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Although recognized as a promising microbial cell factory for producing biofuels, current
productivity in cyanobacterial systems is low. To make the processes economically fea-
sible, one of the hurdles, which need to be overcome is the low tolerance of hosts to
toxic biofuels. Meanwhile, little information is available regarding the cellular responses
to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering.
Using large proteomic datasets of Synechocystis under various biofuels stress and envi-
ronmental perturbation, a protein co-expression network was first constructed and then
combined with the experimentally determined protein—protein interaction network. Pro-
teins with statistically higher topological overlap in the integrated network were identified
as common responsive proteins to both biofuels stress and environmental perturbations.
In addition, a weighted gene co-expression network analysis was performed to distinguish
unigue responses to biofuels from those to environmental perturbations and to uncover
metabolic modules and proteins uniquely associated with biofuels stress. The results
showed that biofuel-specific proteins and modules were enriched in several functional
categories, including photosynthesis, carbon fixation, and amino acid metabolism, which
may represent potential key signatures for biofuels stress responses in Synechocystis.
Network-based analysis allowed determination of the responses specifically related to bio-
fuels stress, and the results constituted an important knowledge foundation for tolerance

engineering against biofuels in Synechocystis.
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INTRODUCTION

Human society has been dependent on fossil fuels for centuries.
However, fossil fuels are not an infinite resource, and the possibil-
ity of their running out in the future and the increasing concerns
over energy security and global climate change pose an urgent
call for developing renewable ways to produce fuels. Among all
alternatives, photosynthetic cyanobacteria have recently attracted
significant attention as a promising “microbial cell factory” to pro-
duce renewable biofuels due to their capability to utilize solar
energy and CO; as the sole energy and carbon sources, respec-
tively (Ducat et al.,, 2011; Quintana et al., 2011; Robertson et al.,
2011). Cyanobacteria contain considerable amounts of lipids in
the thylakoid membranes and possess higher photosynthetic effi-
ciency and faster growth rate compared to eukaryotic green algae

Abbreviations: COG, cluster of orthologous groups of proteins; CTR, core tran-
scriptional response; HPLC, high performance liquid chromatography; iTRAQ,
isobaric tag for relative and absolute quantitation; KEGG, Kyoto encyclopedia of
genes and genomes; LC-MS/MS, liquid chromatography-tandem mass spectrome-
try; PCA, principal component analysis; PLS-DA, partial least square-discriminant
analysis; PP, protein—protein interaction; ROS, reactive oxygen species; SOD,
superoxide dismutase; TO, topological overlap; TOM, topological overlap matrix;
WGCNA, weighted gene co-expression network analysis.

and higher plants (Quintana et al., 2011). In addition, cyanobacte-
ria have a relatively simple genetic background and are amenable
to modification by metabolic engineering and synthetic biology
(Wang et al., 2012a). Recent efforts have led to successful produc-
tion of various biofuels in engineered cyanobacterial cells, such
as ethanol (Deng and Coleman, 1999), butanol and isobutanol
(Atsumi et al., 2009), alkanes (Choi and Lee, 2013), and biodiesel
(Da Ros et al., 2013). However, the current biofuel productiv-
ity in the cyanobacterial systems is several orders of magnitude
lower than their native producing microbes (Jin et al., 2014). In
addition to ongoing efforts to optimize the existing pathways and
to discover and construct novel pathways, one option to achieve
high productivity is to improve cellular tolerance to toxic biofuel
products synthesized by the cyanobacterial hosts (Dunlop, 2011;
Zingaro and Papoutsakis, 2012).

Although response mechanisms against biofuels have been
extensively studied in many native biofuel-producing microbes
(Couto et al., 1997; Dunlop, 2011), it remains unclear for
cyanobacteria. As part of our long-term goal to construct more
robust and product-tolerant photosynthetic “chassis” for synthe-
sizing various renewable biofuels, our laboratory has applied inte-
grated transcriptomic, proteomic, and metabolomic approaches
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to determine the metabolic profiles of a model cyanobacterium
Synechocystis sp. PCC 6803 (hereafter Synechocystis) stressed
under various biofuels (Liu et al, 2012; Qiao et al., 2012;
Wang et al., 2012b; Tian et al., 2013; Zhu et al., 2013). Consis-
tent with early genome-level studies in other microbes (Nico-
laou et al., 2010; Dunlop, 2011), our previous results showed
that Synechocystis cells employed a combination of multiple
resistance mechanisms in dealing with biofuels stress (Wang
et al., 2012b). In addition, the comparative proteomic analy-
sis provided strong evidence that proteins involved in mul-
tiple aspects of photosynthesis (i.e., photosystems I and II,
cytochrome, and ferredoxin) were up-regulated in ethanol-treated
Synechocystis (Qiao et al., 2012), suggesting there could be unique
response mechanisms employed by cyanobacteria to combat
biofuel toxicity.

Although initial efforts using a conventional approach of ana-
lyzing individual genes/proteins according to fold change and
statistical significance has led to determination of the responses
associated with each of the biofuels in Synechocystis (Liu et al.,
2012; Qiao et al., 2012; Wang et al., 2012b; Tian et al., 2013;
Zhu et al., 2013), it becomes clear that network-focused rather
than individual gene/protein-focused methodologies would be
more appropriate to obtain a complete picture of cellular response
(Lehtinen et al., 2013). In addition, the network analysis defines
modules and their possible biological roles based on connectivity
of proteins or genes rather than using any artificial cutoff, which
may avoid information loss related to genes/proteins of low abun-
dance or small fold changes, such as signal transduction genes. In
recent years, network analysis has been applied to cyanobacterial
studies. For example, Singh et al. (2010) constructed a Bayesian
network of Synechocystis using transcriptomic data and defined
a set of genes as the core transcriptional response (CTR) that
are commonly regulated under most of environmental pertur-
bations (Singh et al., 2010). McDermott et al. (2011) developed
a predictive in silico model of diurnal and circadian behavior
of Cyanothece 51142 using transcriptomic data, and the results
showed that incorporation of network topology into the model
could improve the ability to explain the behavior (McDermott
etal.,2011). Recently, Wang et al. (2013b) utilized a weighted gene
co-expression network analysis (WGCNA) approach to establish
transcriptional networks for four cyanobacterial species under
metal stresses, and a further cross-species network comparison led
to the discovery of several core response modules and genes that
may be essential to all metal stresses, as well as species-specific hub
genes for metal stresses (Wang et al., 2013b). The studies demon-
strated that network-based analysis could be a powerful tool in
deciphering cellular responses.

In this study, to further identify responses specifically related to
biofuels stress that could be used as potential targets for rational
tolerance engineering, a topological analysis of global proteins co-
expression network combined with protein—protein interaction
(PPI) network was first performed to uncover a core set of proteins
commonly responsive to both biofuels stress and environmental
perturbations. Then, a WGCNA was applied to identify responses
specifically related to biofuels stress. The combination of both
analyses allowed the identification of the protein network signa-
tures associated with exogenous biofuels treatments, and provided

new insights into the molecular mechanisms against biofuels stress
in Synechocystis.

MATERIALS AND METHODS

PROTEOMIC DATA SOURCES

A total of five iTRAQ LC-MS/MS datasets of Synechocystis sp. PCC
6803 from our previous study were re-analyzed at a peptide level.
Growth of Synechocystis under ethanol, butanol, hexane, salt stress
conditions with dosages of 1.5% (v/v), 0.2% (v/v), 0.8% (v/v),
4% (w/v), and nitrogen starvation, which led to ~50% growth
reduction were then determined. For each condition, cells were
harvested at two time points (24 and 48 h) that were correspond-
ing to middle-exponential and exponential-stationary transition
phases in the growth time courses for proteomics analysis. Each
biological replicates sample has two technical replicates. Due to the
page limitation, for details about the environmental perturbation
and biofuel stress experiments and original proteomic datasets
please find from several previous publications (Liu et al., 2012;
Qiao et al., 2012, 2013; Huang et al., 2013; Tian et al., 2013).

PROTEOMIC DATA ANALYSIS

The mass spectroscopy analysis was performed using a AB SCIEX
TripleTOF™ 5600 mass spectrometer (AB SCIEX, Framingham,
MA, USA), coupled with online micro flow HPLC system (Shi-
madzu Co, Kyoto, Japan) as described previously. Genome
sequence and annotation information of Synechocystis sp. PCC
6803 were downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/
genomes). The details for the experimental design, execution, and
proteomic data analysis can be found in the original publications
(Liu et al., 2012; Qiao et al., 2012, 2013; Huang et al., 2013; Tian
etal., 2013).

PROTEIN CO-EXPRESSION NETWORK CONSTRUCTION

To construct the association network from proteomic data, we
used a multi-step procedure for network construction: first, we
performed a procedure for data normalization identical with Prin-
cipal component analysis (PCA) (See below); second, correlation
values were calculated between present values for all pairs of pep-
tides. In this study, we used peptides rather than proteins to
construct the protein co-expression network. One reason is lots
of related peptides from the same protein are always observed
in discordance, which may be due to different post-translational
modifications or isoforms. Correlation is calculated as the Pearson
correlation coefficient for all pairwise peptides. Third, in order
to generate a reliable protein co-expression network, high cor-
relation coefficients (r> 0.9) was used, where only gene pairs
with a correlation coefficient higher than 0.9 were considered
connected. Finally, we combined protein co-expression network
with experimentally determined PPI network (Sato et al., 2007).
In this process, known PPI between observed proteins already
in the co-expression network were added as new edges to the
network.

TOPOLOGICAL ANALYSIS

Topological analysis of networks was performed using Cytoscape
software. Bottleneck and hub proteins were defined as the top
20% of proteins ranked by the values of betweenness and degree
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centrality, respectively (McDermott et al., 2011, 2012). The degree
and betweenness centrality metrics were defined according to the
methods described by McDermott et al. (2012). Briefly, degree
centrality is a metric of the connectedness of a node, and between-
ness centrality is a metric that measures how often paths between
nodes must traverse a given node. Generally, degree centrality is
the fraction of edges for a particular protein out of all possible
interactions for that protein in the network, and betweenness is
the number of shortest paths between all pairs of proteins in the
network that pass through a specific node.

PRINCIPAL COMPONENTS ANALYSIS

The proteomics data were converted to a ratio versus control con-
ditions. The data were then log2 scaled, and each unit reflects a
twofold change in abundance. In order to avoid influence caused
by missing data, peptides with any missing data in any condition
were removed. Remaining core peptides identified in all conditions
were subjected to PCA and partial least square-discriminant analy-
sis (PLS-DA) by SIMCA-P 11.5 software. Averaging was taken for
all technical replicates of samples, as in general good reproducibil-
ity was observed between replicates (Liu et al., 2012; Qiao et al,,
2012; Tian et al., 2013).

WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS

Weighted gene co-expression network analysis approach was used
to establish a co-expression network from the LC-MS/MS pro-
teomic data (Langfelder and Horvath, 2008). The co-expression
network was created first by calculating weighted Pearson correla-
tion matrices corresponding to peptide abundance expression, and
then by following the standard procedure of WGCNA to create the
networks. Briefly, weighted correlation matrices were transformed
into matrices of connection strengths using a power function.
These connection strengths were then used to calculate topologi-
cal overlap (TO) (Langfelder and Horvath, 2008). The topological
overlap matrix (TOM) is computed as TOM;; = (jj + a;)/[min
(kiskj) + 1 — a;;] where [;j is defined as the dot product on row i
and column j in adjacency matrix [a] and k; (the connectivity)
is the summation of row i in adjacency matrix [a] (Gibbs et al,,
2013). Hierarchical clustering based on TO was used to group pro-
teins with highly similar co-expression relationships into modules.
Protein dendrograms were obtained by average linkage hierarchi-
cal clustering, while the color row underneath the dendrogram
showed the module assignment determined by the Dynamic Tree
Cut method. The network for each module was generated with
the minimum spanning tree with a dissimilarity matrix from
WGCNA. The modules with r> 0.55 and a p-value <0.1 were
extracted (Wang et al., 2013a).

FUNCTIONAL ENRICHMENT ANALYSIS

Metabolic pathway enrichment analysis was conducted according
to Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clus-
ter of Orthologous Groups of proteins (COG) database using the

following formula:
M\ (N-M
S \i )\ n—i

=0

N is the number of all proteins with KEGG pathway annotation
information, M is the number of proteins with a given KEGG path-
way annotation, # is the number of the associated proteins with
KEGG pathway annotation information, and m is the number
of the associated proteins with a given KEGG pathway annota-
tion. All pathway mapping was manually checked for each of the
proteins. We also calculated functional enrichment by considering
each group or module of interest versus all proteins in the network
as a background, as the ratio of m/n versus M/N.

RESULTS AND DISCUSSION

OVERVIEW OF PROTEOMICS ANALYSIS

The proteomic datasets used in this study are listed in Table 1.
Briefly, the datasets contain four sets of quantitative iTRAQ-LC-
MS analyses of Synechocystis grown under five stress conditions,
i.e., biofuel stresses of ethanol, butanol and hexane, and envi-
ronmental perturbations of high salt and nitrogen starvation.
For each condition, treated and corresponding wild-type control
cells were harvested at two time points (i.e., 24 and 48 h). Each
biofuel-stressed dataset has two technical replicates. For overall
data quality, reproducibility and full description of the proteomic
datasets, please refer to several previous publications (Liu et al.,
2012; Qiao et al., 2012, 2013; Huang et al., 2013; Tian et al,,
2013).

In previous studies, all identified peptides were matched to
proteins in the Synechocystis genome, and then further analysis
was conducted using protein-based quantitative data (Liu et al.,
2012; Qiao et al., 2012, 2013; Huang et al., 2013; Tian et al,
2013). However, recent studies showed that the peptide-based pro-
teomic data can be a better choice in constructing protein network
since peptides derived from the same protein were shown to have
a statistically higher TO and concordance in abundance, which
is potentially important for inferring protein abundance (Gibbs
et al., 2013). In addition, using peptide-based data also avoids
issues related to multiple mapping of the same peptide (Cox and
Mann, 2011; Gibbs et al., 2013). In this study, we thus used the
peptide-based raw proteomic data and subjected them directly to
Mascot analysis. After data filtering to eliminate low-scoring spec-
tra, only the peptides that were identified in both control and the
stress-treated samples (so that the ratio calculation is possible)
were included for further analysis, resulting a final dataset consist-
ing of 11,179 unique peptides, which are corresponding to 1,971
proteins.

Table 1 | The proteomic datasets used in this study.

Condition? Unique Peptides Unique Proteins
spectra peptides

Ethanol (Qiao et al., 2012) 21,066 7337 7192 1,523

Butanol (Tian et al., 2013) 18,745 6,355 6,252 1,300

Hexane (Liu et al., 2012) 19,217 6,995 6,875 1,389

Salt (Qiao et al., 2013) 23,822 8,379 8,257 1,702

N-starvation (Huang 23,674 8,404 8,282 1,703

etal., 2013)

@References for each dataset are provided.
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Comparison between various stress conditions showed that a
total of 3,840 peptides that correspond to 900 (22.7%) proteins
were identified in all conditions, possible core stress responses in
Synechocystis. Functional classification of these commonly iden-
tified proteins showed that they were found in almost all aspects
of Synechocystis metabolism (Additional File S1 in Supplemen-
tary Material). Comparison of these possible core stress response
proteins with the CTR identified previously (Singh et al., 2010)
showed that 230 of the 399 CTR proteins were also responsive
in all stress conditions of this study. In addition, the compari-
son allowed identification of the proteins associated with each
individual or multiple stress conditions (Figure 1). For example,
ethanol-, butanol-, and hexane-stressed datasets shared a com-
mon set of 4,166 peptides, corresponding to 1,091 proteins, while
each contained 1,474, 752, and 987 unique peptides, respectively;
the environmental perturbations of high salt and nitrogen starva-
tion shared a common set of 8,221 peptides, while each contained
only 36 and 61 unique peptides, respectively. The great differ-
ence in terms of the number of unique peptides between biofuels
stress and environmental perturbation suggested that different
response strategies could be employed in Synechocystis (Singh
etal., 2010).

CONSTRUCTION OF PROTEIN CO-EXPRESSION NETWORK TO IDENTIFY
COMMON RESPONSES

The network approach combined with topological analysis of
global “omics” datasets has been proven to be a significant tool
to identify responses under multiple different conditions (McDer-
mott et al., 2012), in many organisms such as cyanobacteria,
pathogenic bacteria, yeast, worm, fly, and human cell culture
(McDermott et al., 2012). Previous analyses of stress responses

A Ethanol B

N-starvation

Butanol Butanol

Hexane Salt

D

8221
(1696)

Salt N-starvation

Hexane

FIGURE 1 | Comparisons of peptides identified under different stress
conditions. (A) Peptides distribution among conditions, including ethanol-,
butanol-, hexane-, high salt, and nitrogen starvation treated samples.

(B) Proteins distribution among conditions. (C) Peptides/proteins
distribution among biofuels stress conditions. Protein-based information
was provided inside parenthesis. (D) Peptides/proteins distribution
between two environmental perturbations. Protein-based information was
provided inside parenthesis.

to exogenous biofuels in E. coli (Dunlop, 2011; Wang et al., 2013a;
Jin et al., 2014) and cyanobacteria (Liu et al., 2012; Qiao et al,,
2012; Tian et al., 2013) using conventional methodologies showed
that both general stress responses such as up-regulation of heat
shock proteins and membrane modification, and possible biofuel-
specific responses can be induced by individual biofuel stress.
To further decipher metabolic responses using a network-based
approach, we first constructed a protein co-expression network
using proteomic datasets to determine the general stress responses
that were commonly responsive to both biofuels stress and envi-
ronmental perturbations. Briefly, the protein co-expression net-
work was constructed based directly on pairwise or low-order
conditional pairwise association measures, such as the correlation
or mutual information, to infer the connectivity between proteins
(Nicolaou et al., 2010). This method has the advantage of low
computational complexity, which is a more suitable approach for
network analysis of relatively large number of quantitative peptide
data in this study (Nicolaou et al., 2010). The workflow of the net-
work construction was illustrated in Figure 2. First, we inferred
the network using the similarities between expression profiles of
all qualified peptides through Pearson correlation and then filtered
the correlations to remove those with low correlation values. Here,
we used a relatively high threshold of 0.9 to ensure a highly credi-
ble connection between peptides, while avoiding losing too many
nodes. Second, we transformed the threshold correlation matrix
into a peptide co-expression network using a perl script (avail-
able upon request). The nodes in the networks are peptides while
the links between them (edges) represent co-expression proper-
ties. The result showed that most of the peptides from the same
protein tended to cluster together, which can be viewed as a val-
idation of the network quality. In several cases, we observed that
peptides from the same proteins were located in discordance in the
network, which is probably due to the different post-translational
modifications to the same proteins (Gibbs et al., 2013). Third, as
a previous study showed that incorporating a PPI network into a
proteins co-abundance network could significantly improve tar-
get discrimination using topological measures than the networks
without PPI (McDermott et al., 2012), we further integrated a
PPI network of Synechocystis constructed by Sato et al. (2007)
to the protein co-expression network we constructed by adding
them directly as new edges in the protein co-expression network.
The integrated network achieved has a total of 866 nodes and
20,226 edges, representing a majority of the proteins (866/900) we
identified from all stress conditions.

Topological analysis was then conducted by calculating topo-
logical attributes of all the nodes in the network. It is well accepted
that nodes with top degrees and betweenness are highly central in
networks, and so-called hubs and bottlenecks are more likely to be
important to the system than others with low topological attrib-
utes (Sato et al., 2007; Yao and Rzhetsky, 2008). Based on the same
criteria used in several previous studies (McDermott et al., 2011,
2012), we determined bottlenecks as the proteins in the network
with top 20% of the betweenness values and hubs as the proteins
with top 20% of the degrees values. Interestingly, the result showed
that most proteins (109/180) were with both top 20% betweenness
and top 20% degrees, thus considered to be bottleneck-hubs (Sato
et al., 2007), consistent with a previous study that showed high
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correlation between betweenness of a node with its corresponding
degrees (Goh et al., 2003).

FUNCTIONAL CHARACTERIZATION OF BOTTLENECK AND HUB
PROTEINS

Early studies have found that common stress responses typically
involve wide aspects of cell metabolism, including induction of
oxidative stress response, heat shock proteins, efflux pumps, and
accumulation of osmoprotective compounds (Nicolaou et al,
2010; Rutherford et al., 2010; Dunlop, 2011). As the hubs and
bottlenecks identified from the integrated protein network are
highly relevant to the stress responses, we conducted an enrich-
ment analysis of bottlenecks and hubs among functional categories
(Figure 3A). The results showed that both bottlenecks and hubs
had a very similar pattern of being highly associated with several
key functional categories, such as “[K] Transcription,”“[L] Replica-
tion, recombination and repair,” and “[ O] Post-translational mod-
ification, protein turnover, chaperones.” Meanwhile, the results
also showed that the bottlenecks were highly associated with “[G]
Carbohydrate transport and metabolism” functional category,
while the hubs were highly associated with “[D] Cell cycle control,
cell division, chromosome partitioning,” “[N] Cell motility, ” and

“[U] Intracellular trafficking, secretion, and vesicular transport”
functional categories.

Enrichments of the bottlenecks and hubs among several meta-
bolic pathways were also observed (Figure 3B). Briefly, the enrich-
ments are described below: (i) ROS response pathway: early studies
showed organic solvent or environment stress induced produc-
tion of reactive oxygen species (ROS) in many microbes (Houot
et al., 2007; Stanley et al., 2010; Yang et al., 2010; Wang et al,,
2013b). ROS accumulation could lead to DNA mutation, mRNA
and protein denaturation, and membrane lipid peroxidation and
ultimately cell death (Bhattacharya et al., 2004). Generation of
antioxidants, such as superoxide dismutase (SOD) (Bhattacharya
etal.,2004), glutaredoxin (Marteyn et al., 2013), carotenoids (Wil-
son et al., 2006), or tocopherols (Yang et al., 2008) that were
capable of rapidly detoxifying ROS, has been considered as one
of the key strategies to deal with stress in Synechocystis (Bhat-
tacharya et al., 2004; Wilson et al., 2006; Yang et al., 2008; Marteyn
et al., 2013). The results showed that the pathways related to
antioxidants response, such as “Peroxisome” (ko04146) and “Glu-
tathione metabolism” (ko00480), were enriched in higher TO pro-
teins, consistent with the recent discovery that peroxiredoxins and
glutathione-dependent peroxidase play major roles in combating
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FIGURE 3 | Function analysis of bottlenecks and hubs proteins.
(A) COG enrichment analysis of bottlenecks and hubs proteins.

metabolic pathways are listed and ordered by function category.

X-axis indicates the names of pathway and Y-axis indicates the ratio

compared to background.

X-axis indicates the COG category and Y-axis indicates the ratio
compared to background. (B) KEGG metabolic pathways

glutaredoxin could catalyze the reduction of protein disulfides and

oxidative stress in cyanobacterium Anabaena (Banerjee et al.,

glutathione-protein mixed disulfides in a coupled system with glu-

2012). Peroxisomes could convert hydrogen peroxide to water
and thus protect the microorganism from oxidative damage, while

tathione, NADPH, and glutathione reductase (Li et al., 2005); (ii)
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Transporters: transporters have been suggested as one important
mechanism against solvent/biofuel toxicity in Synechocystis (Tian
etal., 2013). For example, slr1295 encoding an iron transport sys-
tem substrate-binding protein was involved in butanol resistance
(Zhu et al., 2013). In addition, a broad range of transporters with
different substrate-specificities were also found involved in organic
solvent tolerance in E. coli (Okochi et al., 2007). Moreover, trans-
porters were also involved in tolerance to many environmental
perturbations. For example, ggtA gene (slr0747) encodes a sub-
unit of the transport system for the osmoprotective compound
glucosylglycerol that is necessary for Synechocystis grown under
salt stress (Hagemann et al., 1997). Our analysis found that “ABC
transporters” (ko02010) was enriched in hubs and bottlenecks,
suggesting that transporters play an essential role for cell survival
when grown under a wide range of stresses; (iii) Cell membrane
permeability: as a common resistance barrier against environmen-
tal stresses, changes of cell wall, or cell membrane composition can
improve solvent tolerance to biofuels in many microbes (Ramos
et al., 1997; Kajiwara et al., 2000; Zhao et al., 2003). In addition,
an early study showed that unsaturation of fatty acids was associ-
ated with the ability of the photosynthetic machinery to tolerate
salt stress in Synechocystis (Allakhverdiev et al., 1999). Consistent
with this result, the network analysis also found that pathways
“Biosynthesis of unsaturated fatty acids” (ko01040) and “Fatty
acid degradation” (ko00071) were enriched in the bottlenecks and
hubs.

WGCNA ANALYSIS TO DETERMINE THE BIOFUEL-SPECIFIC RESPONSES
To uncover biofuel-specific responses, we first converted the raw
proteomic data into ratio data between the stress and the con-
trol conditions, and then used the log2 transformed ratio datasets
for a PCA analysis. PCA score plot showed that almost all sam-
ples (i.e., different treatments, time points) were visibly separated,
suggesting there are obvious differences in terms of the meta-
bolic responses between various biofuels stress and environmen-
tal perturbations (Figure 4A). In addition, PCA score plot also
revealed: (i) samples at 24h of the middle-exponential phase
tended to be clustered together, while samples at 48h of the

exponential-stationary transition phase were distinctly separated
and became far away from the center when compared to those of
24 h, suggesting that more dramatic metabolic changes occurred
after stress treatments of longer time; (ii) a greater separation
along principal component 2nd between the biofuel-treated and
environmental-treated samples was observed, and the biofuels-
stressed profiles tended to be clustered together when compared
to salt and nitrate starvation, suggesting there is a relatively high
similarity between all biofuels-stressed samples than to environ-
mental perturbations; (iii) a moving trend of the profiles along
the principal component 1st seemed correlated with the carbon
chain length of the biofuels tested in this study, although further
proof is still needed; and (iv) finally, it was also observed that one
of the salt treatment samples was clustered closely with biofuel-
stressed samples, suggesting that just PCA analysis itself may not be
enough to determine the biofuel-specific responses. Subsequently,
we also performed a PLS-DA to further define differences between
responses to various stresses. In the PLS-DA score plot, all biofuel
samples are more tightly clustered together, completely separated
with samples perturbed by environmental stresses (Figure 4B),
indicating clear differences between the sample groups of bio-
fuel and environmental stresses and suggestive of the different
metabolic responses.

Weighted gene co-expression network analysis was employed as
a method that can additionally define “modules” of co-expressed
proteins explicitly and provide additional network statistics that
describe the systems properties of metabolic networks (Langfelder
and Horvath, 2008). The WGCNA analysis showed that a total
of 17 metabolic modules were detected within the WGCNA co-
expression networks of Synechocystis. Using a cut-off of correlation
coefficients (r value > 0.55) and their confidence (p-values < 0.1),
we found 5 out of 17 modules correlated with biofuels stress,
among which 4 module’s eigengenes were positively correlated
while only 1 module eigengenes were negatively correlated with
biofuels stress (Figure 5). A scatter plot of peptide significance
versus module membership was plotted for these biofuel related
modules (Additional Figure S1 in Supplementary Material), and
the results also demonstrated high correlations between biofuel
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FIGURE 4 | Principal component analysis and PLS-DA score plot of the
responses under various stress conditions in Synechocystis. (A) PCA
score plot. Samples with different treatments were indicated by colors.
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principal component, accounting for 33.4 and 16.3% total variation,
respectively. (B) PLS-DA score plot.
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FIGURE 5 | Correlation between identified modules and stress conditions. Correlation of each module with conditions was indicated by colors. In addition,
correlation efficient of modules with conditions are provided for each module, and the p-values are provided inside parenthesis.

and the respective module eigengenes. In contrast, the background
peptides (module XVII) showed no correlation with any biofuel
stress. Among all modules positively correlated to biofuels stress,
module VI eigengenes were negatively correlated with salt stress;
module XIV and XV eigengenes were negatively correlated with
nitrate starvation; and module XVI eigengenes were negatively
correlated with both salt and nitrate starvation stress.

Topological overlap is a similarity metric that incorporates
information from neighboring nodes, making it robust to noisy
correlations. TOM is a robust and biologically meaningful mea-
surement that encapsulates the similarity of a co-expression rela-
tionship with all others in the network (Langfelder and Horvath,
2008). Within the network constructed by the WGCNA approach,
we first trimmed the network with a moderate threshold, removing
low-quality connections with strengths between nodes less than
TO value of 0.1. The results showed that, even after the threshold
removal, most of the connections were still kept in the network; for
example, the XV module was only reduced to 250 nodes from the
initial 264 nodes (data not shown). Topological analysis was then
conducted to determine the top 10 hub and bottleneck peptides
for each biofuel-correlated modules. The result showed most pep-
tides with higher topological attributes were related to proteins of
photosynthesis functions in the biofuel-correlated modules (data
not shown).

We also determined the top one or two hub peptides with
the greatest connectivity in each module, which were supposed
to be biologically important under a more stringent thresh-
old (Figure 6). In the XV module positively correlated with
biofuels stress, a hub peptide “AITTAASR” from sll1580 encod-
ing “phycocyanin associated linker protein” was connected with
peptides from proteins of the same operon, including sll1577

“phycocyanin subunit B,” sll1578 “phycocyanin a subunit,” and
sll1579 “phycocyanin associated linker protein.” In the XIV mod-
ule positively correlated with biofuels stress, two hub peptides,
“TVVPANPLVQMK” and “VALVGDAAGTVTK” were identified.
They were matched to the same SI11091 protein of “a bacteri-
ochlorophyll synthase subunit” and connected with a peptide from
sll1471 encoding “phycobilisome rod-core linker polypeptide.”
Together, the results suggested that light-harvesting proteins could
be key components involved in biofuels stress response. Inter-
estingly, one peptide “LTYYTPDYTPK” from SIr0009 of “ribu-
lose bisphosphate carboxylase” that catalyzes the first reaction
of CO, fixation was also identified as a hub peptide in the
VI module positively correlated with biofuels stress. In addi-
tion, a hub peptide “VFNQYTELFSVGDLAQMVQK” of Slr1020
in the XVI module positively correlated with biofuels stress
was connected to several peptides of proteins related to car-
bon fixation, such as Sll1342, Slr0394, and SI11070. The find-
ing of proteins related to CO; fixation function as important
hub peptides under biofuels stress implicated that CO, metab-
olism could also be important in dealing with biofuels stress in
cyanobacteria.

PATHWAY ENRICHMENT ANALYSIS OF BIOFUEL-SPECIFIC MODULES

For the peptides/proteins located in the biofuel-associated mod-
ules, we carried out an enrichment analysis for their distribution
among functional categories and metabolic pathways. The detailed
enrichment information for all COG and top 25 KEGG pathways
is provided in Additional Files S3 and S4 in Supplementary Mate-
rial. The results showed that several functional categories were
significantly enriched, such as functional categories of “[I] Coen-

zyme transport and metabolism,” “[G] Carbohydrate transport
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FIGURE 6 | Hub proteins and their neighbor proteins in
biofuel-responsive modules. (A) Hub peptide from SII1580
“phycocyanin associated linker protein” in the XV module. (B) Hub
peptide from SI11091 “43 kD bacteriochlorophyll synthase subunit” in the
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biosynthesis protein SqdB"” in the XVI module. Each node represents a
peptide from a protein.
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and metabolism,” “[C] Energy production and conversion,” and
“[M] Cell wall/membrane/envelope biogenesis” (Figure 7A).

The KEGG pathway enrichment analysis showed that
“Lipopolysaccharide biosynthesis” (ko00540), “Photosynthesis —
antenna proteins” (ko00196), “Porphyrin and chlorophyll metab-
olism” (ko00860), and “Carbon fixation in photosynthetic organ-
isms” (ko00710) were significantly enriched (Figure 7B). Struc-
tures and components of the cell wall are known to be affected by
solvents/biofuels (Nicolaou et al., 2010; Dunlop, 2011; Jin et al.,
2014). Early analysis of cell morphology found visible cell aggre-
gation under biofuel treatments (Liu et al.,, 2012; Qiao et al,
2012; Tian et al., 2013), while the aggregation was not obvious
under environmental stress (Huang et al., 2013; Qiao et al., 2013).
Consistently, an early study found that the mutants of E. coli
with hyper tolerance under organic solvent stress tend to increase
lipopolysaccharide content (Aono and Kobayashi, 1997). Phycobil-
isomes and phycocyanins are the most abundant proteins and the
major light-harvesting antennae for photosynthesis in cyanobacte-
ria (Nakamoto and Honma, 2006) and are directly attached to the
thylakoid membranes, where they absorb photons and efficiently
transfer excitation energy to the photosynthetic reaction centers
(Nakamoto and Honma, 2006). Twelve of 13 identified proteins
in pathway “Photosynthesis — antenna proteins” (ko00196), and
17 of 37 proteins in pathway “Photosynthesis” (ko00195) were
up-regulated, respectively. In addition, two other photosynthe-
sis related pathways, “Porphyrin and chlorophyll metabolism”
(ko00860) and “Terpenoid backbone biosynthesis” (ko00900)

that is a precursor biosynthetic pathway of accessory pigment-
carotenoid, were also up-regulated specifically in response to bio-
fuels. In early studies, carotenoid biosynthesis has been found
up-regulated by strong light stress in Synechococcus elongatus
PCC 7942 (Schafer et al., 2006) and in stress-tolerant mutants
of Haematococcus pluvialis (Sandesh Kamath et al., 2008). More-
over, SIr1225 protein of phytoene synthase involved in carotenoid
biosynthesis was also identified in the V module positively cor-
related to biofuels stress. Similarly, 11 of 16 proteins in “Carbon
fixation in photosynthetic organisms” (ko00710) pathway were
also up-regulated by the biofuel. These results were consistent
with early studies that showed dissociation of phycobilins from
the thylakoids in Anabaena P-9 under external free fatty acids
biotic stress (Wu et al., 2006) and S. elongatus PCC 7942 (Ruffing
and Jones, 2012), and the proteins associated with photosynthesis,
especial PSII, up-regulated during free fatty acids production in S.
elongatus PCC 7942 (Ruffing, 2013).

The KEGG pathway enrichment showed amino acid metabo-
lism related pathways, including “Glycine, serine, and threonine
metabolism” (ko00260), “Cysteine and methionine metabolism”
(ko00270), “Lysine biosynthesis” (ko00300), and “Valine, leucine,
and isoleucine biosynthesis” (ko00290) were significantly enriched
(Figure 7B). The roles of amino acid in stress resistance was pre-
viously reported in E. coli, in which lysine, tryptophan, leucine,
isoleucine, and valine were found related to resistance to acid and
various biofuel products (Diez-Gonzalez and Karaibrahimoglu,
2004; Horinouchi et al., 2010; Wang et al., 2014), and the addition

www.frontiersin.org

November 2014 | Volume 2 | Article 48 | 9


http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Signatures associated with biofuels stress in Synechocystis

Pei et al.

©
&
.2
A
|

pathways enrichment analysis of proteins in biofuel modules. Top 25

FIGURE 7 | Enrichment analysis of the proteins identified in

metabolic pathways are listed and ordered by function category. X-axis

biofuel-responsive modules. (A) COG enrichment analysis of proteins
in biofuel-responsive modules. X-axis indicates the COG category and

indicates the names of pathway and Y-axis indicates the ratio compared

to background.

Y-axis indicates the ratio compared to background. (B) KEGG metabolic

The KEGG pathway enrichment showed carbohydrate metab-
olism related pathways, such as “Pyruvate metabolism” (ko00620),
“Glycolysis” (ko00100), “Citrate cycle” (ko00020), and related

of isoleucine can improve ethanol tolerance of E. coli (Horinouchi

et al., 2010). It may be worth to determine whether similar roles

are also played by amino acids in cyanobacteria.
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cofactors metabolism pathway “Thiamine metabolism” (ko00730)
were also enriched (Figure 7B). Enrichment of “Glycolysis”
(ko00100) was probably due to the fact that most of its proteins
are the same as “Carbon fixation in photosynthetic organisms”
(ko00710). In addition, although proteins functioning in “Pyru-
vate metabolism” were up-regulated under biofuels stress, no
enzyme after acetyl-CoA in the citrate cycle was found in the
biofuel-responsive modules, implying acetyl-CoA was probably
more directed into fatty acid biosynthesis rather than the citrate
cycle under biofuel stress conditions.

CONCLUSION

Although synthetic biology technologies have improved biofuel
production significantly in photosynthetic cyanobacteria, current
biofuels productivity in these renewable systems is still very low
(Oliver and Atsumi, 2014). Meanwhile, it becomes clear that
toxicity of the end-product biofuels to cyanobacterial cells may
represent a major hurdle for further improving the efficiency

and productivity of the processes. For rational construction of
high-tolerant chassis (Alper et al., 2006), the knowledge on mole-
cular mechanisms responsive to biofuels stress is necessary (Baer
et al., 1987; Atsumi et al., 2010). To seek a better understand-
ing of the biofuel-tolerance mechanisms, in this study, using the
proteomic datasets collected from several previous studies (Liu
et al., 2012; Qiao et al., 2012, 2013; Huang et al., 2013; Tian et al.,
2013), we applied network-based methodologies to compare the
stress responses induced by three biofuels stress and two envi-
ronmental perturbations in Synechocystis, as the network-based
strategy has the advantages of identifying low abundance or small
changes and stress-specific response proteins (Singh et al., 2010;
McDermott et al.,, 2011; Wang et al., 2013b). The comparison
allowed identification of a set of common responsive proteins to
all perturbations, many of which were identical to the core tran-
scriptional genes determined previously in Synechocystis (Singh
et al., 2010). In addition, the analysis revealed proteins related to
cell surface lipopolysaccharide modification, photosynthesis (i.e.,
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FIGURE 8 | Scheme of biofuel-responsive signatures in Synechocystis.
The metabolic features presented were deduced either from proteins
integrated network as common stress responses (blue) or from WGCNA
analysis as biofuel-specific responses (red). Processes associated with
photosynthesis, central carbohydrate metabolism, lipolysis and fatty acid
metabolism, amino acid metabolism, ROS stress responses, as well as cell
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study in Synechococcus, function of 2-oxoglutarate dehydroase in citrate
cycle was finished by SII1981 protein of 2-oxoglutarate decarboxylase and
SIr0370 protein of a succinic semialdehyde dehydrogenase (Zhang and
Bryant, 2011; Xiong et al., 2014).
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photosynthetic pigments, light-harvesting, and carbon fixation),
and branch amino acid biosynthesis could be specific responses
to biofuels. A scheme of metabolic signatures associated with
exogenous biofuels treatments in Synechocystis was presented in
Figure 8. Briefly, the biofuel-responsive signatures of Synechocystis
may include enhanced activities associated with transporters, pho-
tosynthesis, CO, fixation, ROS detoxification proteins, and some
amino acid and acetyl-CoA biosynthesis for fatty acid. The study
provided a better view of metabolic responses caused by the biofu-
els stress, and also demonstrated that the network-based approach
is a powerful tool to identify important target proteins responsive
to biofuels stress.
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