

BIOENGINEERING AND BIOTECHNOLOGY
TECHNOLOGY REPORT

published: 05 January 2015
doi: 10.3389/fbioe.2014.00079

Using CellML with OpenCMISS to simulate multi-scale
physiology
David P. Nickerson1*, David Ladd 1, Jagir R. Hussan1, Soroush Safaei 1,Vinod Suresh1,2, Peter J. Hunter 1 and
Christopher P. Bradley 1

1 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
2 Department of Engineering Science, University of Auckland, Auckland, New Zealand

Edited by:
Steve McKeever, Uppsala University,
Sweden

Reviewed by:
Thomas O’Hara, Johns Hopkins
University, USA
Alexey Solovyev, University of Utah,
USA

*Correspondence:
David P. Nickerson, Auckland
Bioengineering Institute, University of
Auckland, Private Bag 92019,
Auckland Mail Centre, Auckland 1142,
New Zealand
e-mail: d.nickerson@auckland.ac.nz

OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of
bioengineering problems. OpenCMISS consists of two main parts: a computational library
(OpenCMISS-Iron) and a field manipulation and visualization library (OpenCMISS-Zinc).
OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in
a general-purpose parallel environment. CellML is an XML format designed to encode bio-
physically based systems of ordinary differential equations and both linear and non-linear
algebraic equations. A primary design goal of CellML is to allow mathematical models to be
encoded in a modular and reusable format to aid reproducibility and interoperability of mod-
eling studies. In OpenCMISS, we make use of CellML models to enable users to configure
various aspects of their multi-scale physiological models. This avoids the need for users
to be familiar with the OpenCMISS internal code in order to perform customized compu-
tational experiments. Examples of this are: cellular electrophysiology models embedded
in tissue electrical propagation models; material constitutive relationships for mechanical
growth and deformation simulations; time-varying boundary conditions for various prob-
lem domains; and fluid constitutive relationships and lumped-parameter models. In this
paper, we provide implementation details describing how CellML models are integrated
into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS
presents to users is also described, including specific examples exemplifying the extensibil-
ity and usability these tools provide the physiological modeling and simulation community.
We conclude with some thoughts on future extension of OpenCMISS to make use of
other community developed information standards, such as FieldML, SED-ML, and BioSig-
nalML. Plans for the integration of accelerator code (graphical processing unit and field
programmable gate array) generated from CellML models is also discussed.

Keywords: CellML, OpenCMISS, physiome project, virtual physiological human, multi-scale physiological model

1. INTRODUCTION
OpenCMISS (Bradley et al., 2011)1 is a general modeling envi-
ronment that is particularly suited to biomedical engineering
problems. It consists of two main parts: OpenCMISS-Zinc – a
graphical and field manipulation library; and OpenCMISS-Iron –
a parallel computational library for solving partial differential
and other equations using a variety of numerical methods. It is
a complete re-engineering of the CMISS (Continuum Mechan-
ics, Image analysis, Signal processing, and System identification)2

computational code that has been developed and used for over
30 years.

The redevelopment of CMISS into OpenCMISS was driven
by the desire to have an open-source project, to exploit mod-
ern parallel architectures, and to achieve a number of design
goals unable to be met by the existing CMISS code-base. The
first goal was that OpenCMISS would be a library rather than
an application as CMISS was. This was to allow for OpenCMISS

1http://www.opencmiss.org/
2http://www.cmiss.org/

to be wrapped in an appropriate custom interface for clinical, edu-
cational, or commercial applications. The second goal was that the
code should be as general as possible. Code or data structures that
have been designed with too many assumptions may inhibit future
applicability or when coupling problems.

The third goal was that OpenCMISS would be an inherently
parallel code. Increasingly, complex or coupled models often
require a parallel solution in order to decrease runtimes to accept-
able levels. As computation codes often have lifetimes that are an
order of magnitude greater than a particular parallel architecture
OpenCMISS aims for a general heterogeneous parallel environ-
ment based on n× p(n)× e(p) computational units, where n is
the number of distributed computational nodes, p(n) is the num-
ber of processing systems on the nth computational node, and
e(p) is the number of processing elements for the pth processing
system. Such a general parallel environment allows for multi-core
or SMP systems, cluster systems, multi-core clusters and multi-
core clusters with Intel Phi co-processors, graphical processing
units (GPUs), field programmable gate array (FPGAs), or other
hardware accelerators. OpenCMISS uses the MPI standard for

www.frontiersin.org January 2015 | Volume 2 | Article 79 | 1

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00079/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00079/abstract
http://www.frontiersin.org/people/u/34505
http://community.frontiersin.org/people/u/200025
http://community.frontiersin.org/people/u/200007
http://www.frontiersin.org/people/u/193386
http://www.frontiersin.org/people/u/194242
http://www.frontiersin.org/people/u/12979
http://www.frontiersin.org/people/u/63896
mailto:d.nickerson@auckland.ac.nz
http://www.opencmiss.org/
http://www.cmiss.org/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

distributed parallelism. There are currently research projects inves-
tigating the use of GPUs (using CUDA, OpenCL, and OpenAcc)
and FPGAs for acceleration and the use of OpenMP for shared
memory parallelism.

The fourth design goal was that OpenCMISS should be used,
understood, and developed by novices and experts alike. Mod-
ern scientific teams are often multidisciplinary in nature and thus
team members can have very different backgrounds. The final
design goal was that OpenCMISS should incorporate the Phys-
iome Project (Hunter, 2004) markup languages FieldML (Britten
et al., 2013) and CellML. The OpenCMISS architecture developed
to achieve these design goals is shown graphically in Figure 1.

Here, we focus on the use of CellML to provide general purpose
“plug and play” of mathematical models and model configura-
tion in OpenCMISS applications. CellML (Cuellar et al., 2003)3 is
an XML format for encoding mathematical models in a modular
and reusable manner (Nickerson and Buist, 2008; Cooling et al.,
2010). See Section 2 below for a general introduction to the math-
ematical framework provided by CellML. Also, in this Research
Topic, see Hucka et al. (submitted) for an introduction to CellML
and other related standards projects and Garny and Hunter (sub-
mitted) for one of the main integrated CellML software tools.
OpenCMISS makes use of the CellML application program inter-
face (API) (Miller et al., 2010)4 to interact with CellML models,
and OpenCMISS-Iron defines a higher level CellML interface,
which is then mapped to Fortran routines for use internally to
the core library5.

3http://cellml.org/
4http://cellml-api.sourceforge.net/
5http://github.com/OpenCMISS/cellml/

2. METHODS
The central data object in OpenCMISS is the field and models in
OpenCMISS are defined using a collection of fields. The develop-
ment of FieldML is closely aligned with this data model (Britten
et al., 2013). The integration of CellML into OpenCMISS models
and simulations is achieved using these fields. Therefore, we first
introduce the key concepts underlying the field-based data model
and then describe the integration of CellML with OpenCMISS
models and simulations.

CellML is used in OpenCMISS applications for many different
purposes. Following the above design goals for OpenCMISS, the
actual implementation and usage of CellML is much more gen-
eral than the previous implementation in CMISS (Nickerson et al.,
2006). All applications using CellML in OpenCMISS follow a sim-
ilar pattern. This can be seen in the examples described in Section
3 and the associated internet resources. The common application
pattern is summarized here and described in more detail in the
following sections.

1. Create a CellML Environment to manage a collection of models
and their use.

2. Import CellML models into the CellML Environment.
3. Flag specific variables from each model as being relevant to the

OpenCMISS model.
4. Map the flagged variables to fields.
5. Map variables from the CellML models to degrees-of-freedom

(DOFs) in the OpenCMISS model.
6. Create OpenCMISS fields for the CellML variables that vary

spatially.
7. Use the CellML environment in setting up the OpenCMISS

model.

FIGURE 1 | OpenCMISS architecture diagram. The external program or
script is known as an OpenCMISS application, and makes use of the
public OpenCMISS application program interface (API) via the most
appropriate language bindings provided by the OpenCMISS library. The

API itself then makes use of the internal core library to provide the
required functionality. The core library makes use of the community
provided CellML and FieldML library implementations to access data
encoded in these standards.

Frontiers in Bioengineering and Biotechnology | Computational Physiology and Medicine January 2015 | Volume 2 | Article 79 | 2

http://cellml.org/
http://cellml-api.sourceforge.net/
http://github.com/OpenCMISS/cellml/
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

8. Define any solvers required in the evaluation of the CellML
model(s).

9. Link the equations in the CellML model to the solvers.

2.1. OPENCMISS FIELDS
Fields are the central mechanism in OpenCMISS for describing the
physical problem and for storing any information required for this
description. The comprehensive use of fields is a central concept
of FieldML (Christie et al., 2009; Britten et al., 2013). OpenCMISS
fields are hierarchical in nature. An OpenCMISS field contains a
number of field“variables”and each field variable contains a num-
ber of field variable components. A field variable is thus equivalent
to standard mathematical scalar, vector, or tensor fields.

Mathematically, a field is defined over a domain. In Open-
CMISS, the conceptual domain for a field is the entire computa-
tional “mesh” (which could be a set of elements for some methods
e.g., FEM, or a set of points for other methods e.g., meshless meth-
ods). However, in order to allow for distributed problems, the mesh
is decomposed into a number of computational domains, which
are each assigned to one computational node. Each computational
node only allocates and stores information for its domain and any
fields defined over that domain.

OpenCMISS allows for each field variable component to have
a different structure for its DOFs. Structures that are currently
supported are: constant structure (one DOF for the entire com-
ponent); element structure (one or more DOFs for each element);
node structure (one or more DOFs for each node); Gauss point
structure (one or more DOFs for each Gauss or integration point);
and data point structure (one or more DOFs for each data point).
In addition, for node structures, which are used for standard finite
element type interpolation, OpenCMISS allows for each element
to have a different basis function.

OpenCMISS collects all DOFs from all the components in a
field variable and stores them as a distributed vector. The DOFs
stored in the distributed vector include those from the computa-
tional domain and a layer of “ghosted” DOFs (local copies of the
value of DOFs in a neighboring domain). To ensure consistency
of data OpenCMISS handles the updates between computational
nodes if a node changes the value of a DOF, which is ghosted on a
neighboring computational node.

2.2. MATHEMATICAL FRAMEWORK
In general, CellML models describe a vector system, F, of
differential-algebraic equations (DAEs) of the form:

F
(
t , x, x′, a, b

)
= 0, (1)

where t is the independent variable, x is a vector of state variables,
x′ is a vector of the derivatives of state variables with respect to the
independent variable, a is a vector of independent parameters, and
b is an optional vector of intermediate “output” variables from the
model (i.e., derived from the other variables but does not affect
the system of equations).

CellML models are typically used for processes that occur at
an abstract point in space, i.e., for a particular spatial scale of
interest the processes can be considered to occur in a region of
space small enough to be considered a point and are thus known
as zero-dimensional (0D) models. Whilst 0D models are useful,

there are numerous applications of interest that occur in higher
dimensions. In order to use CellML models in multi-scale, multi-
dimensional models we require a method which can: (a) locate
a CellML model at a particular spatial location; (b) allow the 0D
CellML model variables to affect the spatial fields of variables of
the higher dimensional models; and (c) allow the values of the
higher spatial dimensional field variables at the location of the 0D
CellML model to affect the CellML model variables.

In numerical methods, the higher dimensional fields are often
interpolated in some manner. Interpolation can be thought of as
calculating the value of a field at some location in its domain by
using some mathematical functions (interpolation or basis func-
tions) operating on a set of numerical values (the DOFs). The
interpolation functions are chosen based on the numerical method
being used and modeling decisions of the modeler. Once the inter-
polation functions have been fixed then the value of a field is
determined by its DOFs. Control of the DOF values is thus a good
candidate to allow 0D models to affect the values of the spatial
fields.

In OpenCMISS, a CellML model is considered to be a black box
model for the value of a DOF. As shown in Figure 2, the black box
model has two inputs and two outputs. The inputs are the state
variables, x, and the parameter variables, a, and the outputs are the
rate variables, x′, and the intermediate variables, b.

2.3. CellML ENVIRONMENT
The main object within OpenCMISS for managing CellML models
is the “CellML environment” container object. Once an environ-
ment object has been started the next step is to import required
CellML models into the environment from specified XML files.
Multiple CellML models can be imported into one CellML envi-
ronment and multiple CellML environments can be used in a
given OpenCMISS application. To distinguish between the mod-
els within an environment an integer model index is returned from
each import and this index can subsequently be used to reference
the CellML model in OpenCMISS.

The CellML environment is distributed over all computational
domains in the OpenCMISS application. CellML models imported
into the environment are therefore available on all computational
nodes (independently).

2.4. FLAGGING CellML MODEL VARIABLES
As described above, it is important in multi-scale models that
CellML variables can influence the higher dimensional field

FIGURE 2 |The CellML black box model showing state and parameter
variables as inputs and rate and intermediate variables as outputs.
Such a black box is designed as a general model evaluation object, which
can plug into a variety of numerical methods and workflows. An ODE-type
model might, for example, plug into an integration solver to simulate the
evolution of the model over time. Whereas, a pure algebraic model would
not have any state variables and pure evaluation solver is able to directly
compute the intermediate variables from a given set of input parameters.

www.frontiersin.org January 2015 | Volume 2 | Article 79 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

variables and vice-versa. It should be noted, however, that for
some models, not all the CellML variables interact with the field
variables. For example, it may be the case that a certain para-
meter to the CellML model does not vary spatially. The user
is able to flag each CellML variable as either “known” and/or
“wanted.” If a variable is known then its numeric value will
be controlled by a field in OpenCMISS – i.e., the variable is
passed into the CellML black box model (states or parameters
in Figure 2). If a variable is wanted then its numeric value
computed by an evaluation of the CellML model will be used
outside of the CellML model – i.e., the variable will be passed
out of the CellML black box model (rates or intermediates in
Figure 2). When importing a model, the default behavior in
OpenCMISS is that all state variables and the independent vari-
able are flagged as known and wanted; no other variables have any
flags set.

Once the desired CellML variables have been flagged the
construction of the CellML environment can be finished –
OpenCMISS now has enough information from the application to
determine which variables in the CellML models require exposure
to the fields. Finishing the CellML environment means that each
CellML model can be instantiated into a computable black box.
When a model is instantiated, the CellML API (Miller et al., 2010)
is used to generate a procedural representation of the model to
determine which CellML variables are free (they are either known
or wanted) and which variables are fixed (no flags set). The code
generation service of the CellML API then generates a computer
code function for use in evaluating the model. The function has a
standard interface, e.g., for C code:

void CellML_routine(double VOI, double*
STATE, double* RATE, double* KNOWN,
double* WANTED);

which is of the form of Equation 1. Here, VOI is the indepen-
dent variable, t ; STATE is the vector of state variables, x; RATES
is the vector of derivatives, x′; KNOWN is the vector of parameter
variables, a; and WANTED is the vector of intermediate variables,
b. Variables in the CellML model that are fixed are not passed as
parameters to the generated CellML routine. Instead, they are set
as constants in the generated computer code with their value given
by the CellML model.

2.5. FIELD MAPS
The next step in using a CellML model in OpenCMISS is to
define the field maps. These maps link CellML variables with
OpenCMISS field variable components. There are two types of
maps depending on the direction of data flow, as shown in
Figure 3. A field to CellML map links the component of an
OpenCMISS field with a known CellML variable. A CellML to
field map links a wanted CellML variable with a component of an
OpenCMISS field variable. The field maps are specified by identi-
fying a particular component of an OpenCMISS field variable and
the name of a CellML variable of a CellML model that has been
loaded into the CellML environment. In addition to linking vari-
ables the field maps also determine the DOF “pattern” or image
of the CellML models. OpenCMISS looks at each DOF in each
component of an OpenCMISS field that has been mapped and
determines the DOF location (e.g., the position of the node, Gauss
point, data point, etc. corresponding to the DOF). These locations

FIGURE 3 | Diagram showing the field maps for a finite elasticity
example similar to that described in Section 4. In this example, the
components of the strain field in the OpenCMISS model are mapped to
CellML variables in the CellML parameters field. Similarly, the CellML
variables in the intermediate field representing the components of the
stress tensor are mapped back to the stress field in the OpenCMISS

model. The mapping is defined once the CellML model has been
imported (1) and the required variables have been flagged (2). Whenever
the CellML model is evaluated (3), the values from the strain field are
first transferred to the CellML parameters field, the model is evaluated,
and the values from the CellML intermediate fields are transferred back
to the stress field.

Frontiers in Bioengineering and Biotechnology | Computational Physiology and Medicine January 2015 | Volume 2 | Article 79 | 4

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

then serve as the geometric positions of the CellML models – i.e.,
conceptually there is an instance of a CellML model located at
each DOF location. The field maps are checked to ensure that the
DOF locations for OpenCMISS field variable components that are
mapped to each CellML variable for a particular CellML model are
compatible. To be compatible all CellML variables in a model must
be mapped to OpenCMISS field variables that have their DOFs at
the same locations. Note that this does not mean they must be
mapped to the same DOFs just that the DOFs must be located at
the same point in space. For example, in a standard finite element
type field where the DOFs are located at node points, different
components of an OpenCMISS field variable could be mapped
to CellML variables or different components from different field
variables could be mapped provided the different field variables
had the same interpolation (basis).

2.6. CellML FIELDS
Once the field maps have been defined and the DOF pattern of
CellML models determined the next step is to define CellML fields.
The CellML fields are standard OpenCMISS fields, which are used
to store values of the spatially varying CellML variables. There are
four different types of CellML fields (shown in Figure 3) – a mod-
els field (see below), a state field, which stores the CellML model
state variables, a parameters field,which stores the CellML parame-
ters variables, and an intermediates field, which stores the CellML
intermediates variables. The CellML field DOF values can be con-
ceptually thought of as an array with the number of rows equal
to the number of CellML models (one at each DOF in the pat-
tern) and the number of columns equal to the number of CellML
variables in each model, i.e., each row of the array corresponds
to the values of the CellML variables for one particular CellML
model.

The CellML fields allow for a spatial variation in the value of any
CellML variable. As the CellML fields are standard OpenCMISS
fields, the exact form of the spatial variation is determined by the
choice of interpolation and the values of the CellML field DOFs.
The default value and variation of each CellML state, parameter
and intermediate variable is given in the CellML XML file and is
constant across the domain. OpenCMISS also allows for a spa-
tial variation of the actual CellML model. The CellML models
field is an integer-valued field, which can be used to specify which
CellML model in the CellML environment is used at each DOF in
the pattern. The default choice is the first model loaded into the
environment but other models can be selected by setting the value
of the models field DOF to the value of the model index returned
when importing the model. Setting the models field to zero at a
particular DOF in the pattern will result in no CellML model at
that particular DOF.

When setting up their models and simulations, OpenCMISS
users are able to take advantage of some internal OpenCMISS
memory optimizations. If a user chooses matching DOF patterns
in different parts of their model definition, they are able to simply
use existing fields in place of the CellML fields. In this case, rather
than duplicating internal storage for the fields and copying values
between the fields, the data arrays are able to be used directly.

2.7. SOLVERS
In OpenCMISS, solvers are objects, which perform numerical
“work” as part of some problems workflow. This numerical work
is not restricted to that of traditional solvers such as linear or
non-linear solvers, and can take other forms, e.g., translation and
rotation of a mesh. As shown in Figure 4, solvers are contained
within a control loop that has no sub-loops. Each control loop can
contain an arbitrary number of solvers. When a control loop is

FIGURE 4 | Structure and relationship between OpenCMISS control loops and solvers. See Figure 6 for an example showing how an OpenCMISS
application will use these workflow capabilities.

www.frontiersin.org January 2015 | Volume 2 | Article 79 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

executed each solver is executed in turn. The ability to nest control
loops provides a mechanism to have different time scales for dif-
ferent models. For example, in Section 3 we present simulations
including a cardiac electrophysiology example. For this model, we
can “solve” the CellML model of a cardiac cell at a much finer time
scale than the “solve” of the reaction diffusion model.

OpenCMISS has two CellML specific solvers implemented. The
first solver is a CellML evaluation solver. When this solver is exe-
cuted each CellML model at each DOF is executed. The second
solver is a CellML integration solver. When this solver is executed
it integrates the equations in a CellML model from a specified start
time to a specified stop time.

In addition to constructing a workflow using solvers within
control loops, a workflow may be created by linking a solver to
another solver. An example of solver linking occurs when a New-
ton type non-linear solver links to a linear solver. The linear solver
is then used to compute the search direction as part of a major
Newton step of the non-linear solvers iterations. CellML solvers
may also be linked to other solvers. An example of when this is used
is when CellML evaluation solvers for computing the stress state
using a constitutive law in large deformation mechanics. These
mechanics simulations are non-linear and are typically solved in
a manner in which residual equations are repeated evaluated by
a non-linear solver. By linking a CellML evaluation solver to the
non-linear solver the constitutive law can be evaluated for the
state of deformation given by the solver as part of the residual
evaluation.

In summary, the simulation process for using CellML with
OpenCMISS is as follows: OpenCMISS starts the execution of
a problem by looping through the top level control loop. Sub-
control loops are looped through in turn until a loop with solvers
is encountered. The solvers are then executed in turn. If the solver
is a CellML solver then the solve starts by transferring the current
value of mapped OpenCMISS fields to the corresponding CellML
fields. The CellML solver is then executed. After the CellML solver
has finished the value of the CellML fields that are mapped are
transferred to OpenCMISS fields.

3. RESULTS
We have provided some documented examples of OpenCMISS
applications, which demonstrate the capabilities of using CellML
models with OpenCMISS-Iron. These are available at: http:
//opencmiss-cellml-examples.readthedocs.org/. The documenta-
tion provides links back to the free and open-source driving
these applications on GitHub6. In the following sections, we pro-
vide brief introductions to the example applications available and
highlight some of the multi-scale and multi-physics abilities of
OpenCMISS and CellML. More complete details are available at
the above internet location.

3.1. BASIC USAGE
The “OpenCMISS-Iron CellML Examples” provide an introduc-
tion to the common usage of the OpenCMISS-Iron API relat-
ing to the use of CellML models as described in Section 2.

6http://github.com/

The examples here do not define complete models or numerical
simulations, but rather demonstrate the basic initialization steps
required regardless of the actual application being developed. In
this section of the online supplement, we provide the same exam-
ple application using the two most common language bindings for
OpenCMISS-Iron, namely Fortran and Python.

3.2. CARDIAC ELECTROPHYSIOLOGY
To illustrate the use of CellML in a more physiologically applica-
ble example, the monodomain equation (Keener and Sneyd, 1998)
is solved in a square 2D domain using a CellML electrophysiol-
ogy model obtained from the CellML model repository. When
modeling electrophysiology, two of the most common model-
ing variations are the choice of the particular cell model and a
spatial variation of material and cellular parameters (e.g., when,
say, modeling an infarct). The use of CellML allows a modeler
to use any electrophysiology cell models that can be represented
in CellML without having to change the numerical simulation
code. The linking of CellML variables to OpenCMISS fields allows
cellular and material parameters, alike, to be easily varied in
complex ways.

The monodomain equation is often solved using an operator
splitting approach (Qu and Garfinkel, 1999; Sundnes et al., 2005).
In this example, a Gudunov split is used to break the monodomain
equation into an ordinary differential equation (ODE) and a par-
abolic equation. The model domain in this example consists of
a square domain divided into 25 elements in each direction. The
tissue conductivity is isotropic. Bilinear Lagrange finite elements
are used in the solution of the parabolic problem. For the ODE
problem, a Noble 98 guinea-pig ventricular model (Noble et al.,
1998) is attached to each node in the domain. A stimulus current
was applied to the leftmost half of bottom row of nodes. A plot of
the transmembrane voltage immediately after the stimulus current
was turned off is given in Figure 5A.

To illustrate the ability to spatially vary CellML parameters two
simulations were performed. In the first simulation, the sodium
channel conductance, gNa, was isotropic and left at its normal
value. A plot of the transmembrane voltage after a fixed time is
shown in Figure 5B. In the second simulation, the sodium chan-
nel conductance was varied in a radial pattern as determined by
the distance from the bottom left node. The channel conductance
was varied from 100% of its normal value at the bottom left node
to 300% of its normal value at the top right node. A plot of the
spatial distribution of sodium channel conductance is shown in
Figure 5C. A plot of the transmembrane voltage in the second sim-
ulation after the same fixed time period is shown in Figure 5D.
Comparing Figure 5B with Figure 5D it can be seen that in second
simulation the activation wave front has advanced further into the
domain for the same fixed time period. This shows that increas-
ing the sodium channel conductance increases the activation wave
front conduction velocity.

3.3. FLUID DYNAMICS BOUNDARY CONDITIONS
Constructing full subject-specific computational fluid dynamics
(CFD) models of the entire arterial and/or venous vasculature
is currently considered impractical, owing to: (1) the time and
resources required to identify, segment, and constrain a model of

Frontiers in Bioengineering and Biotechnology | Computational Physiology and Medicine January 2015 | Volume 2 | Article 79 | 6

http://opencmiss-cellml-examples.readthedocs.org/
http://opencmiss-cellml-examples.readthedocs.org/
http://github.com/
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

FIGURE 5 | Results of a 2D monodomain solution with a Noble 98
ventricular cell model. (A) A plot of the transmembrane voltage
immediately after a stimulus along half of the bottom edge. (B) A plot of
the transmembrane voltage after a fixed time with an isotropic value of the
sodium channel conductance gNa. (C) A spatial variation of gNa. The
sodium channel conductance is varied from its normal value at the bottom

left node to 300% of its normal value at the top right node. (D) A plot of
the transmembrane voltage with a varying sodium channel conductance
after a fixed period. Comparing with (B) it can be seen that increasing the
sodium channel conductance increases the conduction velocity. For
(A,B,D) the value of the transmembrane voltage varies from −95 mv (blue)
to +50 mV (red).

FIGURE 6 | Overview of the coupled 1D–0D solution process, which is defined in our fluid dynamics boundary conditions example.

the billions of vessels in a human body; and (2) the computational
cost such a model would incur.

However, as blood flow is primarily driven by the pressure gra-
dients between the heart and downstream vascular beds,a modeled
vessel must still be considered within its systemic context to be
physiologically relevant. This can be accomplished by coupling
simpler, lumped-parameter/0D models to the more computation-
ally expensive (3D/1D) CFD models at domain boundaries. This
involves coupling together dependent fields (i.e., pressure and
velocity/flow), material fields (e.g., fluid viscosity and wall compli-
ance), and geometric fields (e.g., vessel diameter) at the interfaces
between 3D, 1D, and/or 0D model domains.

In the “Fluid Mechanics: Navier–Stokes: 1D-0D Visible Human
Example,” a 1D network of 24 major arteries is constructed from
the male Visible Human dataset (reproduced in Figure 7). Over
this domain, the 1D formulation of the Navier–Stokes equations
and its Riemann invariants are solved for flow rate and pressure.
Flow rate from a published dataset is applied at the aortic root to
provide inlet boundary conditions. At each of the terminal (out-
let) boundaries of the 1D domain, a 0D RCR Windkessel model is
applied to approximate downstream vascular impedance.

The problem solution workflow for this example is depicted
in Figure 6. Flow rate (Q) from the 1D OpenCMISS solver pro-
vides the forcing term for the CellML ODE solver. Pressure (P)

www.frontiersin.org January 2015 | Volume 2 | Article 79 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

FIGURE 7 | Results from executing the fluid dynamics boundary conditions example OpenCMISS application. (A) The distribution of flow rates and
(B) that of fluid pressures within the vessel segments. The graphs illustrate the temporal variation during one cardiac cycle and the vessel images are a
temporal snapshot at peak systole.

is returned from CellML to provide constraints on the Riemann
invariants of the 1D system, which translate to area boundary con-
ditions for the 1D solver. At each timestep, the 1D and 0D systems
are iteratively coupled until the boundary values converge within
a user-specified tolerance at the 1D–0D interfaces.

The results of executing this example OpenCMISS application
are shown in Figure 7.

Other applications of OpenCMISS and CellML coupling for
fluids include coupling of 3D and 0D models and hemorheologi-
cal constitutive laws that approximate the shear-thinning behavior
of blood.

3.4. MECHANICAL CONSTITUTIVE LAWS
As described previously, a common case for the usage of CellML
models in OpenCMISS applications is to specify mechanical con-
stitutive laws (the relationship between strain and stress) in finite
elasticity applications. By using CellML models to describe the
constitutive laws required for a given finite elasticity model, the
implementation of the equations governing finite elasticity are
able to be generic without needing specific relationships to be
“hard-coded” in the core OpenCMISS library. This clearly aligns
with the design goals for OpenCMISS.

The “Axial extension in a homogeneous pipe” example demon-
strates how a CellML model can be used to define the mechanical
constitutive law for a finite elasticity OpenCMISS application. In
this example, a homogeneous cylinder (a blood vessel, for exam-
ple) is stretched along its longitudinal axis. The Mooney–Rivlin
constitutive law (Rivlin and Saunders, 1951) is used in this exam-
ple, but by importing a different CellML model the user would be
able to change the behavior of this application.

A complete description of this example is available from the
internet location referenced above and Figure 8 reproduces the
results from executing this example application.

4. DISCUSSION AND CONCLUSION
We have presented the methods by which CellML is used in
OpenCMISS to provide a very flexible “plug and play” system
for users to leverage when creating OpenCMISS applications.
The examples presented in Section 3 are not meant to present
novel findings, but rather demonstrate the implementation of
OpenCMISS applications, which take advantage of this system
to exemplify the underlying design goals for OpenCMISS.

Encapsulating aspects of the OpenCMISS model and
simulation in CellML models not only allows interoperability with

Frontiers in Bioengineering and Biotechnology | Computational Physiology and Medicine January 2015 | Volume 2 | Article 79 | 8

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

FIGURE 8 | Results from running this cylinder extension application.
The gold lines show the original, undeformed, cylinder geometry. The
colored lines show the deformed geometry, with the color varying to show
the difference in strain through the wall of the cylinder. The cones represent
the three normalized principal strains at material points throughout the
tissue volume (red for compression and blue for extension).

other tools, which support CellML (Garny et al., 2008; Beard et al.,
2009), but also enables the exploration of various computational
optimizations. Some of these optimizations are generic for any
CellML model see for some discussion on potential optimizations
(Garny et al., 2008) and others make use of the high-performance
computing environments in which OpenCMISS is designed to be
used.

For certain simulations in OpenCMISS, a CellML model can
be evaluated a very large number of times resulting in a signif-
icant computational time. In order to reduce this time, we can
take advantage of the fact that each instance of a CellML model at

a particular DOF is completely independent from CellML mod-
els at every other DOF and evaluate the models in parallel. The
framework for OpenCMISS and CellML presented in this paper
involves a small number of CellML models each involving a short
fixed portion of code executing a large number of times with differ-
ent data and is ideally suited for hardware acceleration with GPUs
and FPGAs. Work is currently underway on updating our frame-
work so that instead of generating C code from the CellML model,
GPU code (CUDA, OpenCL, or OpenAcc) is generated with the
CellML model forming the computational“kernel.”Work on using
CellML with FPGAs has also started with the aim of generating
VHDL (VHSIC Hardware Description Language) code from the
CellML model (Yu et al., 2013).

To further improve the interoperability of OpenCMISS with
other software tools and user communities, we are actively pursu-
ing a broader range of support for community standards. CellML
itself is one of the core COMBINE standards (Hucka et al., submit-
ted) and we are considering how to best use the other standard-
ization efforts under the COMBINE consortium. The simulation
experiment description markup-language SED-ML; (Waltemath
et al., 2011) is an obvious candidate for use in OpenCMISS. As
an initial step toward adopting SED-ML, the CellML solver con-
figuration for a given simulation could be defined using SED-ML.
Further work in contributing to the evolution of SED-ML to enable
the encoding of complete OpenCMISS simulation descriptions in
future versions of SED-ML is also being considered. This could
potentially build on top of recent developments in the area of
functional curation (Cooper et al., 2011).

As mentioned previously, the OpenCMISS field-centric data
model is a major driving factor in the development of FieldML
(Christie et al., 2009; Britten et al., 2013). In order to be able to
fully and unambiguously describe the full range of fields available
in OpenCMISS, further work is required to expand the capabilities
of FieldML, both in terms of the standard itself and its supporting
software library. Another proposed standard that is closely related
to both CellML and FieldML is BioSignalML (Brooks et al., 2011).
BioSignalML is a proposed standard for the description of tem-
poral physiological signals and could be used in OpenCMISS to
describe time-varying boundary conditions either directly applied
to the OpenCMISS model or to the CellML models used in an
OpenCMISS application.

OpenCMISS has been, and continues to be, developed as
a high-performance computational platform aimed at large-
scale physiological modeling. As such, OpenCMISS simulations
are generally limited by the computational hardware available
(memory, storage requirements) and the acceptable duration of
a simulation, rather than any inherent limitation in the soft-
ware code itself. In addition to the specialized hardware devel-
opments mentioned above, current work involves the build-
ing and execution of OpenCMISS simulations on some of the
largest computers available in the world. While we expect the
linkage between OpenCMISS and CellML models to work as
described above, unexpected issues may arise during the port-
ing of software to such large machines. Any such issues will need
to be addressed on a case-by-case basis and require the exper-
tise of various hardware and compiler specialists with whom we
collaborate.

www.frontiersin.org January 2015 | Volume 2 | Article 79 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Nickerson et al. Using CellML with OpenCMISS

One limitation of our current approach is that it is sometimes
necessary to copy the data for each CellML model either between
fields or to temporary memory. This is to ensure a contiguous
layout of a CellML models data for optimal evaluation. This is par-
ticularly so for simulations that use a number of different CellML
models at different DOFs. It may be possible to avoid this situation
if the multiple CellML models can be combined into one model
with the switch on sub-models occurring inside the one CellML
model, possibly based on a combination of OpenCMISS field val-
ues. This work-around would result in a higher total memory
overhead but a reduction in computational cost.

The combination of OpenCMISS and CellML provides a pow-
erful tool for users to customize a very general computational
physiology software library to meet their specific application
requirements. In this manner, we are close to achieving the stated
goals driving the development of OpenCMISS. Through the use
of CellML, and other standards in the future, OpenCMISS is able
to be a general-purpose library, which can be wrapped in the
appropriate custom interface for a wide range of applications. By
abstracting the computational details in the OpenCMISS library
and providing the ability to use CellML, users are able to make
use of a range of tools to create, edit, and interact with their
CellML models e.g., (Garny and Hunter, submitted), thus enabling
novice users to relatively easily develop complex OpenCMISS
applications.

AUTHOR CONTRIBUTIONS
David P. Nickerson, Christopher P. Bradley, and Peter J.
Hunter conceived, designed, and implemented CellML support
in OpenCMISS. All authors contributed to the demonstration
examples and this manuscript. All authors contribute to the
development of OpenCMISS.

ACKNOWLEDGMENTS
Funding: David P. Nickerson is supported by The Virtual Phys-
iological Rat Project (NIH P50-GM094503) and the Maurice
Wilkins Centre for Molecular Biodiscovery. Soroush Safaei was
supported by a Ph.D. scholarship from the Maurice Wilkins Cen-
tre for Molecular Biodiscovery. David Ladd was supported by a
Ph.D. scholarship from the University of Auckland.

REFERENCES
Beard, D. A., Britten, R., Cooling, M. T., Garny, A., Halstead, M. D. B.,

Hunter,P. J., et al. (2009). CellML metadata standards, associated tools and repos-
itories. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1845–1867. doi:10.1098/rsta.
2008.0310

Bradley, C., Bowery, A., Britten, R., Budelmann, V., Camara, O., Christie, R.,
et al. (2011). OpenCMISS: a multi-physics & multi-scale computational infra-
structure for the VPH/physiome project. Prog. Biophys. Mol. Biol. 107, 32–47.
doi:10.1016/j.pbiomolbio.2011.06.015

Britten, R. D., Christie, G. R., Little, C., Miller, A. K., Bradley, C., Wu, A., et al.
(2013). FieldML, a proposed open standard for the physiome project for
mathematical model representation. Med. Biol. Eng. Comput. 51, 1191–1207.
doi:10.1007/s11517-013-1097-7

Brooks, D. J., Hunter, P. J., Smaill, B. H., and Titchener, M. R. (2011). BioSignalML–a
meta-model for biosignals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 5670–5673.
doi:10.1109/IEMBS.2011.6091372

Christie, G. R., Nielsen, P. M. F., Blackett, S. A., Bradley, C. P., and Hunter, P. J.
(2009). FieldML: concepts and implementation. Philos. Trans. A Math. Phys.
Eng. Sci. 367, 1869–1884. doi:10.1098/rsta.2009.0025

Cooling, M. T., Rouilly, V., Misirli, G., Lawson, J., Yu, T., Hallinan, J., et al. (2010).
Standard virtual biological parts: a repository of modular modeling components
for synthetic biology. Bioinformatics 26, 925–931. doi:10.1093/bioinformatics/
btq063

Cooper, J., Mirams, G. R., and Niederer, S. A. (2011). High-throughput functional
curation of cellular electrophysiology models. Prog. Biophys. Mol. Biol. 107,
11–20. doi:10.1016/j.pbiomolbio.2011.06.003

Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., and
Hunter, P. J. (2003). An overview of CellML 1.1, a biological model description
language. Simulation 79, 740–747. doi:10.1177/0037549703040939

Garny, A., Nickerson, D. P., Cooper, J., dos Santos, R., Miller, A. K., McKeever, S.,
et al. (2008). CellML and associated tools and techniques. Philos. Trans. A Math.
Phys. Eng. Sci. 366, 3017–3043. doi:10.1098/rsta.2008.0094

Hunter, P. J. (2004). The IUPS physiome project: a framework for computational
physiology. Prog. Biophys. Mol. Biol. 85,551–569. doi:10.1016/j.pbiomolbio.2004.
02.006

Keener, J., and Sneyd, J. (1998). Mathematical Physiology. New York: Springer.
Miller, A. K., Marsh, J., Reeve, A., Garny, A., Britten, R., Halstead, M., et al. (2010).

An overview of the CellML API and its implementation. BMC Bioinformatics
11:178. doi:10.1186/1471-2105-11-178

Nickerson, D., and Buist, M. (2008). Practical application of CellML 1.1: the integra-
tion of new mechanisms into a human ventricular myocyte model. Prog. Biophys.
Mol. Biol. 98, 38–51. doi:10.1016/j.pbiomolbio.2008.05.006

Nickerson, D., Nash, M., Nielsen, P., Smith, N., and Hunter, P. (2006). Compu-
tational multiscale modeling in the IUPS physiome project: modeling cardiac
electromechanics. IBM J. Res. Dev. 50, 617–630. doi:10.1147/rd.506.0617

Noble, D., Varghese, A., Kohl, P., and Noble, P. (1998). Improved guinea-pig ven-
tricular cell model incorporating a diadic space, IKr and IKs, and length- and
tension-dependent processes. Can. J. Cardiol. 14, 123–134.

Qu, Z., and Garfinkel, A. (1999). An advanced algorithm for solving partial differ-
ential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46, 1166–1168.
doi:10.1109/10.784149

Rivlin, R. S., and Saunders, D. W. (1951). Large elastic deformations of isotropic
materials. VII. Experiments on the deformation of rubber. Philos. Trans. A Math.
Phys. Eng. Sci. 243, 251–288. doi:10.1016/j.jmbbm.2008.10.007

Sundnes, J., Lines, G. T., and Tveito, A. (2005). An operator splitting method for
solving the bidomain equations coupled to a volume conductor model for the
torso. Math. Biosci. 194, 233–248. doi:10.1016/j.mbs.2005.01.001

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller, A. K.,
et al. (2011). Reproducible computational biology experiments with SED-ML–
the simulation experiment description markup language. BMC Syst. Biol. 5:198.
doi:10.1186/1752-0509-5-198

Yu, T., Bradley, C., and Sinnen, O. (2013). “Hardware acceleration of biomedical
models with OpenCMISS and CellML,” In International Conference on Field-
Programmable Technology (FPT). Kyoto, 370–373.

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 10 November 2014; paper pending published: 24 November 2014; accepted:
11 December 2014; published online: 05 January 2015.
Citation: Nickerson DP, Ladd D, Hussan JR, Safaei S, Suresh V, Hunter PJ and Bradley
CP (2015) Using CellML with OpenCMISS to simulate multi-scale physiology. Front.
Bioeng. Biotechnol. 2:79. doi: 10.3389/fbioe.2014.00079
This article was submitted to Computational Physiology and Medicine, a section of the
journal Frontiers in Bioengineering and Biotechnology.
Copyright © 2015 Nickerson, Ladd, Hussan, Safaei, Suresh, Hunter and Bradley.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | Computational Physiology and Medicine January 2015 | Volume 2 | Article 79 | 10

http://dx.doi.org/10.1098/rsta.2008.0310
http://dx.doi.org/10.1098/rsta.2008.0310
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.015
http://dx.doi.org/10.1007/s11517-013-1097-7
http://dx.doi.org/10.1109/IEMBS.2011.6091372
http://dx.doi.org/10.1098/rsta.2009.0025
http://dx.doi.org/10.1093/bioinformatics/btq063
http://dx.doi.org/10.1093/bioinformatics/btq063
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.003
http://dx.doi.org/10.1177/0037549703040939
http://dx.doi.org/10.1098/rsta.2008.0094
http://dx.doi.org/10.1016/j.pbiomolbio.2004.02.006
http://dx.doi.org/10.1016/j.pbiomolbio.2004.02.006
http://dx.doi.org/10.1186/1471-2105-11-178
http://dx.doi.org/10.1016/j.pbiomolbio.2008.05.006
http://dx.doi.org/10.1147/rd.506.0617
http://dx.doi.org/10.1109/10.784149
http://dx.doi.org/10.1016/j.jmbbm.2008.10.007
http://dx.doi.org/10.1016/j.mbs.2005.01.001
http://dx.doi.org/10.1186/1752-0509-5-198
http://dx.doi.org/10.3389/fbioe.2014.00079
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

	Using CellML with OpenCMISS to simulate multi-scale physiology
	Introduction
	Methods
	OpenCMISS fields
	Mathematical framework
	CellML environment
	Flagging cellML model variables
	Field maps
	CellML fields
	Solvers

	Results
	Basic usage
	Cardiac electrophysiology
	Fluid dynamics boundary conditions
	Mechanical constitutive laws

	Discussion and conclusion
	Author contributions
	Acknowledgments
	References

