{frontiers im

BIOENGINEERING AND BIOTECHNOLOGY

ORIGINAL RESEARCH ARTICLE
published: 06 January 2015
doi: 10.3389/fbioe.2014.00080

=

A modified rabbit ulna defect model for evaluating
periosteal substitutes in bone engineering: a pilot study

Rania M. El Backly "?3, Danilo Chiapale?, Anita Muraglia*, Giuliana Tromba®, Chiara Ottonello*,
Federico Santolini?, Ranieri Cancedda'’? and Maddalena Mastrogiacomo™?*

" DIMES, University of Genova, Genova, Italy
2 IRCCS AOU San Martino—IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
3 Faculty of Dentistry, Alexandria University, Alexandria, Egypt

4 Biorigen S.R.L., Genova, Italy

° Sincrotrone Trieste S.C.PA., Trieste, Italy

Edited by:

Heinz R. Redl, Ludwig Boltzmann
Institute for Experimental and Clinical
Traumatology, Austria

Reviewed by:

Mikaél M. Martino, Osaka University,
Japan

Celeste Scotti, IRCCS Istituto
Ortopedico Galeazzi, Italy

*Correspondence:

Maddalena Mastrogiacomo, DIMES,
University of Genova, AOU San
Martino-IST Istituto Nazionale per la
Ricerca sul Cancro, Largo Rosanna
Benzi 10, Genova 16132, Italy
e-mail: maddalena.mastrogiacomo@
unige.it

The present work defines a modified critical size rabbit ulna defect model for bone regen-
eration in which a non-resorbable barrier membrane was used to separate the radius from
the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes.
Eight rabbits divided into two groups were used. Critical defects (15mm) were made
in the ulna completely eliminating periosteum. For group |, defects were filled with a
nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group
la) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group Il, an
expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX®) membrane was inserted around
the radius then the defects received either scaffold alone (group lla) or scaffold wrapped
with periosteal substitute (group Ilb). Animals were euthanized after 12-16 weeks, and
bone regeneration was evaluated by radiography, computed microtomography (.CT), and
histology. In the first group, we observed formation of radio-ulnar synostosis irrespective
of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-
TEX®) membrane in the second group of animals. In conclusion, modification of the model
using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable

addition allowing for objective evaluation of the tissue-engineered periosteal substitute.
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INTRODUCTION

Metaphyseal long bone defects in animal models are commonly
used to evaluate bone repair/regeneration since a high propor-
tion of fracture injuries in human beings occur in long bones.
These animal models often employ the creation of critical size
defects (ASTM Standard F2721-09, 2009). Of these, the rabbit
ulna or radius defect (between 10 and 20 mm) is often used
as it is of relatively low cost and does not require any fixation
owing to the support offered by the adjacent bone (Horner et al.,
2010).

Several studies have used this model to evaluate the efficacy
of tissue-engineered constructs to enhance bone repair, includ-
ing the use of allogenic peripheral blood-derived mesenchymal
stem cells associated with ceramic scaffolds (Wan et al., 2006),
adipose-derived stromal vascular fraction (SVF) cells (Kim et al.,
2012), novel alloy-based scaffolds (Smith et al., 2012), tri-phasic
release of rhBMP-2 (Bae et al., 2011), and platelet-rich plasma
(Kasten et al., 2008). All of these studies showed a clear fusion
between the radius and the ulna at the sites of defect formation
as a biologic response from cells from the surrounding tissues,
thus masking the contribution of the implanted construct (Kas-
ten et al., 2008). Periosteal remnants from the proximal and distal
ends of the defect, in addition to the membrana interossea found
between the two bones, may well be responsible for the synostosis

or fusion between the radius and the ulna of the rabbit in these
bone regeneration studies (Bodde et al., 2008).

Live periosteum is essential for autogenous bone graft healing
and remodeling. It is living cells in the periosteum and endos-
teum as well as stromal cells that are responsible for 90% of early
osteogenesis while free marrow cells and osteocytes in the live auto-
graft have little or no contribution (Zhang et al., 2008). Targeting
periosteum-mediated bone repair offers the benefits of healing
with natural bone structure, optimal bone integrity, appropri-
ate vascularization, and minimal ectopic calcification (Fan et al,,
2010). Indeed, recent studies, including one from our laboratory,
have attempted to mimic the periosteal response to enhance bone
regeneration by engineering periosteal substitutes (Schonmeyr
et al., 2009; Zou et al., 2009;Fan et al., 2010; Ma et al., 2011;Zhao
et al., 2011). In order to precisely estimate the contribution of
an engineered periosteal substitute in a critical size defect, the
defect must be completely rid of all remaining periosteum and
cell elements (Reichert et al., 2009). In fact, the absence of a clear
separation between the two bones makes it difficult to evaluate the
real effects of engineered periosteal substitutes.

Hence, we propose the use of a non-resorbable barrier mem-
brane to separate the radius from the ulna without interfer-
ing with the dynamics of healing as a valid modification of
the rabbit ulna defect model for periosteal engineering studies.
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Expanded-polytetrafluoroethylene (e-PTFE) membranes (GORE-
TEX®) have long been used to minimize surgical adhesions
(Dessantietal.,2000). These membranes are non-resorbable, show
no immunoreactivity, and function as efficient protective barri-
ers (Minale et al., 1987; Loebe et al., 1993; Jacobs et al., 1996;
Kaushal et al., 2011; Kumar et al., 2011). Expanded PTFE surgical
membranes are also routinely used for Guided Tissue and Bone
Regeneration (GTR and GBR) (Schliephake et al., 2000; Zybutz
et al., 2000; Simion et al., 2007; Lindfors et al., 2010; Retzepi and
Donos, 2010).

We have recently engineered and characterized a periosteal
substitute comprising a platelet-rich plasma gel membrane entrap-
ping autologous bone marrow mesenchymal stem cells (BMSC)
as a periosteal substitute for bone engineering having enhanced
angiogenic and osteogenic properties (Elbackly et al., 2012). The
rationale of the current study was to modify the conventional
rabbit ulna defect model by first adding an e-PTFE membrane
(GORE-TEX®) to isolate the radius from the ulna, which would
allow a precise evaluation of the effect of engineered periosteal
substitutes without the influence of cellular remnants from the
radius.

MATERIALS AND METHODS

CULTURE OF RABBIT BMSC AND PREPARATION OF PLATELET-RICH
PLASMA/BMSC PERIOSTEAL SUBSTITUTES

Bone marrow mesenchymal stem cells were cultured from iliac
crest marrow aspirates of four male white New Zealand rabbits
weighing 2.5-2.7 kg as mentioned before (Elbackly et al., 2012).
Briefly, mononuclear cells were plated and cells were cultured in
Coon’s modified Ham’s F-12 medium containing: 2mM gluta-
mine, 100 U/ml penicillin, 100 pLg/ml streptomycin (Sigma Chem-
ical Co., St. Louis, MO, USA), and 10% fetal bovine serum (FBS)
(Life Technologies, Invitrogen®) in the presence of 1 ng/ml human
recombinant Fibroblast Growth Factor 2 (FGF2) (Peprotech®,
London, UK).

PRP and platelet poor plasma (PPP) were prepared from a pool
of whole blood obtained from five rabbits as before (Elbackly et al.,
2012). Briefly, the blood was centrifuged at 209g for 16 min then
the plasma supernatant with the underlying buffy coat was col-
lected. This was then centrifuged at 1500g for 12 min to sediment
the platelets and the clear supernatant phase was collected as PPP.
The platelet pellet was re-suspended in PPP to obtain PRP with
a final concentration of 3 x 10° platelets/il. PRP and PPP were
stored at —20°C until use.

PRP/BMSC gel membranes were prepared using: PRP, PPP,
bovine thrombin, and Ca gluconate in an 8:1:1:1 ratio, respec-
tively. Autologous first passage rabbit BMSC were trypsinized,
and re-suspended in a mixture of 1.6 ml PRP and 200 ul PPP.
Each gel membrane contained 6 x 10® BMSC. A mixture of 200 11
Ca gluconate and 200 p1 thrombin (final concentration: 9 IU/ml)
(Multifibren U, Siemens, Germany) was added. The gel membrane
was then left to jellify at 37°C in 5% CO, for a minimum of 1h
until surgery.

Before surgery, the PRP/BMSC gel membrane was wrapped
around a nanohydroxyapatite/poly (ester urethane) (nHA/PU)
cylindrical scaffold (provided by the AO Research Institute, Davos,
Switzerland) (Elbackly et al., 2012), which had been previously

soaked overnight in PRP. This scaffold has a diameter of 4 mm
and height of 15mm. It carries the advantage of the combined
visco-elastic properties of PU with the increased scaffold stiffness
and osteoconductive nature offered by nHA. These scaffolds can
also support ectopic bone formation (data not shown). For the
control groups, the scaffold was soaked in PBS.

ANIMALS AND SURGICAL PROCEDURE

All experimental animal procedures were carried out in the IRCCS
AQU San Martino-IST Animal Facility, in respect of the national
current regulations regarding the protection of animals used for
scientific purpose (D.lgsvo 27/01/1992, no. 116). Research pro-
tocols have been evaluated and approved by the IRCCS AOU
San Martino-IST Ethical Committee for animal experimentation
(CSEA) as Animal use project no. 334 communicated to The Ital-
ian Ministry of Health, having regard to the article 7 of the D.lgs
116/92.

Eight adult male rabbits were used and they were divided into
two main groups according to the absence (group I) or pres-
ence (group II) of a GORE-TEX" isolating membrane around
the radius. Each group was further sub-divided into two groups
according to the treatment of the defect: group (a): defect filled
with scaffold soaked in PBS (n=2) and group (b): defect filled
with scaffold wrapped with PRP/BMSC gel membrane (n=2).

Rabbits were anesthetized using Diazepam (1 mg/kg, Hospira,
Italy) followed by Ketamine HCL (35 mg/kg, Merial, Italy) and
Xylazine HCL (5 mg/kg, Bio 98 Srl, Italy) in addition to a local
injection of Naropin (ropivacaine HCL, 7.5mg/ml) (2 mg/ml,
AstraZeneca S.p.A., Italy). Briefly, an oscillating saw on a battery
hand piece (Howmedica, GmbH, Germany) with copious saline
irrigation was used to create a 15mm defect in the rabbit ulna.
The periosteum was resected with the bony segment as well as 3—
5mm from the proximal and distal ends of the cut bony stumps.
The periosteum of the adjacent radial surface was also removed
followed by irrigation to ensure maximum elimination of any
periosteal tissue remnants (Figure 1A). Furthermore, for groups
(ITa) and (IIb), a non-resorbable e-PTFE membrane (GORE-
TEX”, regenerative membrane, W.L. Gore & Associates, Inc., USA)
was placed around the radius at the site of the defect to avoid a
possible periosteal reaction and formation of a radio-ulnar synos-
tosis (Figure 1B). The scaffold was then gently compressed into the
defect (Figures 1C,D). For the groups receiving the PRP/BMSC
gel membrane, the edges of the membrane were adjusted to over-
lap the denuded bony stumps (Figures 1E,F). Subcutaneous tissue
layers and skin were closed with vicryl 4/0 suture thread and 3/0
silk sutures, respectively.

RADIOGRAPHIC ASSESSMENT AND COMPUTED MICROTOMOGRAPHY

(.CT) ANALYSIS

Radiographs were performed after 6days (Figures 1G,H), and
then monthly until euthanization. Transmission X-ray wCT was
performed using a microfocus X-ray source with cone beam
geometry at the TOMOLAB station (http://www.elettra.trieste.
it/lightsources/labs-and-services/tomolab/tomolab.html) as pre-
viously mentioned (Elbackly et al., 2012). Three dimensional (3D)
images were reconstructed from the series of 2D projections using
the classical filtered back projection algorithm. VG Studio MAX
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FIGURE 1 | Surgical creation of critical size segmental bone defect

(15 mm) in the rabbit ulna. (A,C,E,G) The traditional approach (NO
GORE-TEX GROUP) and (B,D,FH) modification of the technique by insertion
of a non-resorbabale e-PTFE (GORE-TEX) membrane wrapped around the
radius to separate it from the ulna (GORE-TEX GROUP). (A) The bone defect
with periosteum completely removed from cut bony edges as well as from
the adjacent radial surface. (B) The GORE-TEX membrane wrapped and

sutured around the radius in the defect zone. (C) and (D) Defects filled with
poly (ester urethane) scaffold with PBS (groups la and lla, respectively).

(E) and (F) Defects filled with the scaffold wrapped with the periosteal
substitute (PRP/rBMSC membrane) with 2 mm of this membrane covering
denuded bony edges at both medial and distal ends of the defects (groups Ib
and Ilb, respectively). (G) and (H) 6-day post-operative radiographs for a
representative rabbit from each group.

software (Volume Graphics GmbH, Heidelberg, Germany) was
used to produce 3D volume renderings (Figure 2). For the GORE-
TEX group (II), identification of the defect area was done in
the volume rendering of the scanned area (15 mm) by means of
visual observation of the relative position of the GORE-TEX mem-
brane denoted as the region of interest (ROI) (Figure 2A). Bone
in-growth in the ROI was then isolated and quantified. For the

NO GORE-TEX group, the ROI was identified based on visually
observing longitudinal serial slices throughout the sample to iden-
tify the original dense structure of the radial cortical plates from
the rarified structure of the newly regenerated bone (represent-
ing the synostosis + new bone regenerated in defect area). Bone
in-growth was then quantified (Figure 2B). Bone volume (BV)
regenerated in the defect area was calculated in mm? all groups.
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FIGURE 2 | Quantification of new bone volume via 3D wCT analysis.
(A,B) 3D nCT reconstructions for a sample from groups Ib and Ilb,
respectively. (A) Smooth radial surface shows where the margins of the
created defect are delineated by the imprint of the GORE-TEX
membrane. Quantification of bone in-growth for GORE-TEX groups was
done by first identifying the defect area (15 mm) using the imprint of the
GORE-TEX membrane then bone in-growth in the defect area was
quantified. (B) Shaded area highlights the periosteal reaction. For the no
GORE-TEX group, quantification was done by first taking, serial
longitudinal slices throughout the sample. These were analyzed to detect
the original cortical surface of the radius (shaded) by visualizing the
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change in bone architecture (from compact cortical plate of radius to
highly trabecular new bone formed at the radio-ulnar junction due to
extensive periosteal reaction). The area was then manually selected
including the entire bone in-growth in the defect area (15 mm). This
volume was then quantified. (C) and (D) cross sections at three different
levels of one end of a defect from group Ib and Ilb, respectively, showing
in (C) complete fusion between newly regenerated bone in the defect
area and the radius while in (D) new bone forms distinctly separate from
the adjacent radius confirming the contribution of the periosteal-like
substitute to the bone regeneration process. (E) Quantification of new
bone volume in the defect area in mm?®.

HISTOLOGICAL ANALYSIS

After euthanization, harvested rabbit ulnas were fixed in 3.7%
paraformaldehyde and dehydrated in a graded series of ethanol
(70, 90, and 95% absolute ethanol). Specimens were processed
for undecalcified resin embedding. They were infiltrated with
light-curing resin Technovit 7200 VLC (Kulzer, Wehrheim, Ger-
many) and polymerized by the EXAKT 520 polymerizator system
(EXAKT Technologies, OK, USA). Longitudinal sections were then
cut and ground using the EXAKT 310 CP cutting and EXAKT
400 CS micro grinding units to a final thickness of 30—40 pm.
Sections were then stained using Stevenel’s blue/Van Geison picro-
fuchsin stain (SVG). Images of the sections were acquired using
an Axiovert 200M microscope (Zeiss, Germany).

RESULTS

RADIOGRAPHIC ASSESSMENT AND COMPUTED MICROTOMOGRAPHY
(.CT) ANALYSIS

Post-operative radiographs for group (Ia) showed a thickening
of the radial cortical plate facing the defect area with forma-
tion of radio-ulnar fusion while the defect area itself remained
devoid of new bone formation (Figure 3A). Group (Ib) showed

the formation of new bone in the defect area commencing from
both proximal and distal ends of the defect. This new bone
appeared fused with the radial cortical plate due to its thicken-
ing (Figure 3B). Group (IIa) defects showed no bone formation
in the defect area or in the form of thickening of the radial cortical
plate. Minimal radio-ulnar fusion could be seen only beyond the
limits of the defect area isolated by the GORE-TEX membrane
(Figure 3C). Group (IIb) showed the formation of a bridge of
new bone attempting to traverse the defect area. This remained
completely separate from the radial cortical plate by virtue of the
GORE-TEX membrane (Figure 3D).

Post-mortem pwCT images confirmed the radiographic evalu-
ation. In the GORE-TEX group, particularly group (IIb) where
new bone formed in the defect area, the radial surface appeared
smooth with clear demarcation of the zone of the GORE-TEX
membrane from the newly formed bone (Figure 2A). In the NO
GORE-TEX group especially (Ib) (Figure 2B), excessive new bone
apposition could be seen on the radial surface facing the defect
area (shaded area) evidenced by the difference in bony architec-
ture with the presence of new bone formation from the bony edges
of the defect as well as new bone traversing the defect. Transverse
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Group (Ia)

Group (Ib) Group (IIa) Group (I1Ib)

FIGURE 3 | Radiographic follow-up for one representative animal from
each group at 3 months post-operatively. (A) Group (la); (B) Group (Ib);
(C) Group (lla); (D) Group (lIb). Presence of a distinct periosteal reaction and
radio-ulnar synostosis in the defect area can be seen in groups (la) and (Ib)
(arrows) while it is absent in groups (lla) and (lIb) (arrow heads). New bone
forming in the defect area in group (IIb) (*) appears clearly distinct from the
radial surface.

sections in groups (Ib) and (IIb) (Figures 2C,D) showed that for
group (Ib), all levels within the bone regenerated in the defect
area showed complete fusion between the new bone formed and
the radial surface. Whereas, for group (IIb), the new bone formed
appeared clearly separate from the radial surface along the entire
length of the zone in which the GORE-TEX membrane was placed.
The extracted BV in the defect area was 249.2mm? for group
(Ta), 232.51 mm? for group (Ib), 14.18 mm? for group (Ila), and
44.31 mm? for group (IIb) (Figure 2E).

HISTOLOGICAL ANALYSIS

Healing was uneventful, and there were no signs of inflammatory
response in either of the groups. Reconstructions from low power
histology images showed in group (Ia), minimal bone formation
from the bony edges of the defect yet with bone deposited on the
surface of the adjacent radius (Figure 4A). Higher magnification
revealed some new bone deposition in the form of isolated bony
islands close to the border (Figure 4B). Central areas showed accu-
mulation of adipose tissue among highly cellular connective tissue
infiltrating the remaining scaffold structure (Figure 4C). The zone
of radial hypertrophy can be distinguished by a clear demarcation
between the woven structure of the new bone apposed on the
radius and the lamellar structure of the cortical plate of the radius
(Figure 4D). Developing osteons and micro-cracks can be seen
in the new bone. This demarcation is further accentuated under
polarized light due to the difference in collagen fiber orientation
between the woven and lamellar bone (Figure 4E).

In group (Ib), the defect area appears much smaller owing to
new bone formation attempting to bridge the defect (Figure 4F).
In this group, hypertrophy of the radius appears much thicker
with fusion between the radius and newly deposited bone result-
ing in further reduction of the size of the defect as compared to
group (Ia). Magnification at one end of the defect shows active new
bone deposition lined with a well defined layer of osteoid matrix
(Figure 4G). Centrally, an island of de novo bone can be seen
in a dense collagenous matrix (Figure 4H). The zone of fusion

is again distinguishable by the difference in the bone structure
between the radial cortex and the new bone apposed on its surface
under both transmitted and polarized light (Figures 4L]J). In both
groups (Ia) and (Ib), new bone formation appears to have begun
from either end of the defect as well as from the adjacent radial
surface.

In group (Ila), the size of the defect zone remained to a great
extent unchanged with little formation of new bone as shown in
the low power reconstruction of the defect (Figure 4K). There is
almost no bone remodeling evident. The scaffold structure shows
some signs of degradation, yet it is still grossly present throughout
most of the defect (Figure 4L). The bone surface shows limited
osseous activity with attempts at new bone formation evidenced
by a thin layer of osteoid matrix lined by osteoblasts (Figure 4M).
The GORE-TEX membrane appears intact and well adapted to the
radial surface clearly isolating the defect area (Figure 4N).

In group (IIb) defects, a substantial amount of new bone has
formed in the defect area starting peripherally from either end
(Figure 40). The new bone appears to be mapping out the scaf-
fold structure and shows marrow development (Figure 4P). Dense
mineralizing collagen bundles are clear at the edges of the newly
forming bone intertwined with the degrading scaffold. Mineral-
ized deposits are also seen within the remaining scaffold pores
(Figure 4Q). The GORE-TEX membrane is interposed between
the cortical bones of the radius and clearly distinguishes it from
the new bony bridge, which has formed guided by the PRP/BMSC
gel membrane (Figure 4R).

Histomorphometric quantification of the percentage of bone
filling the defect area showed that for groups (Ia) and (Ib), the per-
centage of bone fill was 37.15 and 53.47%, respectively, whereas
it was 6.92 and 57.55% for groups (Ila) and (IIb), respectively
(Figure 4S).

DISCUSSION

In the present work, we showed that a non-resorbable GORE-TEX
membrane could act as an effective barrier between the radius and
a rabbit ulnar defect preventing hypertrophy of the radial cortical
bone and synostosis. Although the rabbit segmental bone defect
in the radius or ulna is commonly used in bone regeneration stud-
ies, the fibro-osseous union between the two bones allowing these
defects not to require fixation is also the reason for the frequent
fusion between them seen in most studies conducted using this
model (Wan et al., 2006; Bodde et al., 2008; Zhao et al., 2011).
When evaluating a periosteal substitute for bone engineering, this
phenomenon becomes of major importance especially since many
studies have not defined adjacent bone hypertrophy or growth as
defect bridging.

For this reason, removal of the periosteum from both ends
of the defect in addition to the intervening interosseous mem-
brane has been suggested (Bodde et al., 2008) to eliminate possible
progenitor cell sources that may influence result interpretation.
However, this may not be sufficient as scratching of the bone
surface maybe sufficient to initiate a biologic reaction leading to
hypertrophy. This reaction may be due to activation of periosteal
cambial cells resulting in callus matrix synthesis (Simon et al,,
2003; Bodde et al., 2008; Cho et al., 2011). This inherent nature
of periosteal activation has recently been utilized for a novel
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FIGURE 4 | Histological images of samples from one representative
animal per group stained with SVG. Red rectangles indicate the areas
from which higher magnification images were taken. (A,FK,0) Low power
reconstructions of histological images of defects from group (la), (Ib), (lla),
and (Ilb), respectively (Bar =5 mm). (B-E) group (la); (B) border of defect
with limited bone activity and isolated bone trabecule; (C) central area of
defect showing accumulation of adipose tissue among highly cellular
connective tissue infiltrating the remaining scaffold structure; (D) radio-ulnar
synostosis zone showing clear transition between cortical bone of the
radius and new bone deposited on its surface showing presence of
remodeling osteons and micro-cracks; (E) same sample viewed under
polarized light showing difference in collagen fiber orientation between
original cortical bone and new bone deposited in the zone of synostosis.
(G-J) Group (Ib); (G) border of defect showing substantial new bone
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@
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deposition lined with a layer of osteoid matrix; (H) central part showing
trabecule of woven bone attempting to bridge the remaining defect area
embedded in a dense matrix of collagen fibers. Osteoblasts depositing
osteoid matrix line the trabecule; (1) radio-ulnar synostosis zone further
emphasized under polarized light in (J). (L-N) group (lla); (L) border of
defect adjacent to remaining scaffold; (M) higher magnification of border
showing mature lamellar bone and minimal new bone deposition; (N) cell
infiltration in center of scaffold; (P-R) group (IIb); (P) new bone depositing
on the scaffold with adjacent developing marrow; (Q) mineralizing collagen
fibers in between and within the scaffold structure; (R) new bony bridge
traversing the defect peripherally above the GORE-TEX membrane clearly
separate from the radial surface. (S) Quantification of bone fill area% from
histological sections. For each sample, three sections were analyzed where
the distance between each section was approximately 200-300 pm.

osteogenesis technique based on GBR. Gradual periosteal eleva-
tion and creation of a space overlying the bone surface can lead to
stimulation of bone formation in the space. By adding a barrier
membrane to prevent invasion of this space by non-osteogenic
cells, this technique can be used to favor endogenous bone repair
mediated by the periosteum (Zakaria et al., 2012).

Indeed, in the present work, even though for groups (Ia) and
(Ib) the periosteum from the bony stumps as well as from the
adjacent radius was removed, a periosteal reaction occurred even
in the control group and more so in the group that received the
periosteal substitute. This resulted in an over-estimation of BV in
WCT images and a failure to perceive the difference between the
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two groups. Although histological evaluation in groups (Ia) and
(Ib) was facilitated by the clear demarcation between the radial
hypertrophy zone and the old lamellar structure of the radial cor-
tex, it was clear that osseous activity was still continuing in the
control group, which led to an under-estimation of the true power
of our engineered periosteal substitute.

In modifying the rabbit ulna defect, we combined the principles
of tissue engineering with the advantages of GBR. Placing a non-
resorbable GORE-TEX membrane around the radius, allowed an
accurate evaluation of the contribution of the tissue-engineered
periosteal substitute to bone regeneration where it resulted in a
threefold increase in the amount of bone present in the defect as
compared to the control group. Indeed, a true control was only
possible when the GORE-TEX membrane was used. Furthermore,
the presence of the barrier membrane permitted a clear demar-
cation of the original defect location and allowed an unbiased
estimation of the amount of bone regenerated via both pCT and
histological analyses.

One limitation of the study is the lack of complete defect bridg-
ing in the defects that received the periosteal substitute. This may
be due to the fact that in such a critical size defect, the role of
the cells in the periosteal substitute alone is not enough and that
a cellular component within the scaffold itself is also required.
Another drawback is the small number of animals per group,
which did not allow a statistical analysis, Nevertheless, by this pilot
study, we obtained clear evidence that modifying the rabbit ulnar
defect model by adopting an intervening non-resorbable barrier
membrane greatly enhanced the validity of the model for objec-
tive evaluation of the bone formation induced by the engineered
periosteal substitute.

CONCLUSION

We modified a rabbit ulnar defect model using a GORE-TEX
barrier membrane around the radius to receive a periosteal sub-
stitute composed of a PRP/BMSC membrane around a poly (ester
urethane) scaffold. The barrier membrane induced no immunore-
activity, was easy to apply, completely isolated the defect, and
remained cell occlusive and intact. It allowed a clear demarcation
of the defect area eliminating any interference from the surround-
ing tissues and allowing an unbiased objective interpretation of the
results. On the contrary to the use of the commonly adopted rab-
bit ulna defect model, when using the barrier membrane, we could
show that the PRP/BMSC periosteal substitute induced a threefold
increase in the amount of bone regenerated as compared to the
control.
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