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enzyme wiring, laccase

INTRODUCTION
The electrical powering of billions of electronic gadgets like cell
phones or computers leads to the production of a countless num-
ber of lithium batteries in the environment creating a real problem
for human health. Moreover, the ever-increasing depletion of fossil
fuels and the need for clean methods of producing electricity have
stimulated the emergence of new sources of sustainable and renew-
able energy without greenhouse gas emissions or environmental
pollution. Among these clean alternative sources, the production
of electrical energy thanks to biofuel cells, a subcategory of fuel
cells, is a rapidly growing field. In particular, enzymatic fuel cells
that convert chemical energy into electrical energy by catalytic
reaction of the enzymes, is one of the most common and studied
configuration (Barton et al., 2004; Cracknell et al., 2008; Zayats
et al., 2008; Willner et al., 2009; Ivanov et al., 2010; Leech et al.,
2012; Katz and MacVittie, 2013; Cosnier et al., 2014). These biofuel
cells use redox enzymes for the specific oxidation of fuels (alco-
hols, hydrogen, lactate, sugars such as glucose, fructose, lactose, or
cellobiose) at the anode and the reduction of oxidizers (O,, H,O;)
at the cathode in order to generate electric power (Meredith and
Minteer, 2012). A vast majority of these biofuel cells produce elec-
tric power from the electro-enzymatic degradation of glucose and
oxygen. Compared to hydrogen or methanol fuel cells, sugars like
glucose present the unique advantage of being a perfect energy
storage compound in many living organisms and have absolutely
no toxicological, explosive or flammable risks. Taking into account
that catalysts, fuels, and products are biodegradable, the inherent
ecological aspect of the biofuel cells compared to fuel cells should
be noted. Fuel cells require catalysts based on precious metals or
transition metals such as nickel, gold, silver, rhodium, ruthenium,
palladium or chromium, or alloys such as Raney nickel (Zhang,
2008).

The main application of biofuel cells is to design devices whose
power and size will be compatible with a use as portable source of

This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high
specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a tar
geted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O, HoO5)
at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes
and redox mediators was widely exploited to develop biofuel cells since the electrons
involved in the bio-electrocatalytic processes can be efficiently transferred from or to an
external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes
and impressive biofuel cell performances are reported as well as biomedical applications.
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energy (miniature generators of low power for mobile phone or
GPS). Combined with conventional batteries, these biosystems will
also be able to ensure a recharging of the batteries and a standby
mode for electronic equipment. Owing to the presence of some
fuels such as glucose and lactate in physiological fluids, another
major motivation for the development of biofuel cells concerns the
production of electricity from human body. Two approaches are in
constant development: enzymatic fuel cells implanted in the body
and using glucose present in the blood or interstitial fluids and
non-invasive fuel cells using lactate present in human perspira-
tion. The objectives are for the former to power implanted medical
devices like cardiac pacemakers, muscle stimulators, neurological
stimulators, cochlear implants, drug pumps, sensors, while those
for the latter are to harvest energy from human for powering wear-
able electronics (Jia et al., 2013; Katz and MacVittie, 2013; Cosnier
et al., 2014).

Although the first example of a biofuel cell has been reported
in the 60s (Yahiro et al., 1964), the development of such promis-
ing devices has remained scarcely investigated until the late 90s.
Since the early 2000s, tremendous advances have been achieved in
the field of biofuel cells as evidenced by the exponential increase
of scientific publications devoted to this topic. This results from
the removal of technological barriers directly related to profound
progress made in the field of electrochemical biosensors like the
design of new materials and procedures for immobilization and
electrical connection of enzymes (Polsky et al., 2001; Ronkainen
et al., 2010; Samanta and Sarkar, 2011).

In particular, the development of biointerfaces has triggered
enormous attention in the field of energy conversion. Taking into
account that the bioelectrode activity was related to the activity
of the wired enzymes, three-dimensional structures were designed
to enhance the specific surface of the conductive substrate and
the immobilized amount of enzymes and redox mediators serving
as electron shuttle between enzymes and the electrode surface. In

www.frontiersin.org

October 2014 | Volume 2 | Article 45 | 1


http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00045/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00045/abstract
http://www.frontiersin.org/people/u/76013
http://www.frontiersin.org/people/u/127246
http://www.frontiersin.org/people/u/122351
mailto:serge.cosnier@ujf-grenoble.fr
http://www.frontiersin.org
http://www.frontiersin.org/Bioenergy_and_Biofuels/archive

Cosnier et al.

Recent advances in enzymatic fuel cells

this context, numerous efforts have been focused in the produc-
tion of novel biomaterials based on aerogels (Wen et al., 2014),
osmium-derivatized polymers (Shaoa et al., 2014), redox hydro-
gels (Flexer and Mano, 2014; Plumeré et al., 2014), inorganic clays
(Zebdaetal.,2011a),and conductive nanomaterials (Willner et al.,
2006; Holzinger et al.,2012). For instance, deposited hydrogel films
based on osmium-containing metallopolymer that are permeable
to water-soluble chemicals, were widely employed by Mano’s and
Heller’s group for designing enzymatic fuel cells. These conduct-
ing polymer hydrogels were thus applied to the entrapment of
enzymes (glucose oxidase, glucose dehydrogenase, bilirubin oxi-
dase, laccase) onto platinum microelectrodes and nanostructured
scaffolds of carbon fibers grown by chemical vapor deposition
(Soukharev et al., 2004; Little et al., 2011; Flexer et al., 2013). In
addition, the modulation of the tethering of redox centers to the
polymer backbone was investigated for optimizing the enzyme
wiring (Forster et al., 2003). Moreover, the stabilization of the
bioarchitectures was envisioned by photoinitiated polymerization
of poly(ethylene-glycol) diacrylate as outer layer (Suraniti et al.,
2011).

Owing to the intense research activity in this field, we aim not
to give a complete coverage of biofuel cells literature involving
3D constructs, but rather to review briefly the recent strategies
employed with carbon nanotubes (CNT) for enzyme immobiliza-
tion and their wiring.

ENZYMATIC FUEL CELLS BASED ON CARBON NANOTUBE
DEPOSITS

Within the vast number of available nanostructured materials and
nano-objects, CNTs exhibit, between others, nanowire morphol-
ogy, biocompatibility, and excellent conductivity (Dai, 2002; Smart
et al., 2006). Due to their geometry, CNT presents an impressive
high specific surface of more than 1000 m?/g constituting thus
an attractive building block for the construction of highly porous

three-dimensional nanostructured CNT electrodes (Peigney et al.,
2001). These particularities confer to nanotubes a pivotal role for
designing electrochemical biosensors and biofuel cells. Further-
more, the possibility to add appropriate functionalities via organic
functionalization enabled optimal tuning of such nanostructured
electrodes by attaching specific (redox) sites for fixing proteins or
catalyzing electrochemical reactions with enzymes or coenzymes.

In this context, CNTs have played an important role for inter-
facing enzymes with electronic circuitry. In particular, these CNT
can establish an electrical communication with enzymes via their
intrinsic conductivity or via an electron transport to enzymes
ensured by electron hopping between immobilized redox cen-
ters. With regard to their nanoscale size, CNTs can approach in
close proximity the prosthetic site of enzymes and hence achieve
a direct electrical wiring between enzymes and the bulk elec-
trode (Figure 1). As a consequence, electrodes modified by CNTs
have aroused widespread attention in the design of biofuel cells
(Holzinger et al., 2012).

A significant step in the development of bioelectrodes was thus
described in 2010 by Cosnier and coworkers who have patented
a new approach to create “ex nihilo” bioelectrodes by compress-
ing a powder mixture of CNT and enzyme (Cosnier et al., 2010).
This method of bioelectrode fabrication that leads to mechanically
stable disks was applied to the development of glucose biofuel
cells. The compression of CNTs with glucose oxidase and lac-
case enables direct electron transfer (DET) between the enzymes
and the CNT matrix thus shuttling the involved electrons of the
oxidation of glucose and the reduction of oxygen to an external
circuit. The resulting mediatorless enzymatic fuel cell delivered
a remarkable high open-circuit voltage (0.95V) and an impres-
sive maximum power density of 1.25 mW cm ™2 (1.66 mW mL™!,
1.85mW g~ 1) and 0.14 mWh cm™2 under continuous discharge
in a 50 mmol L™! glucose solution (Zebda et al., 2011b). Sur-
prisingly, it appears that the glucose biofuel cell performance

Enzymes for anode:
Laccase, BOD, HRP...

FIGURE 1 | lllustration of a biofuel cell setup using CNTs as nanowires for the transfer of electrons involved in the electrocatalytic redox reactions.

Enzymes for cathode:
Gox, GDH, H,ases...

oxidized products

Frontiers in Bioengineering and Biotechnology | Bioenergy and Biofuels

October 2014 | Volume 2 | Article 45 | 2


http://www.frontiersin.org/Bioenergy_and_Biofuels
http://www.frontiersin.org/Bioenergy_and_Biofuels/archive

Cosnier et al.

Recent advances in enzymatic fuel cells

is limited by the bioanode although the glucose concentration
was markedly higher than that of O,. This phenomenon may
be ascribed to a more efficient electrical wiring of laccase than
glucose oxidase, which has its redox active prosthetic groups
deeply located inside the protein shell. The occurrence of a DET
process at the bioanode was investigated by cyclic voltammetry
experiments. In the absence of glucose, a reversible system was
observed at E1/2=—0.46V vs. SCE (Reuillard et al., 2013). The
latter was attributed to the electroactivity of the FAD, the pros-
thetic group of glucose oxidase. In addition, a weak electrocatalytic
anodic current appeared in presence of glucose (150 mM). How-
ever, the origin of this system remains questionable and could
be due to a partial opening of the protein, the stability of this
redox signal eliminating the assumption of a total release of the
FAD from the protein. The weak intensity of the glucose oxida-
tion at this potential (—0.4V) reflects that only few CNTs could
get in sufficient close contact to glucose oxidase by this com-
pression method, to regenerate the enzyme and hence, a low
percentage of the immobilized glucose oxidase was efficiently con-
nected. As a consequence, a new configuration of compressed
bioanode based on mixed DET and mediated electron transfer
(MET) was reported. The concept is based on simple addition of
naphthoquinone as redox mediator to the glucose oxidase/CNT
mixture before compression, leading to its immobilization within
the resulting disk. Thanks to its small size, this redox mediator
serves as electron shuttle capable to collect the electrons from the
glucose oxidase and to transfer them to the CNT matrix. By using
the same biocathode, the power density of the completed biofuel
cell increased to 1.54 mWem™2 (1.92mW mL™!, 2.67 mW g’l)
reflecting thus an improved wiring of the entrapped enzymes
(Reuillard et al., 2013). This biofuel cell setup with the modified
bioanode is also able to constantly deliver 0.56 mWh cm 2 under
long-term discharge. Owing to the high amount of immobilized
glucose oxidase, an attractive storage stability of the enzymatic
fuel cell stored in phosphate buffer at room temperature was
observed, the open-circuit voltage decreasing from 0.76 to 0.5V
after 6 months.

For the electrochemical storage of energy, CNTs are often
employed as basis material for the construction of high perfor-
mance supercapacitors with extremely short charging time and
high capacitance. The latter can act as the bridge between batteries
and conventional capacitors due to their properties to store high
energy densities combined with rapid charge/discharge cycles. As
a consequence, compressed disks of enzymes-CNTs were used
as supercapacitors and electrodes for a biofuel cell setup. It was
expected that the possibility to recharge supercapacitors with an
internal energy source could thus represent a significant improve-
ment for the performance of biofuel cells. This hybrid supercapaci-
tor/biofuel cell enables high-power discharge cycles, the CNT disks
being continuously recharged through the biocatalytic energy con-
version in neutral buffered glucose solutions (Agnes et al., 2014).
In addition, this hybrid device presents an attractive operational
stability delivering 40,000 constant pulses of 2 mW for 10 ms every
10 s at least for 5 days.

On the other hand, CNTs can form flexible and high con-
ductive sheets called buckypapers. Among different ways to form
buckypapers, the most common approach is vacuum filtration

of CNT dispersions where important factors are the purity and
the graphitization of CNT and their homogeneous dispersion.
For instance, efficient biocathodes for biofuel cells were prepared
by adsorbing laccase on multiwalled CNTs buckypaper fabricated
by dispersion in water and filtration on nylon membrane filter.
These bioelectrodes catalyze the reduction of oxygen with an open-
circuit potential of 0.64V vs. SCE providing a current density of
about 0.43 mA cm ™% at 0.5V (Hussein et al., 2011). However, com-
mercial mass produced multiwalled CNTs generally have highly
defective outer walls, which prevent the formation of buckypa-
pers without additives (Zhang et al., 2013). To overcome these
issues, an innovative approach lies in the crosslinking of CNTs by
organic spacers bearing several specific groups capable of generat-
ing covalent or non-covalent bonds with CNT walls. In particular,
the non-covalent modification of CNT coatings was attempted
with pyrene derivatives enabling m—stacking interactions with
CNT wall. Buckypaper electrodes with enhanced mechanic sta-
bility were formed using a classical filtration technique of a CNT
suspension in presence of a bis-pyrene crosslinker containing the
redox mediator 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid (ABTS) (Bourourou et al., 2014). Beside the formation of
reinforced buckypaper, this bis-pyrene-ABTS assures the MET to
laccase. The resulting buckypaper electrodes were thus applied
to oxygen reduction using laccase in solution. For this setup, the
redox buckypaper electrodes demonstrate high performances with
maximum currents up to 1 mA cm™2 4 40 WA cm 2. Buckypaper-
based biocathodes were designed for air-breathing conditions
using laccase or bilirubin oxidase as catalysts reaching up to
7554+ 39mAcm™2 at 0.3V vs. Ag/AgCl (Babanova et al., 2014)
and 0.5mA cm ™2 at zero potential vs. Ag/AgCl (Lau et al., 2012),
respectively.

NEW ADVANCES IN BIOCATHODES BASED ON CNT
CONSTRUCTS FOR OXYGEN REDUCTION

While sugars and alcohols can reach sufficient molar concentra-
tions in water, the low concentration of oxygen may be a limiting
factor for the performances of the enzymatic fuel cell. Over the
past several years, we have witnessed an exponential growth in
publications on optimizing biocathodes mainly based on laccase
for oxygen reduction. For instance, among various techniques
employed to entrap laccases in CNT matrices, an original water-
induced shrinkage of a free-standing MWCNT-forest film has
shown remarkable performances for the enzyme entrapment and
the direct wiring of laccases (Miyake et al., 2011a). Taking into
account that laccase exhibits a hydrophobic cavity near its periph-
eral T1 copper center, the possibility to orientate and to wire this
enzyme during its immobilization may increase the electron trans-
fer rate, and therefore, the catalytic current. This hydrophobic
domain even leads to spontaneous oriented adsorption on car-
bon electrodes. Rubenwolf et al. took advantage of this effect and
designed a buckypaper-based cathode where the catalyst could
be renewed by changing the enzyme containing electrolyte where
clearly enhanced biocathode lifetimes could be reached (Ruben-
wolf et al., 2012). The efficiency of this principle for lifetime elon-
gation was confirmed with multicopper enzyme containing crude
fungal culture supernatants (Sané et al., 2013). Similarly, multi-
copper oxidases from enzyme-secreting recombinant planktonic
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microorganisms have been used, though with these a lifetime
elongation has not yet been (Sané et al., 2014).

Furthermore, the Armstrong’s group has modified electrodes
with aryldiazonium derivatives having m-extended hydrophobic
groups such as anthraquinone, anthracene, naphthalene, or chry-
sene to graft and connect laccase (Blanford et al., 2009). Sev-
eral examples report the efficient immobilization, orientation,
and wiring of laccase using polyaromatic hydrocarbons such as
anthracene or naphthalene (Meredith et al., 2011). More recently,
the ability of anthraquinone to immobilize and orientate lac-
case was optimized using a bis-anthraquinone-pyrene derivative
whose geometry only authorizes a partial m-stacking on CNTs
facilitating thus the laccase binding (Bourourou et al., 2013).
The use of CNT-based electrodes allows the achievement of high
catalytic currents of more than 1 mA cm™2. Another strategy con-
sists in functionalizing CNTs by electrochemical polymerization
of organic films. An electrogenerated poly(pyrrole—pyrene) allows
thus the covalent immobilization of laccase via its interaction with
polymerized pyrene, leading to a high performance biocathode
with a catalytic current density of 1.85 mA cm ™2 at 0.3 V (vs. SCE)
in oxygen-saturated solution. In addition, these electrodes showed
also excellent stabilities under continuous discharge (Lalaoui et al.,
2013) (Figure 2).

ENZYMATIC FUEL CELLS HARVESTING ENERGY FROM
LIVING ORGANISMS

Taking into account that glucose and lactate are present in many
living organisms, some biofuel cells were designed for harvesting
energy from fruits, small insects, and animals. The main con-
figurations of enzymatic fuel cells involved bioanodes based on
glucose oxidase, glucose dehydrogenase, or lactate oxidase and
biocathodes based on copper oxidases such as laccase, tyrosi-
nase, or bilirubin oxidase. This concept was initiated by Mano
et al. who implanted microbioelectrodes based on osmium redox
hydrogels, in a grape obtaining thus 2.4 wW at 0.54 V (Mano et al.,
2003). In 2010, the first example of an enzymatic fuel cell totally

Anthraquinone
[]

Carbon material
based electrode

FIGURE 2 | Schematic presentation of the oriented immobilization of
laccase via supramolecular interactions between the laccase’s
hydrophobic pocket and polyaromatic hydrocarbons like
anthraquinone, anthracene, nathpthalene, or pyrene attached to
carbon material based electrodes.

implanted in a mammal (inside the retroperitoneal space of a rat)
was described (Cinquin et al., 2010). This biofuel cell was based
on compressed graphite-based disks entrapping redox mediators
and tyrosinase and glucose oxidase at the cathode and anode,
respectively. Although this work demonstrated the possibility of
harvesting energy by a biofuel cell implanted inside a mammal, the
open-circuit voltage and power density were far below the levels
required to supply implanted biomedical devices. Different exam-
ples of biofuel cells partially implanted in the abdomen of an insect
(a cockroach species) (Rasmussen et al., 2012) or directly in blood
in a vein of a rabbit (Miyake et al., 2011b) or in the jugular vein
of arat (Sales et al., 2013) were more recently reported. However,
these biofuel cells did not show sufficient performance to power
electronic systems. Nevertheless, Mao and coworkers presented an
original concept where a glucose biofuel cell itself acts as sensor to
monitor the glucose concentration in vivo. Here, the output cell
voltage is related to the glucose concentration of the rat’s brain
fluid, conducted through an external microfluidic circuit (Cheng
et al., 2013).

With the aim to improve the performance of the implanted
enzymatic fuel cells and, contrarily to the initial concepts,
researchers conceived biofuel cells based on CNT. Thus buckypa-
per electrodes composed of compressed multiwalled CNT were
modified by pyrene-butanoic acid via m-stacking interactions.
These functionalized buckypapers were subsequently functional-
ized by chemical grafting of PQQ glucose dehydrogenase at the
bioanode and laccase at the biocathode enabling a DET between
enzyme and CNT electrodes. The validity of this approach was
initially demonstrated through the implantation of biofuel cell
in snail and more recently on the surgically exposed cremaster
tissue of a rat (Haldmkova et al., 2012; Andoralov et al., 2013).
Similar enzyme-buckypaper electrodes were employed for bio-
fuel cells implanted in clams and lobsters connected in series
(Szczupak et al., 2012; Southcott et al., 2013). Although lobsters
are crustaceans, which are arthropods and are therefore distant
from mammals, this work represents a breakthrough in the field
of biofuel cells by demonstrating that an implanted biofuel cell can
harvest enough energy from the compounds present in physiolog-
ical fluids to power a pacemaker, an electrical motor, or a watch.
As demonstrated by the Katz’s group, the biofuel cell voltage is
limited but its interfacing with microelectronic circuits can lead to
devices that can deliver a voltage of several volts. Beside this, a bio-
fuel cell based on compressed CNT-enzymes disks and wrapped
in dialysis bag and Dacron bag, was successfully implanted by sur-
gical insertion into the retroperitoneal space of rats. This biofuel
cell delivered in vivo an open-circuit voltage of 0.85 V. These mea-
surements show that using a step-up converter circuit, the biofuel
cell was able to power in physiological conditions, a Light Emit-
ting Diode and a thermometer (Zebda et al., 2013). However, the
development of implanted biofuel cells must meet the criteria of
biocompatibility, sterilization, and long operational stability. The
insertion of a biofuel cell in animals and in particular human bod-
ies requires invasive and strict procedures. In this context, another
strategy exemplified by Wang’s group, lies in the development of
non-invasive biofuel cells that can harvest energy from metabolites
present on the epidermis or even in subcutaneous level (Jia et al.,
2013; Valdés-Ramirez et al., 2014).
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CONCLUSION

Despite impressive results in energy harvesting using sugars and
oxygen as fuels, further progress is needed as this technology
becomes competitive with lithium batteries, which are currently
used for electronic devices. For example, the state of the art fuel
cell glucose normally offers several hundred microwatts up to few
milliwatt at about 0.4-0.5V with stabilities up to several weeks.
This is not sufficient to power electronic devices without step-up
converters. Nevertheless, owing to the wide range of available addi-
tives, all with their own specific properties, it clearly appears that
the combination of various compounds (polymers, nanoparticles,
redox mediators, crosslinking agents) with CNTs in various forms
(buckypaper, pellets, forest, etc.) is a promising way to increase the
performances of enzymatic fuel cells.
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