, and expensive to obtain. Para-
meter estimation tools are available for all types of models to
approximate parameters correctly in model construction. Two
general approaches to this tool have emerged. One is based on
matching model behavior to numerical data, and the other is based
on matching it to higher level descriptions in temporal logic. Para-
meter estimation often results in a range of possible parameter
values that allow the model to reproduce the desired specifications.
The width of these ranges depends on sensitivity and robustness.

2.2.2.2. Sensitivity analysis. Parameter sensitivity is the degree
to which small changes in a parameter’s value affect the overall
model behavior. Sensitivity analysis assigns a numerical sensitiv-
ity score to each parameter. In a molecular interaction network,
these scores yield insight into the relative importance of some mol-
ecules in function of the circuit. For instance, a high sensitivity of
cell growth to a particular protein may suggest the protein’s roll as
an oncoprotein.

2.2.2.3. Robustness analysis. In contrast to the sensitivity
analysis, robustness probes the system with large perturbations
in the parameter values. Instead of identifying the role of key
parameters in the model behavior, robustness tests the conditions
under which the model reliably produces the same output. This
insight is crucial in drug discovery, in that it identifies the tar-
gets needed to alter the model’s output to produce a significantly
different behavior.

2.2.2.4. Reachability analysis. The combinatorial state space of
amodel can be enormous and each of these states can have differ-
ent biological significance. Reachability analysis aims to quantify

the states that are reachable via an execution of the model, given
an initial set of conditions. This analysis stems from graph theory,
in which the states of a system are modeled as discrete nodes and
the dynamics as edge transitions between the nodes. Therefore, for
continuous models, a pre-processing discretization step is neces-
sary to transform it into a discrete model. Biologically, this tool
is very powerful at predicting the ability of a cell model to reach
unfavorable phenotypes. However, a major challenge is to define
states that are biologically meaningful.

2.2.2.5. Model checking. Model checking concisely character-
izes all possible behaviors of the model with properties in a high-
level, expressive language called temporal logic. Such properties
include cycles, temporal precedence, and steady state. Like reach-
ability analysis, model checking performs an exhaustive search on
the state space of a model, and therefore, relies on a discretization
of the state space. Traditional model checking is geared toward
efficiently searching large, finite graphs with deterministic transi-
tions. However, biological systems introduce stochastic complex
networks, which we model using infinite graphs and probabilis-
tic transitions. To deal with these new challenges, model checking
has been recently expanded to include time-bounds to analyze
infinite graphs and probabilities and statistical sampling to ana-
lyze graphs with probabilistic transitions. The statistical sampling
used in model checking employs Monte Carlo sampling, which
is a family of algorithms to efficiently sample from a probability
distribution that is usually difficult to sample directly.

2.2.2.6. Causal analysis. Large quantitative models offer a rich
representation of the dynamics of a system. However, within all
the details of the model, it may be difficult to derive a qualita-
tive understanding of a particular event. For instance, a model of
intracellular signaling in cancer may include multiple intersect-
ing pathways and thousands of reagents, but it may not be clear,
which reagents and reactions are responsible for the activation
of NFkB.

Structural causal analysis has emerged in several fields as a way
to answer such qualitative questions in systems whose dynamics
consist of discrete events (Nielsen et al., 1981; Danos et al., 2007,
2012; Paulevé et al., 2013). In this analysis, the user identifies a
particular outcome of interest and the analysis infers the sequence
of events leading up to that outcome or a set of events without
which the outcome would not occur. Given these sequences or
sets of events, the user can focus on those parts of the model that
include the relevant events. For instance, we may be interested in
which pathway activations led to the transcription of a particu-
lar gene. Causal analysis can identify, which pathways directly led
to the transcription in the model, even if the user has no initial
hypothesis.

The interpretations of causality discussed here are specific to the
systems in which they are implemented. Other notions of causality
plays a vital role in systems biology and related fields of machine
learning (Pearl, 2000; Kleinberg and Hripcsak, 2011) and statistical
inference (Loes et al., 2013), with its roots deep in the philosoph-
ical foundations of science (Hume, 1902; Cartwright, 2004). For
the sake of limiting the scope, we refrain from delving deeper into
the various notions and applications of causality.
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2.2.2.7. Model reduction. Model reduction (MR) simplifies a
model in such a way that the model is more tractable to rep-
resent and execute and less prone to overfitting from too many
parameters, while the relevant dynamics of the model remain
unperturbed. For demonstration, we consider two examples. The
first (Feret et al., 2009; Danos et al., 2010) considers a rule-based
model of intracellular signaling that would produce an intractably
large system of ODEs with the typical semantics. Instead, the
authors compute a set of coarse grained variables, called frag-
ments, from the original set of all possible reagents, according to
the interactions between the rules. Unlike that of the original set of
molecular species, the system of ODE:s for these fragments is com-
pactand tractable. In a particular implementation of their method,
the authors compute the fragments for a large model of EGFR sig-
naling that consists of 71 rules and 18,051,984,143,555,729,567
molecular species. The model reduction results in only 175,988
fragments, making it possible to construct a feasible system of
ODEs to compute the dynamics of these rules. Moreover, the
reduction is proven correct (Danos et al., 2010), in that it does
not change the quantitative dynamics of the original model.

The second work (Radulescu et al., 2012) focuses on the use
of tropical geometry (TG) for model reduction of networks of
biochemical reactions, as represented by a system of differential
equations. TG has been used in modeling Algebraic Differential
Equations that often appear in the study of normal and aber-
rant biochemical pathways. TG can informally be described as a
piece-wise linear or skeletonized version of algebraic geometry,
which has been widely applied in enumerative algebraic geometry
in the past and more recently, in computational systems biology
for model reduction. Thus, TG’s most prominent applications are
in obtaining “good” time scale separation in a biochemical reac-
tion network. Its applications are ideal when in the dynamics of
certain species, there is a dominant reaction whose effect overshad-
ows that of the rest — not uncommon in an enzymatic reaction.
In such a situation, TG can approximate the dynamics of a par-
ticular species by only its dominant reaction, until that dominant
reaction changes. Tropicalization exploits this idea by simplifying
the polynomials that define the rates in the ODE system. Namely,
it turns the polynomial into a sum through a log transform and
then chooses the largest term by transforming the sum into a max
operator. This step reduces the polynomial to a piece-wise smooth
function, with fewer parameters but almost identical behavior.

3. MODELS AND TOOLS FOR HETEROGENEOUS
POPULATION DYNAMICS

3.1. ABSTRACTION OF ODE MODEL TO TIMED AUTOMATON

To reiterate, model abstraction is a process that simplifies a model

in such a way that preserves almost all properties that need to

be examined. Such simplifications at multiple scales may play a

critical role in modeling a heterogeneous population of cells in a

tumor.

We illustrate this approach with an example, highly relevant
to cancer: we abstract an ODE model of a bistable switch that
controls the G1/S transition in the cell cycle. The key molecules
and their interaction leads to a high-level description of the ODE
model as portrayed in Figure 3A. The two positive feedback loops
governing their interactions lead to two stable states and hysteresis

in the transitions between the states. The latter property blocks the
circuit from transitioning to the G1 phase once it is in the S phase.
The value of the growth signals ranges from 0 (no growth signal)
to 2 (full saturation).

Our goals in constructing this abstract model are to identify the
steady states of the model, as these are likely to be biologically sig-
nificant, and to characterize the types of transitions among them.
In this example, the resulting abstract model shown in Figure 3B is
atwo-state model that captures the two steady states of the detailed,
mechanistic model. The transition paths are described by a distri-
bution over the time taken by a transition between a pair of states
and by the concentration that modulates a certain transition. For
instance, in the presence of a high concentration of input signal,
the transition from G1 to S phase is marked by a timing distribu-
tion centered on a smaller time (see Figure 3C). Notice that both
the bistability and hysteresis, the two most important properties
of the mechanistic model, are preserved in the abstract model. On
the other hand, the exact concentrations of all the molecules in the
system are abstracted away. The construction of this simple model
was achieved through iterative sampling and simulation, but more
complex models may require more advanced techniques, such as
those studied in transition state theory and transition path theory
(Vanden-Eijnden, 2006).

We performed the abstraction by statistically sampling traces
of the concrete ODE model. Each trace began at a stable state per-
turbed by changing the growth signal and ended when the reagent
concentrations reached steady state again. From this procedure,
the result of each trace was a starting concrete state, an ending
concrete state, and the transition time to get from one to the other.
The abstract states were identified by performing k-means cluster-
ing on all the starting and ending states of the trace samples, with
increasing numbers of clusters. We chose the result that produced
the smallest variance of reagent concentrations within clusters,
while minimizing the number of clusters. To compute the transi-
tion times between some abstract states A and B, for instance, we
first labeled the beginning and ending state of each trace sample
with the closest abstract states, respectively. Then we considered
all traces that started in abstract state A and ended in abstract
state B, at a particular growth signal value, and used the transition
times of these samples to compute statistics' on the transition time
between abstract states A and B, at the same growth signal value.

The gain we have achieved by abstracting a simple ODE model
into a simpler discrete state model may not be clear in the context
of analyzing just a single cell. However, assured that the abstrac-
tion is correct, we can use the approximate dynamics to model
each cell in a population of a very large number of cells. Note that
such an analysis for large mechanistic models would be intractable
for realistic cell populations. Instead of modeling the detailed
biochemical interactions within a cell, we view each cell as a strate-
gic agent, interacting stochastically with other cells and its own
microenvironment. This game theoretic perspective may illumi-
nate emergent behaviors of the population that were impossible
to observe in the single-cell simulations.

! Namely, mean and variance were used to approximate the distribution of transition
time.
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FIGURE 3 | Abstraction example. (A) A concrete ODE model. Left:
circuit diagram. Pointed arrows denote activation while flat head arrows
denote inhibition. Right: demonstration of hysteresis in E2F
concentration and the lack of it in cyclin D concentration. (B) Its reduced
abstraction model. Each state is actually characterized by statistics on all
species in the original model. Here, the mean and SD of E2F is used for
brevity. Each edge is marked by the growth signal values (mean and SD)
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that cause that transition. (C) Two representative edge distributions. The
left panel shows the distribution of transition time from the low E2F
state to the high one when the growth signal value is 1.5. The right panel
shows the same transition for a growth signal value of 2.0. In both, the
green circle represents the mean. Notice that the distributions look
similar but the mean transition time decreases substantially for the
higher input.

This simple example raises many questions about the nature
of models, their relationships to one another, and the possi-
bility of constructing composite models out of modular ones.
While we observed that the abstract model above captures two
key dynamical properties of the original model, are there guar-
antees about other dynamical information that we may have
lost? For instance, was there a rare but important third state
that could produce large population-level effects? It is imper-
ative to formally describe the similarity and distance between
these two models, which ostensibly represent the same biologi-
cal system. Finally, how exactly would we construct a composite
model from these abstract models to capture their biochemical and
mechanical interactions, which are not specified in the single-cell
models?

3.1.1.  Formal definition of the abstract model

In this section, we provide a formal definition of the model. This
section is meant for readers with a computational background who
are interested in the formal details of the model. Reader can safely
omit this section and refer instead to the informal description
given earlier in the paper.

The formal definition of the timed discrete state abstract model
follows.

Model M =< S,E, I >
Abstract States S = (s, 5, ... $;)

Concrete State s = (p1, P2, ... pr)sPi € R7species
EdgesE=Sx Sx I — AR)

Input Values I = (iny, iny, ... iftyinpur), ini € R

The model is a 3-tuple of a set of abstract states, a set of input
values, and a set of edges. Each abstract state is currently charac-
terized by a set of clustered concrete model states, although in the
future, abstract states would be more succinctly described using
some distribution over the ODE network state. An edge is a map
from one abstract state (i.e., start state), another abstract state (i.e.,
end state), and an input (e.g., extracellular signal) to a probability
function over the time. Simply, it estimates the time it takes to get
from state 1 to state 2 given some input. The set of inputs is the
set of all possible inputs to the network, as described in the edge
definition.
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3.2. COMPOSITION OF LIVER MODEL WITH AGENT BASED
POPULATION MODEL
This section illustrates how composition of models allows explo-
ration of the interaction between two or more disparate systems.
The goal of the study described here was to determine the optimal
dosing schedule for treatment with Taxol, which is a chemo-
therapeutic drug against many forms of cancer. The main result
was an optimal schedule, which would avoid liver damage while
eliminating cancer cells.

The problem was to model both liver toxicity in the presence of
Taxol and also a population of cells in homeostasis (e.g., a tumor
in a specific “cancer hallmark” state). Since the systems are not
independent and are modeled with entirely different techniques,
their simultaneous simulation is non-trivial. The liver model was
constructed from the literature (Holmes et al., 1991; Rahman et al.,
1994; Tamura et al., 1995; Manzano et al., 1996; Guengerich and
Johnson, 1997) as a system of ODEs (depicted in Figure 4A) and
the population as an agent based system, in which the cells signal
one another to commit apoptosis or divide, determined by the
population size.

The composition consisted of a KMC-like (kinetic Monte
Carlo) simulation algorithm, in which the population model took

discrete steps and the liver model was simulated continuously
between the steps. Both models shared a common variable, track-
ing the concentration of Taxol in the organism. At the end of each
model’s simulation “step,” the model continuously updated the
global concentration of Taxol.

Deregulated growth in the population model was simulated by
allowing one cell to either adopt a strategy of constitutive prolif-
eration or evasion of apoptosis, which was then passed on to its
offspring. The time it took for the mutant cell to produce 200 oft-
spring is summarized in Figure 4B. Taxol is modeled as a diffusing
agent that kills a cell when it tries to proliferate, thus targeting both
mutant and wild type cells.

In the liver model, Taxol is metabolized and causes the build up
of lactate, the main source of Taxol based liver toxicity. A sample
trace of this metabolism is depicted in Figure 4C. The four pos-
sible effects of different dosing schedules for Taxol are depicted
in Figure 4D. We discovered that it was possible to produce the
optimal (3rd) effect in this model.

3.3. NEXT GENERATION OF DYNAMIC MODELS
To receive the best treatment and diagnosis, most cancer patients
are willing to undergo invasive procedures to sample tumor

A Taxol/Liver model
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FIGURE 4 | Figures accompanying the composition model. (A) Wiring diagram of liver model. (B) Time to tumor for different phenotypic aberrations.
(C) Sample trace of ODE liver model simulation. (D) Four possible steady-state outcomes of composite model simulation, with different Taxol delivery schedules.
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and metastatic tissue. It will soon be possible to augment the
data from these traditional means with non-invasively collected
high-coverage DNA and RNA sequencing data, coupled to single-
molecule and single-cell analysis with increasingly finer temporal
granularity, using next-generation sequencing (NGS) technolo-
gies (Wigler, 2012). With such tools, we can study the diversity of
individual cells in populations of cells.

Temporal models of dynamic biological processes, multi-scale
and multi-level abstractions, and the analytical tools based on sta-
tistics and temporal logic could provide much sharper tools to
address the challenges that these data pose.

A powerful approach is to build statistical analysis tools upon
simple phenomenological models — in which the data themselves
are viewed dynamically in terms of “snapshots in the temporal
chain of events,” each event coordinated collectively by differ-
ent cell-types in different cell-states (Ramakrishnan et al., 2010).
With these logical analyses, inferred temporal logic invariants
reveal various causal linkages between events that were earlier
indistinguishable from mere correlations — recorded by the data
and redescribed by the phenomenological models (Kleinberg and
Mishra, 2009). The next steps in system biology’s progress in the
biomedical arena would be improving our current understand-
ing of mechanisms described by pathways, metabolic processes,
signaling, etc., and in seeking to intervene in the components of
these mechanisms to modify the system’s behavior (Olde Loohuis
etal.,2014).

Success of such a program hinges on how we address the
following questions (many of them partially solved):

(1) When can two models be considered “the same?”

(2) When can one model be considered an abstraction of another?

(3) When can one model be considered to approximate another
model?

(4) How can several models be combined to provide larger mod-
els, either containing multiple subsystems or at multiple
scales?

34. MULTI-SCALE MODELS

Computer science research has addressed several of these ques-
tions. Model equivalence provides tools such as simulation and
bisimulation for defining and algorithmically testing whether two
models represent the same trajectories of events. Model approx-
imation extends these tools by allowing essentially equivalent
models to be slightly different due to stochasticity or granular-
ity. Model composition provides tools for combining disparate
models both accurately and efficiently, by considering the mod-
els’ relevant interactions and independencies, respectively. This
is tightly related to hierarchy and decomposition, which provide
structures to efficiently represent, store, and execute composite
models. Finally, evolution, while not inherently a computer science
concept, is essential to understanding and modeling population
effects.

Section 3.2 provides as example of a multi-scale, compos-
ite model of a tumor cell population, liver metabolism, and the
simultaneous effects of Taxol treatment on both. Conceptually,
this example helps illustrate the notion of combining two dis-
parate types of models to study the emergent properties of the

larger system. Practically, this model can serve as the basis to study
the effects of various chemo-therapeutic dosage regimens, such as
metronomic therapy, on the tumor and other organ systems.

3.5. REVIEW OF NEXT-GENERATION TOOLS

We take the time here to illustrate hypothetical sequences of
abstractions and to describe the types of tools that will be neces-
sary in analyzing large scale dynamical models in modern systems
biology.

3.5.1.  lllustration of model abstractions

Systems biology aims to describe large systems instead of isolated
parts. It would be impractical to attempt to attain this goal with
one model type, because different types of models lend them-
selves to modeling different types of systems, at different scales.
To illustrate how the proposed approach permits a variety of
modeling techniques to be applied to a single problem, we use
a sequence of abstractions in which we can view the same system
in many different ways. We start with a rule-based specification of
a reactive biochemical system, which can be executed in a variety
of ways.

For instance, the specification can be transformed into an
executable model that is either deterministic or probabilistic, as
illustrated by the left (deterministic) and right (stochastic) sides
of Figure 5.

First, in order to model the system using the sequence of deter-
ministic models on the left-hand side of Figure 5, we start by
assuming mass action kinetics. This permits tracking the average
behavior of the chemical species using an ordinary differential
equations model (see Section 2.1.2 for an example). This con-
version is standard and well documented for rule-based models
(Blinov et al., 2004; Danos et al., 2010). If the ODE dynamics
exhibit sharp transitions among several regimes, each of which can
be described by simpler ODE models, we abstract the ODE model
into a hybrid automaton (HA). The HA contains discrete modes,
each of whose dynamics is modeled by a simpler ODE model. This
transformation has been defined and used in Alfieri et al. (2011),
Grosu et al. (2011), and Noel et al. (2011). Alternatively, the ODE
dynamics may be very steep. That is, molecular concentrations
are either high or low but do not dwell in the intermediate states
for long. In this case, the ODE model can be transformed into a
Boolean network, in which there are activating edges from x; to x,
if % is positively related to the concentration of x; and inhibitory
edges if it is negatively related.

Next, consider the probabilistic side of the figure. Again start-
ing with a rule-based model, it is appropriate to use a probabilistic
modelif the concentrations of species are low and stochastic effects
could have significant effects on the overall dynamics. In this case,
we transform the rule-based model into a stochastic model that
simulates sampling from the chemical master equation (Danos
et al., 2007; Smith et al., 2012) through a set of reactions and
reaction rates.

Under the assumptions of a well-mixed and homogeneous sys-
tem, this model can be simulated as a CTMC using the kinetic
Monte Carlo (KMC) algorithm. To improve efficiency, at some
cost to accuracy, we can transform this stochastic model into a
dynamic Bayesian network (DBN). Through careful sampling, we
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can then find the distribution of reagent concentrations varying
over time that is formalized by the DBN. If we further find that
variable values tend to vacillate between a range of high and low
values, we can model the DBN as a probabilistic Boolean network
(PBN). Lihdesmaiki et al. (2006) have explored the relationship
between these two models and showed how they can represent
similar systems.

3.5.2. Tools description

3.5.2.1. Model equivalence. When can we consider two mod-
els to be the same, so that we can justify substituting one kind of
models by another? In what sense are they to be considered equiv-
alent? What does this mean if models are stochastic — do they
produce just the same aggregate results, such as averages, or must
distributions be the same?

A very powerful concept for deterministic models is that of
bisimulation (Desharnais et al., 2004; Danos et al., 2006), which
was first developed in the context of reasoning about complex
computational systems, such as an operating system. A bisimula-
tion defines an equivalence between two models in terms of the
simulation events (see Figure 6). Two models are thus equivalent
if they can exhibit identical sequences of events for all possible
simulations.

These ideas are usable even when the two models are of dis-
parate types. To make this precise, define a trajectory as a set of
states/observations produced by the simulation of a model. Two

FIGURE 6 | Approximate bisimulation equivalence. o, and a, are
trajectories of simulations in M, and M., respectively. d(a,, a,) is the
distance metric between the trajectories.

models (M) and M;) are bisimilar (M; ~ M,), if for every
simulation in M, there is a simulation in M, that produces an
equivalent trajectory, and vice versa. For this situation, a notion
of bisimulation is required that can be used to ask if a model of
apoptosis in one organism may be bisimilar to an analogous model
in another organisms, even though the states in the two distinct
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organisms are described in terms of behavior of two different sets
of genes, related by gene-orthology.

3.5.2.2. Model approximations. Bisimulation equivalence is
often too strong a constraint, and often approximate bisimula-
tion equivalence (ABE) is sufficient for applications (Girard and
Pappas, 2005). In ABE, we assume that the simulation trajectories
for both models M and M, lie in a single metric space (X, d).
The models M; and M, are said to be approximately bisimula-
tion equivalent up to precision 3 if the corresponding simulation
outputs are individually separated by distance at most 8. In this
case, we write M~s M.

3.5.2.3. Model compositions. Given a pair of models of inter-
acting systems, we may wish to create a model that captures the
essence of the combined system. Although, intuitively this is a
rather simple concept, a good formal definition is difficult, as
state-reachability and temporal dynamics interact in a complex
way. One approach that has been used works by first defining a
composition operation using a suitable heuristic and then show-
ing that the resulting model is a “good” approximation of the real
system. In a typical definition, the state of the composite model is
described by a combination of the variables in its children’s states.
If these variables do not overlap, the simulation of the composite
model is trivial: the sub-models run in parallel, and the com-
posite is their Cartesian product. When they share variables (e.g.,
crosstalk in a signaling network), parallel simulation may fail, as
the flow of one may depend on variables in the other. A naive
approach would simulate both for € time, implicitly assuming that
the variables change only infinitesimally, update the flows of both,
and repeat — which, however, is infeasible for continuous flows, as
¢ would have to approach 0 for accurate results; discrete flows are
less problematic.

Consider three types of dependencies between a variable and a
flow in different models.

I. A close interaction: a small change in the variable causes a
significant change in the flow.
II. Aremote interaction: a large change in the variable is required
to cause a significant change in the flow.
III. No (empty) interaction: no amount of change in the variable
will affect the flow.

Clearly, no interactions would result in the trivial composi-
tion. The presence of one close interaction creates the “e dilemma”
discussed above. Thus, any partition that introduces such “e dilem-
mas” is to be minimized. On the other hand, if all interactions
between models were remote, we could define a guard condi-
tion for each interaction that is triggered when a variable changes
sufficiently to require an update in its corresponding flow. The
guard conditions constitute a set of discrete, timed events that are
typically simulated using kinetic Monte Carlo.

3.5.2.4. Hierarchy and decomposition. We envision a large
systems biology model as a hierarchical combination of smaller
models. Thus, one can formulate the hierarchy as a tree structure
(see Figure 7). The leaves (blue) represent atomic models that are

Meta-
Model

FIGURE 7 | Hierarchical composition. Tree structure that describes the
hierarchical relationships between atomic models, the meta-model, and
partial-composition models.

well-defined outside of the compositional framework. The root
(green) represents the full meta-model, and the other internal
nodes (red) are partial-compositions of other models. Each node
in this tree represents a complete executable model, defined by a
state and a flow (see Section 2.2).

Clearly, to ensure that we can efficiently and accurately simulate
such a large systems biology model, it is often required that it has
amodular structure (Figure 7), in which intra-modular dynamics
can be of types I, II, or III, but inter-modular dynamics can only
be of type II and III. This requirement is not as stringent as it
may seem at first; multi-cellular biological systems are naturally
organized in this way. Intracellular dynamics are separated from
one another by cell membranes but connected via slower acting,
intercellular signals. Solid organs have their own internal dynam-
ics and share “variables” via hormones and neuro-transmitters.
Even gene and protein interactions in regulatory and metabolic
systems can be decomposed into pathways that interact with each
other through weak cross-talks (see Figure 1 for an example of
crosstalk interaction between pathways).

To this end, we propose not only a formal structure in which to
specify and simulate multi-scale models in systems biology but also
a philosophy of modularity that follows the structures established
by nature.

3.5.2.5. Evolution. While “proximate” explanations in biology
can be presented using mechanistic models of the kind we have
described earlier, “ultimate” explanations are impossible except
in the light of evolution, where the dynamics is to be under-
stood in terms of multiple strategic agents. One powerful use of
abstraction — built from approximations and compositions — is
in allowing a translation from mechanistic models, in which the
internal state is described in great details, to strategic models, in
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which the input and output behavior is characterized in terms
of some less detailed internal states (phenomenological states).
This shift allows us to connect mechanistic models to a bur-
geoning class of systems biology models that are based on game
theory.

4. DISCUSSION

From a pragmatic perspective, the study of cancer should aim to
exploit patient data at all levels in drug discovery and therapy
design. Analysis of data in the quantity currently available, with
granularity at the level of a specific cell, requires more refined
techniques than have been previously available. However, recent
developments in modeling suggest that systems biology is primed
to take the lead in this investigation, which necessitates the incor-
poration of large amounts of data into integrated models of
multiple simultaneous processes operating at different scales.

Specifically, therapy design requires accurate, tractable pro-
gression models that track the evolution of pathway activity and
genomic alterations that characterize various stages of the disease
over time. To this end, we need rigorous notions of abstraction
that allow us to retain detailed pathway information in simpler
models. Therapy design must also take into account the toxicity
of chemotherapy and budget constraints (e.g., the ones imposed
by the monetary cost incurred by the healthcare system). Our
approach requires integration among highly disparate models,
and to this end, we need a rigorous way to simulate models
simultaneously at different scales.

Finally, modern analytical tools will play a crucial role in the
construction and application of these abstractions, hierarchical
composite models. For instance, we need model checking to sys-
tematically characterize cancer phenotypes in terms of temporal
properties. Also, sensitivity analysis is indispensable for identifying
the key targets of signaling networks for drug discovery.

In summary, we need ways to simulate and analyze mod-
els efficiently. We also need to formalize model abstraction and
to characterize its properties. These problems have been studied
extensively in computational research, such as rate-distortion the-
ory and bisimulation equivalence, and could now meaningfully be
adapted to meet the needs of biological systems. Most importantly,
we need a means to personalize complex heterogeneous models to
patients, in order to devise the most effective therapies for each
patient.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 0926200.

REFERENCES

Albeck, J. G., Burke, J. M., Spencer, S. L., Lauffenburger, D. A., and Sorger, P. K.
(2008). Modeling a snap-action, variable-delay switch controlling extrinsic cell
death. PLoS Biol. 6:€299. doi:10.1371/journal.pbio.0060299

Aldinucci, M., Bracciali, A., Lio, P, Sorathiya, A., and Torquati, M. (2011). “Stochkit-
FF: efficient systems biology on multicore architectures,” in Euro-Par 2010 Paral-
lel Processing Workshops, eds M. R. Guarracino, F. Vivien, J. L. Triff, et al. (Berlin,
Heidelberg: Springer), 167-175.

Alfieri, R., Bartocci, E., Merelli, E., and Milanesi, L. (2011). Modeling the cell
cycle: from deterministic models to hybrid systems. Biosystems 105, 34—40.
doi:10.1016/j.biosystems.2011.03.002

Alur, R, Belta, C., Ivancic, F, Kumar, V., Mintz, M., Pappas, G. J., etal. (2001).
“Hybrid modeling and simulation of biomolecular networks,” in Hybrid Systems:
Computation and Control,eds M. D. Di Benedetto and A. Sangiovanni-Vincentelli
(Berlin, Heidelberg: Springer), 19-32.

Antoniotti, M., Mishra, B., Piazza, C., Policriti, A., and Simeoni, M. (2003a). “Mod-
eling cellular behavior with hybrid automata: bisimulation and collapsing,” in
Computational Methods in Systems Biology, ed. C. Priami (Berlin, Heidelberg:
Springer), 57-74.

Antoniotti, M., Policriti, A., Ugel, N., and Mishra, B. (2003b). Model building and
model checking for biochemical processes. Cell Biochem. Biophys. 38, 271-286.
doi:10.1385/CBB:38:3:271

Bandini, S., Mauri, G., and Serra, R. (2001). Cellular automata: from a theoreti-
cal parallel computational model to its application to complex systems. Parallel
Comput. 27, 539-553. doi:10.1016/S0167-8191(00)00109-5

Barton, P. I, and Lee, C. K. (2002). Modeling, simulation, sensitivity analysis, and
optimization of hybrid systems. ACM Trans. Model. Comput. Simul. 12,256-289.
doi:10.1145/643120.643122

Bengtsson, J., Larsen, K., Larsson, E, Pettersson, P, and Yi, W. (1996). UPPAALNa
Tool Suite for Automatic Verification of Real-Time Systems. Berlin, Heidelberg:
Springer.

Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2004). Bionetgen: soft-
ware for rule-based modeling of signal transduction based on the interactions of
molecular domains. Bioinformatics 20, 3289-3291. doi:10.1093/bioinformatics/
bth378

Bornholdt, S. (2008). Boolean network models of cellular regulation: prospects and
limitations. J. R. Soc. Interface 5(Suppl. 1), S85-S94. doi:10.1098/rsif.2008.0132.
focus

Bortolussi, L., and Policriti, A. (2010). Hybrid dynamics of stochastic programs.
Theor. Comp. Sci. 411, 2052-2077. doi:10.1016/j.tcs.2010.02.008

Brim, L., Fabrikovd, J., Drazan, S., and Safranek, D. (2011). “Reachability in bio-
chemical dynamical systems by quantitative discrete approximation,” in Proceed-
ings of Third International Workshop on Computational Models for Cell Processes,
CompMod 2011 (EPTCS), Vol. 67, 97-112.

Campagna, D., and Piazza, C. (2010). Hybrid automata, reachability, and systems
biology. Theor. Comp. Sci. 411, 2037-2051. doi:10.1016/j.tcs.2009.12.015

Cartwright, N. (2004). Causation: one word, many things. Philos. Sci. 71, 805-820.
doi:10.1086/426771

Chaouiya, C. (2007). Petri net modelling of biological networks. Brief. Bioinformat-
ics 8,210-219. doi:10.1093/bib/bbm029

Clarke, E., and Mishra, B. (1984). “Automatic verification of asynchronous circuits,”
in Logics of Programs, eds E. Clarke and D. Kozen (Berlin, Heidelberg: Springer),
101-115.

Clarke, E. M., Faeder, J. R., Langmead, C. J., Harris, L. A, Jha, S. K., and Legay,
A. (2008). “Statistical model checking in biolab: applications to the automated
analysis of T-cell receptor signaling pathway,” in Computational Methods in Sys-
tems Biology, eds M. Heiner and A. M. Uhrmacher (Berlin, Heidelberg: Springer),
231-250.

Cozman, E (1997). “Robustness analysis of Bayesian networks with local convex
sets of distributions,” in Proceedings of the Thirteenth Conference on Uncer-
tainty in Artificial Intelligence (San Fransisco: Morgan Kaufmann Publishers Inc),
108-115.

Danos, V., Desharnais, J., Laviolette, F, and Panangaden, P. (2006). Bisimulation
and cocongruence for probabilistic systems. Inform. Comput. 204, 503-523.
d0i:10.1016/j.ic.2005.02.004

Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., et al. (2012).
Graphs, rewriting and pathway reconstruction for rule-based models. FSTTCS
18, 276-288. doi:10.4230/LIPIcs.FSTTCS.2012.276

Danos, V., Feret, ., Fontana, W., Harmer, R., and Krivine, J. (2007). “Rule-based
modelling of cellular signalling,” in CONCUR 2007-Concurrency Theory, eds L.
Caires and V. T. Vasconcelos (Berlin, Heidelberg: Springer), 17-41.

Danos, V., Feret, J., Fontana, W., Harmer, R., and Krivine, J. (2010). “Abstracting the
differential semantics of rule-based models: exact and automated model reduc-
tion,” in Logic in Computer Science (LICS), 2010 25th Annual IEEE Symposium
on (New York: IEEE), 362-381.

Das, S., Sikdar, B. K., and Chaudhuri, P. P. (2004). “Characterization of reach-
able/nonreachable cellular automata states,” in Cellular Automata, eds P. M.
A. Sloot, B. Chopard and A. G. Hoekstra (Berlin, Heidelberg: Springer),
813-822.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology

August 2014 | Volume 2 | Article 27 | 14


http://dx.doi.org/10.1371/journal.pbio.0060299
http://dx.doi.org/10.1016/j.biosystems.2011.03.002
http://dx.doi.org/10.1385/CBB:38:3:271
http://dx.doi.org/10.1016/S0167-8191(00)00109-5
http://dx.doi.org/10.1145/643120.643122
http://dx.doi.org/10.1093/bioinformatics/bth378
http://dx.doi.org/10.1093/bioinformatics/bth378
http://dx.doi.org/10.1098/rsif.2008.0132.focus
http://dx.doi.org/10.1098/rsif.2008.0132.focus
http://dx.doi.org/10.1016/j.tcs.2010.02.008
http://dx.doi.org/10.1016/j.tcs.2009.12.015
http://dx.doi.org/10.1086/426771
http://dx.doi.org/10.1093/bib/bbm029
http://dx.doi.org/10.1016/j.ic.2005.02.004
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.276
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Korsunsky et al.

Systems biology of cancer

Delpu, Y., Hanoun, N., Lulka, H., Sicard, E,, Selves, J., Buscail, L., et al. (2011). Genetic
and epigenetic alterations in pancreatic carcinogenesis. Curr. Genomics 12, 15.
doi:10.2174/138920211794520132

Desharnais, J., Gupta, V., Jagadeesan, R., and Panangaden, P. (2004). Metrics for
labelled markov processes. Theor. Comp. Sci. 318, 323-354. doi:10.1016/j.tcs.
2003.09.013

Didier, F, Henzinger, T. A., Mateescu, M., and Wolf, V. (2009). “Approximation
of event probabilities in noisy cellular processes,” in Computational Methods in
Systems Biology, eds P. Degano and R. Gorrieri (Berlin, Heidelberg: Springer),
173-188.

Dimitrova, E., Garcia-Puente, L. D., Hinkelmann, E, Jarrah, A. S., Laubenbacher, R.,
Stigler, B., et al. (2011). Parameter estimation for Boolean models of biological
networks. Theor. Comp. Sci. 412, 2816-2826. d0i:10.1016/j.jtbi.2010.10.003

Donaldson, R., and Gilbert, D. (2008). “A model checking approach to the parame-
ter estimation of biochemical pathways,” in Computational Methods in Systems
Biology, eds M. Heiner and A. M. Uhrmacher (Berlin, Heidelberg: Springer),
269-287.

Donzé, A., Clermont, G., and Langmead, C. J. (2010). Parameter synthesis in non-
linear dynamical systems: application to systems biology. J. Comput. Biol. 17,
325-336. d0i:10.1089/cmb.2009.0172

Dytham, C. (1995). The Effect of Habitat Destruction Pattern on Species Persistence:
A Cellular Model. Hoboken: Oikos, 340-344.

Fauré, A., Naldi, A., Chaouiya, C., and Thieffry, D. (2006). Dynamical analysis of a
generic Boolean model for the control of the mammalian cell cycle. Bioinformat-
ics 22, e124—e131. doi:10.1093/bioinformatics/btl210

Feret, J., Danos, V., Krivine, J., Harmer, R., and Fontana, W. (2009). Internal coarse-
graining of molecular systems. Proc. Natl. Acad. Sci. U.S.A. 106, 6453—6458.
doi:10.1073/pnas.0809908106

Figueirédo, P., Coutinho, S., and Zorzenon dos Santos, R. (2008). Robustness of
a cellular automata model for the HIV infection. Physica A 387, 6545-6552.
doi:10.1016/j.physa.2008.07.011

Fischer, D., and Kaiser, L (2011). “Model checking the quantitative j1-calculus on
linear hybrid systems,” in Automata, Languages and Programming, eds L. Aceto,
M. Henzinger, and J. Sgall (Berlin, Heidelberg: Springer), 404-415.

Frinzle, M., and Herde, C. (2007). Hysat: an efficient proof engine for bounded
model checking of hybrid systems. Formal Methods Syst. Design 30, 179-198.
doi:10.1007/510703-006-0031-0

Friedman, N. (2004). Inferring cellular networks using probabilistic graphical mod-
els. Science 303, 799-805. doi:10.1126/science.1094068

Friedman, N., and Koller, D. (2003). Being Bayesian about network structure. a
Bayesian approach to structure discovery in Bayesian networks. Mach. Learn. 50,
95-125. doi:10.1023/A:1020249912095

Garmaroudi, E S., Marchant, D., Si, X., Khalili, A., Bashashati, A., Wong, B. W,,
etal. (2010). Pairwise network mechanisms in the host signaling response to
coxsackievirus b3 infection. Proc. Natl. Acad. Sci. U.S.A. 107, 17053-17058.
doi:10.1073/pnas.1006478107

Ghosh, R., Tiwari, A., and Tomlin, C. (2003). “Automated symbolic reachability
analysis; with application to delta-notch signaling automata,” in Hybrid Sys-
tems: Computation and Control, eds O. Maler and A. Pnueli (Berlin, Heidelberg:
Springer), 233-248.

Ghosh, R., and Tomlin, C. J. (2001). “Lateral inhibition through delta-notch signal-
ing: a piecewise affine hybrid model,” in Hybrid Systems: Computation and Con-
trol, eds M. D. Di Benedetto and A. Sangiovanni-Vincentelli (Berlin, Heidelberg:
Springer), 232-246.

Girard, A., and Pappas, G. J. (2005). “Approximate bisimulations for nonlinear
dynamical systems,” in Decision and Control, 2005 and 2005 European Con-
trol Conference. CDC-ECC’05. 44th IEEE Conference on (New York: IEEE),
684-689.

Gong, H., Wang, Q., Zuliani, P.,, Faeder, J. R., Lotze, M., and Clarke, E. (2011a). Sym-
bolic Model Checking of Signaling Pathways in Pancreatic Cancer. Winona, MN:
BICoB, 245.

Gong, H., Zuliani, P., and Clarke, E. M. (2011b). “Model checking of a diabetes-
cancer model,” in AIP Conference Proceedings, Vol. 1371, (Melville, NY: AIP Pub-
lishing), 234.

Gong, H., Zuliani, P, Wang, Q., and Clarke, E. M. (2011¢). “Formal analysis for
logical models of pancreatic cancer,” in Decision and Control and European Con-
trol Conference (CDC-ECC), 2011 50th IEEE Conference on (New York: IEEE),
4855-4860.

Gong, H., Zuliani, P., Komuravelli, A., Faeder, J. R.,and Clarke, E. M. (2010). Analysis
and verification of the hmgb1 signaling pathway. BMC Bioinformatics 11(Suppl.
7):510. doi:10.1186/1471-2105-11-S7-S10

Grosu, R, Batt, G., Fenton, F. H., Glimm, J., Le Guernic, C., Smolka, S. A., et al.
(2011). “From cardiac cells to genetic regulatory networks,” in Computer Aided
Verification, eds G. Gopalakrishnan and S. Qadeer (Berlin, Heidelberg: Springer),
396—411.

Guengerich, E P, and Johnson, W. W. (1997). Kinetics of ferric cytochrome p450
reduction by nadph-cytochrome p450 reductase: rapid reduction in the absence
of substrate and variations among cytochrome p450 systems. Biochemistry 36,
14741-14750. doi:10.1021/bi9719399

Gunawardena, J. (2010). Models in systems biology: the parameter problem and
the meanings of robustness. Elem. Comput. Syst. Biol. 1, 21-48. doi:10.1002/
9780470556757.ch2

Hagiya, M., Takahashi, K., Yamamoto, M., and Sato, T. (2004). “Analysis of synchro-
nous and asynchronous cellular automata using abstraction by temporal logic,”
in Functional and Logic Programming, eds Y. Kameyama and P. J. Stuckey (Berlin,
Heidelberg: Springer), 7-21.

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1997). “Hytech: a model checker
for hybrid systems,” in Computer Aided Verification, ed. O. Grumberg (Berlin,
Heidelberg: Springer), 460-463.

Hoffmann, A., Levchenko, A., Scott, M. L., and Baltimore, D. (2002). The IkB-NF-kB
signaling module: temporal control and selective gene activation. Science 298,
1241-1245. doi:10.1126/science.1071914

Holmes, F. A., Walters, R. S., Theriault, R. L., Buzdar, A. U,, Frye, D. K., Hor-
tobagyi, G. N., etal. (1991). Phase II trial of Taxol, an active drug in the
treatment of metastatic breast cancer. J. Natl. Cancer Inst. 83, 1797-1805.
doi:10.1093/jnci/83.24.1797-a

Horvath, A. (2012). The Monte Carlo Em Method for the Parameter Estimation of
Biological Models. Amsterdam: MMB & DFT, 37.

Hume, D. (1902). Enquiries Concerning the Human Understanding: And Concerning
the Principles of Morals. Gloucestershire: Clarendon Press.

Thekwaba, A., Broomhead, D., Grimley, R., Benson, N., and Kell, D. (2004). Sensitivity
analysis of parameters controlling oscillatory signalling in the NF-kB pathway:
the roles of IKK and IkBa. Syst. Biol. 1,93-103. doi:10.1049/sb:20045009

Iyengar, R., Zhao, S., Chung, S.-W., Mager, D. E., and Gallo, J. M. (2012).
Merging systems biology with pharmacodynamics. Sci. Transl. Med. 4, 126s7.
doi:10.1126/scitranslmed.3003563

Janes, K. A., Kelly, J. R., Gaudet, S., Albeck, J. G., Sorger, P. K., and Lauffenburger,
D. A. (2004). Cue-signal-response analysis of TNF-induced apoptosis by par-
tial least squares regression of dynamic multivariate data. J. Comput. Biol. 11,
544-561. doi:10.1089/cmb.2004.11.544

Jones, S., Zhang, X., Parsons, D. W., Lin, J. C.-H., Leary, R. J., Angenendt, P., et al.
(2008). Core signaling pathways in human pancreatic cancers revealed by global
genomic analyses. Science 321, 1801-1806. doi:10.1126/science.1164368

Jordan, C. T., Guzman, M. L., and Noble, M. (2006). Cancer stem cells. N. Eng. J.
Med. 355,1253-1261. doi:10.1056/NEJMra061808

Kang, R., Tang, D., Schapiro, N. E., Livesey, K. M., Farkas, A., Loughran, P,
et al. (2009). The receptor for advanced glycation end products (rage) sustains
autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell
Death Differ. 17, 666—676. doi:10.1038/cdd.2009.149

Kim, J., Bates, D. G., Postlethwaite, I., Ma, L., and Iglesias, P. A. (2006). Robust-
ness analysis of biochemical network models. IEE Proc. Syst. Biol. 153, 96-104.
doi:10.1049/ip-syb:20050024

Kleinberg, S., and Hripcsak, G. (2011). A review of causal inference for biomedical
informatics. J. Biomed. Inform. 44, 1102—1112. doi:10.1016/j.jbi.2011.07.001

Kleinberg, S., and Mishra, B. (2009). “The temporal logic of causal structures,” in
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
(Corvalis, OR: AUAI Press), 303-312.

Kobayashi, K., and Hiraishi, K. (2010). “Reachability analysis of probabilistic
Boolean networks using model checking,” in SICE Annual Conference 2010, Pro-
ceedings of (New York: IEEE), 829-832.

Kobayashi, K., and Hiraishi, K. (2011). “A symbolic approach to probabilistic veri-
fication of Boolean networks,” in IECON 2011-37th Annual Conference on IEEE
Industrial Electronics Society (New York: IEEE), 3764-3769.

Kwiatkowska, M., Norman, G., and Parker, D. (2004). Probabilistic symbolic model
checking with prism: a hybrid approach. Int. J. Software Tools Technol. Trans. 6,
128-142. doi:10.1007/s10009-004-0140-2

www.frontiersin.org

August 2014 |Volume 2 | Article 27 | 15


http://dx.doi.org/10.2174/138920211794520132
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1016/j.jtbi.2010.10.003
http://dx.doi.org/10.1089/cmb.2009.0172
http://dx.doi.org/10.1093/bioinformatics/btl210
http://dx.doi.org/10.1073/pnas.0809908106
http://dx.doi.org/10.1016/j.physa.2008.07.011
http://dx.doi.org/10.1007/s10703-006-0031-0
http://dx.doi.org/10.1126/science.1094068
http://dx.doi.org/10.1023/A:1020249912095
http://dx.doi.org/10.1073/pnas.1006478107
http://dx.doi.org/10.1186/1471-2105-11-S7-S10
http://dx.doi.org/10.1021/bi9719399
http://dx.doi.org/10.1002/9780470556757.ch2
http://dx.doi.org/10.1002/9780470556757.ch2
http://dx.doi.org/10.1126/science.1071914
http://dx.doi.org/10.1093/jnci/83.24.1797-a
http://dx.doi.org/10.1049/sb:20045009
http://dx.doi.org/10.1126/scitranslmed.3003563
http://dx.doi.org/10.1089/cmb.2004.11.544
http://dx.doi.org/10.1126/science.1164368
http://dx.doi.org/10.1056/NEJMra061808
http://dx.doi.org/10.1038/cdd.2009.149
http://dx.doi.org/10.1049/ip-syb:20050024
http://dx.doi.org/10.1016/j.jbi.2011.07.001
http://dx.doi.org/10.1007/s10009-004-0140-2
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Korsunsky et al.

Systems biology of cancer

Lihdesmiki, H., Hautaniemi, S., Shmulevich, 1., and Yli-Harja, O. (2006). Rela-
tionships between probabilistic Boolean networks and dynamic Bayesian net-
works as models of gene regulatory networks. Signal Processing 86, 814-834.
doi:10.1016/j.sigpro.2005.06.008

Langmead, C. J. (2009). “Generalized queries and Bayesian statistical model check-
ing in dynamic Bayesian networks: application to personalized medicine,” in
8th Annual International Conference on Computational Systems Bioinformatics.
Woodside: Life Sciences Society, 201-212.

Langmead, C. J., Jha, S. K., and Clarke, E. M. (2006). Temporal-logics as Query Lan-
guages for Dynamic Bayesian Networks: Application to D. Melanogaster Embryo
Development. Carnegie Mellon University.

Li, Z.,and Chan, C. (2004). Inferring pathways and networks with a Bayesian frame-
work. FASEB J. 18, 746—748. doi:10.1096/1j.03-0475fje

Lincoln, P, and Tiwari, A. (2004). “Symbolic systems biology: hybrid modeling and
analysis of biological networks,” in Hybrid Systems: Computation and Control,
eds R. Alur and G. J. Pappas (Berlin, Heidelberg: Springer), 660—672.

Loes, O. L., Giulio, C., Alex, G., Daniele, R., Giancarlo, M., Marco, A., et al. (2013).
Inferring causal models of cancer progression with a shrinkage estimator and
probability raising. arXiv:1311.6293.

Manzano, A., Roig, T., Bermudez, J., and Bartrons, R. (1996). Effects of Taxol on
isolated rat hepatocyte metabolism. Am. J. Physiol. 271, C1957-C1962.

Marjanovic, N. D., Weinberg, R. A., and Chaffer, C. L. (2013). Cell plasticity and
heterogeneity in cancer. Clin. Chem. 59, 168—179. doi:10.1373/clinchem.2012.
184655

Mukherjee, S., and Speed, T. P. (2008). Network inference using informative priors.
Proc. Natl. Acad. Sci. U.S.A. 105, 14313-14318. doi:10.1073/pnas.0802272105

Miissel, C., Hopfensitz, M., and Kestler, H. A. (2010). BoolNetNan R package for
generation, reconstruction and analysis of Boolean networks. Bioinformatics 26,
1378-1380. doi:10.1093/bioinformatics/btq124

Narasimhan, S., and Biswas, G. (2007). Model-based diagnosis of hybrid systems.
IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 37, 348-361. doi:10.1109/TSMCA.
2007.893487

Nielsen, M., Plotkin, G., and Winskel, G. (1981). Petri nets, event structures
and domains, part I. Theor. Comp. Sci. 13, 85-108. doi:10.1016/0304-3975(81)
90112-2

Noel, V., Vakulenko, S., and Radulescu, O. (2011). “Algorithm for identification of
piecewise smooth hybrid systems: application to eukaryotic cell cycle regulation,”
in Algorithms in Bioinformatics, eds T. M. Przytycka and M.-E. Sagot (Berlin,
Heidelberg: Springer), 225-236.

Olde Loohuis, L., Witzel, A., and Mishra, B. (2014). Cancer hybrid automata: model,
beliefs and therapy. J. Inform. Comput. 236, 68—86. doi:10.1016/j.ic.2014.01.013

Paulevé, L., Andrieux, G., and Koeppl, H. (2013). “Under-approximating cut sets for
reachability in large scale automata networks,” in Computer Aided Verification,
eds N. Sharygina and H. Veith (Berlin, Heidelberg: Springer), 69—84.

Pearl, J. (2000). Causality: Models, Reasoning and Inference, Vol. 29. Cambridge:
Cambridge University Press.

Pe’er, D. (2005). Bayesian network analysis of signaling networks: a primer. Sci.
Signal. 2005, 14. doi:10.1126/stke.2812005pl4

Qian, X., and Dougherty, E. R. (2009). On the long-run sensitivity of probabilistic
Boolean networks. J. Theor. Biol. 257, 560-577. doi:10.1016/j.jtbi.2008.12.023

Radulescu, O., Gorban, A. N., Zinovyev, A.,and Noel, V. (2012). Reduction of dynam-
ical biochemical reaction networks in computational biology. Front. Genet. 3:131.
doi:10.3389/fgene.2012.00131

Rahman, A., Korzekwa, K. R., Grogan, J., Gonzalez, E. J., and Harris, J. W. (1994).
Selective biotransformation of Taxol to 6a-hydroxytaxol by human cytochrome
p450 2¢8. Cancer Res. 54, 5543-5546.

Ramakrishnan, N., Tadepalli, S., Watson, L. T., Helm, R. E, Antoniotti, M., and
Mishra, B. (2010). Reverse engineering dynamic temporal models of biological
processes and their relationships. Proc. Natl. Acad. Sci. U.S.A. 107,12511-12516.
doi:10.1073/pnas.1006283107

Reeves, G. T., Muratov, C. B., Schiipbach, T., and Shvartsman, S. Y. (2006). Quan-
titative models of developmental pattern formation. Dev. Cell 11, 289-300.
doi:10.1016/j.devcel.2006.08.006

Reya, T., Morrison, S. J., Clarke, M. E, and Weissman, I. L. (2001). Stem cells, cancer,
and cancer stem cells. Nature 414, 105-111. doi:10.1038/35102167

Ryu, S., Lin, S.-C., Ugel, N., Antoniotti, M., and Mishra, B. (2008). Mathematical
modeling of the formation of apoptosome in intrinsic pathway of apoptosis.
Syst. Synth. Biol. 2, 49-66. doi:10.1007/s11693-009-9022-y

Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bommhardt, U.,
Arndt, B., etal. (2007). A logical model provides insights into T cell receptor
signaling. PLoS Comput. Biol. 3:e163. doi:10.1371/journal.pcbi.0030163

Sandmann, W. (2007). “Simultaneous stochastic simulation of multiple pertur-
bations in biological network models,” in Computational Methods in Sys-
tems Biology, eds M. Calder and S. Gilmore (Berlin, Heidelberg: Springer),
15-31.

Sandmann, W., and Wolf, V. (2008). “Computational probability for systems biol-
ogy,” in Formal Methods in Systems Biology, ed. J. Fisher (Berlin, Heidelberg:
Springer), 33-47.

Sarkar, A. X., Christini, D. J., and Sobie, E. A. (2012). Exploiting mathematical mod-
els to illuminate electrophysiological variability between individuals. J. Physiol.
590, 2555-2567. doi:10.1113/jphysiol.2011.223313

Sarkar, A. X., and Sobie, E. A. (2010). Regression analysis for constraining free
parameters in electrophysiological models of cardiac cells. PLoS Comput. Biol.
6:¢1000914. doi:10.1371/journal.pcbi. 1000914

Shackleton, M., Quintana, E., Fearon, E. R., and Morrison, S. J. (2009). Hetero-
geneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822-829.
doi:10.1016/j.cell.2009.08.017

Shmulevich, I, Gluhovsky, 1., Hashimoto, R. E, Dougherty, E. R., and Zhang,
W. (2003). Steady-state analysis of genetic regulatory networks modelled by
probabilistic Boolean networks. Comp. Funct. Genomics 4,601-608. doi:10.1002/
cfg.342

Smith, A. M., Xu, W., Sun, Y., Faeder, J. R., and Marai, G. E. (2012). Rulebender:
integrated modeling, simulation and visualization for rule-based intracellular
biochemistry. BMC Bioinformatics 13(Suppl. 8):S3. doi:10.1186/1471-2105-13-
$8-S3

Sobie, E. A. (2009). Parameter sensitivity analysis in electrophysiological models
using multivariable regression. Biophys. J. 96,1264—1274. doi:10.1016/j.bpj.2008.
10.056

Sutner, K. (2002). Cellular automata and intermediate reachability problems. Fun-
damenta Informaticae 52, 249-256.

Sutner, K. (2009). Model checking one-dimensional cellular automata. J. Cell.
Automata 4,213-224.

Tamura, T., Sasaki, Y., Nishiwaki, Y., and Saijo, N. (1995). Phase I study of pacli-
taxel by three-hour infusion: hypotension just after infusion is one of the major
dose-limiting toxicities. Cancer Sci. 86, 1203—-1209. doi:10.1111/j.1349-7006.
1995.tb03316.x

Tatyana, L., Dirk, R., and Gennady, B. (2009). Distributed parameter identi-
fication for a label-structured cell population dynamics model using CFSE
histogram time-series data. J. Math. Biol. 59, 581-603. doi:10.1007/500285-008-
0244-5

TCGA. (2013). The Cancer Genome Atlas — Mission and Goal. Available at: http:
//cancergenome.nih.gov/abouttcga/overview/missiongoal

Thomas, R. (1991). Regulatory networks seen as asynchronous automata: a logical
description. J. Theor. Biol. 153, 1-23. doi:10.1016/j.biosystems.2011.06.006

Thomas, R. (1998). Laws for the dynamics of regulatory networks. Int. J. Dev. Biol.
42, 479-485.

Vanden-Eijnden, E. (2006). “Transition path theory,” in Computer Simulations in
Condensed Matter Systems: From Materials to Chemical Biology, Vol. 1, eds M.
Ferrario, G. Ciccotti, and K. Binder (Berlin, Heidelberg: Springer), 453—493.

Vikram, V., Wadadekar, Y., Kembhavi, A. K., and Vijayagovindan, G. (2010).
Pymorph: automated galaxy structural parameter estimation using python. Mon.
Not. R. Astron. Soc. 409, 1379-1392. doi:10.1111/j.1365-2966.2010.17426.x

Wang, H., Rish, I., and Ma, S. (2002). Using sensitivity analysis for selective parame-
ter update in Bayesian network learning. Assoc. Adv. Artif. Intell. Available from:
http://www.aaai.org/Papers/Symposia/Spring/2002/SS-02-03/SS02-03-005.pdf

Wartlick, O., Kicheva, A., and Gonzélez-Gaitdn, M. (2009). Morphogen gradient
formation. Cold Spring Harb. Perspect. Biol. 1, 1-22. doi:10.1101/cshperspect.
a001255

Weinberg, R., and Hanahan, D. (2000). The hallmarks of cancer. Cell 100, 57-70.
doi:10.1016/S0092-8674(00)81683-9

White, R. W. (1977). Dynamic central place theory: results of a simulation approach.
Geogr. Anal. 9,226-243. d0i:10.1111/j.1538-4632.1977.tb00576.x

Wigler, M. (2012). Broad applications of single-cell nucleic acid analysis in biomed-
ical research. Genome Med. 4, 79. doi:10.1186/gm380

Wilkinson, D. J. (2007). Bayesian methods in bioinformatics and computational
systems biology. Brief. Bioinformatics 8, 109-116. doi:10.1093/bib/bbm007

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology

August 2014 | Volume 2 | Article 27 | 16


http://dx.doi.org/10.1016/j.sigpro.2005.06.008
http://dx.doi.org/10.1096/fj.03-0475fje
http://dx.doi.org/10.1373/clinchem.2012.184655
http://dx.doi.org/10.1373/clinchem.2012.184655
http://dx.doi.org/10.1073/pnas.0802272105
http://dx.doi.org/10.1093/bioinformatics/btq124
http://dx.doi.org/10.1109/TSMCA.2007.893487
http://dx.doi.org/10.1109/TSMCA.2007.893487
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1016/j.ic.2014.01.013
http://dx.doi.org/10.1126/stke.2812005pl4
http://dx.doi.org/10.1016/j.jtbi.2008.12.023
http://dx.doi.org/10.3389/fgene.2012.00131
http://dx.doi.org/10.1073/pnas.1006283107
http://dx.doi.org/10.1016/j.devcel.2006.08.006
http://dx.doi.org/10.1038/35102167
http://dx.doi.org/10.1007/s11693-009-9022-y
http://dx.doi.org/10.1371/journal.pcbi.0030163
http://dx.doi.org/10.1113/jphysiol.2011.223313
http://dx.doi.org/10.1371/journal.pcbi.1000914
http://dx.doi.org/10.1016/j.cell.2009.08.017
http://dx.doi.org/10.1002/cfg.342
http://dx.doi.org/10.1002/cfg.342
http://dx.doi.org/10.1186/1471-2105-13-S8-S3
http://dx.doi.org/10.1186/1471-2105-13-S8-S3
http://dx.doi.org/10.1016/j.bpj.2008.10.056
http://dx.doi.org/10.1016/j.bpj.2008.10.056
http://dx.doi.org/10.1111/j.1349-7006.1995.tb03316.x
http://dx.doi.org/10.1111/j.1349-7006.1995.tb03316.x
http://dx.doi.org/10.1007/s00285-008-0244-5
http://dx.doi.org/10.1007/s00285-008-0244-5
http://cancergenome.nih.gov/abouttcga/overview/missiongoal
http://cancergenome.nih.gov/abouttcga/overview/missiongoal
http://dx.doi.org/10.1016/j.biosystems.2011.06.006
http://dx.doi.org/10.1111/j.1365-2966.2010.17426.x
http://www.aaai.org/Papers/Symposia/Spring/2002/SS-02-03/SS02-03-005.pdf
http://dx.doi.org/10.1101/cshperspect.a001255
http://dx.doi.org/10.1101/cshperspect.a001255
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://dx.doi.org/10.1111/j.1538-4632.1977.tb00576.x
http://dx.doi.org/10.1186/gm380
http://dx.doi.org/10.1093/bib/bbm007
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Korsunsky et al.

Systems biology of cancer

Yang, Y., and Lin, H. (2010). “Reachability analysis based model validation in systems
biology,” in Cybernetics and Intelligent Systems (CIS), 2010 IEEE Conference on
(New York: IEEE), 14-19.

Yuceer, M., Atasoy, L., and Berber, R. (2008). A software for parameter estima-
tion in dynamic models. Braz. J. Chem. Eng. 25, 813-821. doi:10.1590/S0104-
66322008000400018

Zhang, J., Baran, J., Cros, A., Guberman, J. M., Haider, S., Hsu, J., et al. (2011). Inter-
national cancer genome consortium data portal — a one-stop shop for cancer
genomics data. 2011:bar026. doi:10.1093/database/bar026

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 27 April 2014; accepted: 18 July 2014; published online: 19 August 2014.
Citation: Korsunsky I, McGovern K, LaGatta T, Olde Loohuis L, Grosso-Applewhite
T, Griffeth N and Mishra B (2014) Systems biology of cancer: a challenging expe-
dition for clinical and quantitative biologists. Front. Bioeng. Biotechnol. 2:27. doi:
10.3389/fbioe.2014.00027

This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Bioengineering and Biotechnology.

Copyright © 2014 Korsunsky, McGovern, LaGatta, Olde Loohuis, Grosso-Applewhite,
Griffeth and Mishra. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or reproduction
in other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

www.frontiersin.org

August 2014 | Volume 2 | Article 27 | 17


http://dx.doi.org/10.1590/S0104-66322008000400018
http://dx.doi.org/10.1590/S0104-66322008000400018
http://dx.doi.org/10.1093/database/bar026
http://dx.doi.org/10.3389/fbioe.2014.00027
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

	Systems biology of cancer: a challenging expedition for clinical and quantitative biologists
	Introduction
	Models and Tools for Cell-Autonomous Dynamic Processes
	Examples
	Model checking Boolean model of pancreatic cancer pathways
	Sensitivity analysis of TRAIL-induced apoptosis ODE model

	Review of first generation tools
	Model descriptions
	Rule-based model
	Dynamic Bayesian network
	Boolean network
	Ordinary differential equations (ODEs)
	Continuous time Markov chain (CTMC)
	Petri network
	Hybrid automata
	Cellular automata
	Partial differential equations

	Tool descriptions
	Parameter estimation
	Sensitivity analysis
	Robustness analysis
	Reachability analysis
	Model checking
	Causal analysis
	Model reduction



	Models and Tools for Heterogeneous Population Dynamics
	Abstraction of ODE model to timed automaton
	Formal definition of the abstract model

	Composition of liver model with agent based population model
	Next generation of dynamic models
	Multi-scale models
	Review of next-generation tools
	Illustration of model abstractions
	Tools description
	Model equivalence
	Model approximations
	Model compositions
	Hierarchy and decomposition
	Evolution



	Discussion
	Acknowledgments
	References


