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Next-generation sequencing now for the first time allows researchers to gage the depth
and variation of entire transcriptomes. However, now as rare transcripts can be detected
that are present in cells at single copies, more advanced computational tools are needed to
accurately annotate and profile them. microRNAs (miRNAs) are 22 nucleotide small RNAs
(sRNAs) that post-transcriptionally reduce the output of protein coding genes. They have
established roles in numerous biological processes, including cancers and other diseases.
During miRNA biogenesis, the sRNAs are sequentially cleaved from precursor molecules
that have a characteristic hairpin RNA structure. The vast majority of new miRNA genes
that are discovered are mined from small RNA sequencing (sRNA-seq), which can detect
more than a billion RNAs in a single run. However, given that many of the detected RNAs
are degradation products from all types of transcripts, the accurate identification of miR-
NAs remain a non-trivial computational problem. Here, we review the tools available to
predict animal miRNAs from sRNA sequencing data. We present tools for generalist and
specialist use cases, including prediction from massively pooled data or in species without
reference genome. We also present wet-lab methods used to validate predicted miRNAs,
and approaches to computationally benchmark prediction accuracy. For each tool, we ref-
erence validation experiments and benchmarking efforts. Last, we discuss the future of
the field.

Keywords: miRNA, microRNA, gene prediction, next-generation sequencing data

miRNA BIOLOGY
microRNAs (miRNAs) are a class of small RNAs (sRNAs) around
22 nucleotides in length. They are never translated, but post-
transcriptionally reduce the output of protein coding genes
(Kloosterman and Plasterk, 2006; Bushati and Cohen, 2007; Farazi
et al., 2008; Ghildiyal and Zamore, 2009). They have been found
in all animals studied, in numbers that appear to correlate with
organismal complexity, for instance, nematodes have around 200
miRNA genes while humans have more than 3000 (Kozomara and
Griffiths-Jones, 2011; Friedländer et al., 2014). Mutant animals
that are void of miRNAs either die at early embryonic stages or
have severe developmental defects, showing the importance of the
regulation they infer (Bernstein et al., 2003; Giraldez et al., 2005;
Morita et al., 2007; Wang et al., 2007). More than half of all protein
coding transcripts are estimated to be under regulation of miRNAs
in one or more cellular contexts (Friedman et al., 2009). Thus, it is
not surprising that miRNAs are involved in numerous biological
contexts, ranging from formation of cell identify to development
(Stefani and Slack, 2008).

miRNA BIOGENESIS
The majority of miRNAs are transcribed by Polymerase II and
have features similar to protein coding transcripts: a 5′ cap, exons,
and a poly(A)-tail (Figure 1). Each of the primary transcripts har-
bors one or more characteristic RNA hairpin structures around 60
nucleotides in length. While in the nucleus, these structures can be
recognized by the Microprocessor complex, consisting of Drosha

and DGCR8 proteins, which cleave the hairpin out of the primary
transcript (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004;
Landthaler et al., 2004). The hairpin is then exported to the cytosol,
where it undergoes a second cleavage by Dicer, a canonical com-
ponent of the RNA interference pathway (Bernstein et al., 2001;
Hutvagner et al., 2001; Ketting et al., 2001; Knight and Bass, 2001).
The cleavage releases three products: the mature miRNA guide
strand, the miRNA passenger strand, and the loop. These three
products fall in determined positions: the guide and the passen-
ger form an RNA duplex with two nucleotides 3′ overhangs, while
the loop consists of the terminal end of the hairpin, positioned
between the guide and the passenger strands (Ha and Kim, 2014).
While the loop and the passenger strands are generally degraded
as bi-products of the biogenesis, the guide miRNA remains bound
to an Argonaute protein, which is part of the miRNP complex.
It is not always the same strand that is fated to be bound to the
Argonaute protein, in the case of many miRNA hairpins either
strand can be incorporated and repress targets (Okamura et al.,
2008; Guo and Lu, 2010; Yang et al., 2011). The mature miRNA
can guide the effector complex to target sites, typically located in
3′ UTRs of mRNAs, through partial base complementarity (Lai,
2002; Bartel, 2009). Once bound, the complex reduces protein out-
put of the transcript, either by destabilizing it through shortening
of the poly-A tail, inhibiting its translation or by re-localizing it
to subcellular ribo-protein particles, where it is inaccessible to the
translation machinery (Filipowicz et al., 2008; Huntzinger and
Izaurralde, 2011). Some miRNAs follow non-canonical biogenesis
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Kang and Friedländer miRNA prediction from sRNA-seq data

FIGURE 1 | miRNA biogenesis and function. miRNAs are transcribed
as primary transcripts or are sometimes derived from exons or introns
of hosts transcripts. Characteristic hairpin RNA structures are
recognized by Drosha and DGCR8 and cleaved out. The hairpin is
exported to the cytosol and cleaved by Dicer, which is a part of the
canonical RNA interference pathway, releasing three products: the two
miRNA strands (the “mature” or “guide” strand and the “star” or

“passenger” strand) and the terminal loop. The guide strand is then
bound by an Argonaute protein, which is part of the miRNP effector
complex. Once thus bound, the miRNA can bind to target sites, often
located in the 3′ UTR of protein coding transcripts, and guide the
effector complex to inhibit translation of the target, cause its
degradation, or relocate it to subcellular foci, where they are no longer
accessible to the translation machinery.

pathways, but are believed to function like the canonical sequences
(Ha and Kim, 2014). Altogether, it is estimated that around 60%
of all human protein coding transcripts are regulated by miRNAs
in one or more cellular conditions (Friedman et al., 2009).

miRNAs IN HUMAN DISEASE
Given the prevalence of miRNA regulation, it is not surprising
that miRNAs have been involved in numerous human diseases.
These regulators appear to play particularly critical roles in can-
cers, where they can function as onco-genes or tumor suppressors.
For instance, the miR-17–92 cluster is found to be up-regulated
in several cancers (He et al., 2005), and miR-15 and miR-16 are
often deleted in leukemias (Cimmino et al., 2005). Although some
miRNAs can function as onco-genes, they are in most cases down-
regulated individually or collectively in cancers (Medina and Slack,
2008). miRNAs are important in cell differentiation and formation
of cell identity, and often cancer cells revert to more undifferen-
tiated states. In addition to cancers, miRNAs have been involved
in many types of diseases including: cardiovascular, immunolog-
ical, neurodegenerative, and psychiatric (Taft et al., 2010; Esteller,
2011). In disease, miRNA function can be perturbed in several
ways: by down-regulation of the biogenesis factors (Hill et al.,
2009), by mutation in the miRNA locus (Mencia et al., 2009), by
loss or gains of the miRNA genes (Zhang et al., 2006b), or by epi-
genetic changes such as hypermethylation (Davalos et al., 2012).
There are also cases where disease is caused by mutations that
destroy (Christensen et al., 2009) or create (Abelson et al., 2005)
target sites in the 3′ UTR of protein coding transcripts.

Before the role of a miRNA in a given disease can be investi-
gated, it must be discovered and annotated. Many miRNAs have
specific expression patterns and may not be highly expressed out-
side the particular tissue that is studied, and may not yet have
been discovered. Therefore, miRNA prediction is an important
first analysis step of sRNA-seq analysis in clinical context. miRNA
prediction can also be used for basic research, when annotating
the complement of regulatory RNAs in emerging model systems.
The purpose of this review is to present the methods used to dis-
cover new animal or human miRNA genes from sRNA-seq data.
We will focus on published methods that can be downloaded and

run, without the user needing to implement algorithms as soft-
ware by him/herself. We will discuss the strengths of the distinct
methods, and will reference the studies in which the methods have
been benchmarked computationally. Thus, this review can serve as
a platform for the reader to decide which method is ideally suited
for his miRNA prediction use case. Finally, we will present low
and high-throughput methods to validate the discovered miRNA
candidates.

miRNA PREDICTION
PREDICTION FROM GENOME SEQUENCE
The biogenesis of miRNAs is key to their discovery. When the field
was still young and little data were available, researchers would
search the genome sequences for loci that would give rise to RNA
hairpin structure if transcribed. These methods have combined
structure prediction with either scoring (Lai et al., 2003; Lim et al.,
2003; Ohler et al., 2004; Wang et al., 2005) or rules-based (Dezulian
et al., 2006; Zhang et al., 2006a) or machine-learning classification
(Nam et al., 2005; Jiang et al., 2007; Sheng et al., 2007) of the hair-
pin features. Some of the methods have incorporated conservation
information into the prediction; in fact, one approach has used
phylogenetic shadowing to detect the characteristic conservation
profile of miRNAs, where the miRNA strands are more conserved
in sequence than the terminal loop (Berezikov et al., 2005). How-
ever, it is impossible to know from the genome DNA sequence if a
locus is really transcribed and gives rise to mature miRNAs. Thus,
considering the size of most animal genomes, these methods yield
many false positive hairpins that are either not transcribed or do
not interact with the biogenesis factors. For instance, in the human
genome, around 11 million loci would give rise to hairpin struc-
tures if transcribed (Bentwich, 2005), but only a few thousands
of them are actually cleaved to mature miRNAs (Kozomara and
Griffiths-Jones, 2011; Friedländer et al., 2014).

SANGER SEQUENCING
For an unbiased detection of miRNAs, methods were developed
to directly sequence sRNAs. This was done by separating them
from other transcripts on high-resolution gels, and sequencing
by Sanger sequencing (Lagos-Quintana et al., 2001; Lau et al.,
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Kang and Friedländer miRNA prediction from sRNA-seq data

2001; Lee and Ambros, 2001). Because of the limited throughput
of this technology, typically just a few hundreds of sRNAs were
detected, and many of these would be degradation products of
longer transcripts such as mRNAs, rRNAs, and tRNAs, or even
from un-annotated transcripts. To ensure that the predicted miR-
NAs were genuine, researchers would filter out sequences mapping
to known non-miRNA transcript annotations, and would require
that the predicted miRNA was located in a loci that could give
rise to a hairpin transcript (Ambros et al., 2003). More specifically
and in accordance with miRNA biogenesis, the predicted sequence
should be located on a hairpin arm. Further, if two sequences
should locate to the same hairpin, it was required that they should
form a duplex with two nucleotide 3′ overhangs, as expected from
Dicer processing.

NEXT-GENERATION SEQUENCING
In 2006, the first next-generation sequencing instruments became
commercially available, allowing orders of magnitude increase in
data generation. For instance, the current Illumina HiSeq 2500
instruments can sequence around one billion sRNAs in <2 days.
This sequencing power can be distributed between several experi-
ments, but still sRNA-seq studies detect millions of transcripts per
sample. Since a mammalian cell typically contains on the order of
100,000 miRNA transcripts (Calabrese et al., 2007), this means that
sequences that are present in less than one molecule per cell can still
be detected. This also holds for other clades, for instance, the lsy-6
miRNA, which is expressed in only a single neuron in the entire
nematode body (Johnston and Hobert, 2003), is now routinely
detected in sRNA-seq experiments (unpublished results).

The sensitivity of these sequencing methods means that very
lowly expressed sRNAs other than miRNAs are also detected.
These can include short interfering RNAs (siRNAs) and piwi-
interacting RNAs (piRNAs) but can also be rare degradation prod-
ucts of longer transcripts like rRNAs, tRNAs, and mRNAs or un-
annotated transcripts. In addition to this, there is now emerging
evidence that transcripts like tRNAs can undergo endonucleolytic
cleavage at specific positions to produce functional sRNAs (Chen
and Heard, 2013). Altogether, this means that sRNAs sequenced in
a single experiment can originate from millions of distinct loci in
the human genome (Friedländer et al., 2008). The methods that
were developed to predict miRNAs from Sanger sequencing should
only handle a few thousand loci. Therefore, they are not specific
enough to be applied to next-generation sequencing data, and
produce numerous false positives. These false positives are tran-
scribed and form hairpins, but the sRNAs generated from them are
degradation products resulting from normal RNA turnover. Thus,
accurately identifying the miRNAs in this complex landscape of
sRNAs is a daunting task.

To reduce false positives, methods to predict miRNAs from
sRNA-seq employ post-filtering steps beyond what is used
for Sanger sequencing. The next-generation discovery methods
almost all require the presence of a hairpin structure, and the
formation of a duplex if both miRNA strands are detected. In
addition, many methods require that the candidate precursors
do not overlap known non-miRNA annotations (Berninger et al.,
2008). Hairpins that pass these requirements are then exposed to
a further filter step. These steps can be rule-based or can involve

probabilistic scoring or machine learning (see below). The fea-
tures that are evaluated can be divided into structure features and
signature features (Friedländer et al., 2008). The first reflect how
well the hairpin structure conforms to known miRNA precur-
sors. For instance, most of the nucleotides in the putative duplex
should be base paired, and the hairpin should not contain large
bulges besides the terminal loop. Some methods also require that
the structure should be energetically stable, as this is a hallmark of
genuine miRNA hairpins. The signature is a measure of how well
the distribution of sequenced RNAs fit in the hairpin structure. For
instance, every sequenced RNA should correspond to either guide
or passenger strand, or to the terminal loop. The guide and passen-
ger RNAs should form a duplex with two nucleotide 3′ overhangs,
as is typical of Dicer processing. Further, it is expected that the
candidate miRNA guide strand is detected several times, given the
sensitivity of next-generation sequencing. Last, since it is known
that processing of Drosha and Dicer produces clearly defined 5′

ends, the sequenced RNAs should align neatly in this end (Ruby
et al., 2006).

Besides the core prediction methods, source for predicting
miRNAs differ in other respects. This includes the mapping tool,
whether read pre-processing is provided, whether the tool has a
graphic user interface or must be operated on the command line
and whether additional analyses like expression analyses and target
predictions are supported. Also, some methods are not just applic-
able for animal miRNAs, but also for plant sequences. Finally, some
methods have been tested by computational benchmarking in sev-
eral studies and their predictions validated in the wet-lab. In the
following section, we describe the tools of the field in alphabetical
order (Table 1).

SPECIFIC ALGORITHMS
deepBlockAlign
deepBlockAlign is innovative in that it provides advanced scoring
of the read signature, but does not evaluate the RNA struc-
ture (Langenberger et al., 2012; Pundhir and Gorodkin, 2013).
deepBlockAlign uses a variant of Needleman–Wunsch to iden-
tify blocks of mapped reads that have similar features, including
read begin positions and block height. In a second step, similar
groups of blocks are identified using a variant of the Sankoff algo-
rithm. These groups of blocks correspond to gene loci. To predict
novel miRNAs, the method finds loci that have block features sim-
ilar to known miRNAs. While the profiles might be different for
plants and animals, or specific to particular tissues or pathological
conditions, the method can compare to all known profiles from
the entire miRBase database of miRNAs, giving it good coverage.
Since this method does not evaluate the RNA structure, it can
predict miRNAs that do not have canonical structure, or whose
conformation is not easily predicted by computational methods.
Alternatively, it can be combined with down-stream structure
analysis, to further improve specificity1.

miRanalyzer
miRanalyzer first removes reads that map to known miRNAs or
other transcripts (Hackenberg et al., 2009). The remaining reads

1http://rth.dk/resources/dba/
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Table 1 |Tools for predicting animal miRNAs from sRNA-seq data.

Tool Algorithm Mapping

tool

Tested in

plants

Performance comparison Validated in wet-lab Pre-process

data

Quantifies

expression

Target

prediction

User

interface

GENERALTOOLS

deepBlockAlign Read block

alignment

Not included Yes Langenberger et al. (2012), and

Pundhir and Gorodkin (2013)

No No No No Graphics,

webserver

miRanalyzer Random forest Prefix tree No Hackenberg et al. (2009) See below Partial Differential

expression

MiRanda and

TargetScan

Graphics,

webserver

miRanalyzer

(update)

Random forest Bowtie Yes An et al. (2013), Friedländer et al.

(2012), Hackenberg et al. (2011)

Hansen et al. (2014), Pundhir and

Gorodkin (2013), and Williamson

et al. (2013)

RT-PCR (Smith et al., 2013),

Northern blot (Mayoral et al.,

2014)

Yes Differential

expression

TargetSpy Graphics,

webserver,

and

standalone

miRCat Rules-based PatMaN Yes Moxon et al. (2008) RT-PCR (Kohli et al., 2014, and

Pandey et al., 2014), Northern

blot (Donaszi-Ivanov et al.,

2013)

Yes Yes (mirprof),

differential

expression

(colide)

PAREsnip Graphics,

webserver,

and

standalone

miRDeep Bayesian Megablast No An et al. (2013), Friedländer et al.

(2008, 2012), Hendrix et al. (2010),

and Williamson et al. (2013)

Northern blot (Friedländer

et al., 2008, 2009), RT-PCR

(Friedländer et al., 2012)

No Yes No No graphics,

standalone

miRDeep2 Bayesian Bowtie No An et al. (2013), Friedländer et al.

(2012), Hansen et al. (2014), and

Williamson et al. (2013)

Knock-down (Friedländer

et al., 2012), RT-PCR (Metpally

et al., 2013)

Yes Yes No Graphics,

standalone

miRDeep* Bayesian Bowtie (java

version)

No An et al. (2013), and Hansen et al.

(2014)

RT-PCR, knock-down (An

et al., 2013)

Yes Yes TargetScan Graphics,

standalone

(java software)

MIReNA Rules-based Megablast Yes An et al. (2013), Friedländer et al.

(2012), and Mathelier and Carbone

(2010)

Knock-down (Friedländer

et al., 2012)

No No No No graphics

miREvo Bayesian Bowtie No No No Yes Yes No Graphics,

standalone

miRExpress Sequence

homology

Custom

mapping tools

No No No Yes Yes No No graphics,

standalone

miRTRAP Rules-based Not included No An et al. (2013), Friedländer et al.

(2012), and Hendrix et al. (2010)

Knock-down (Friedländer

et al., 2012), Northern blot

(Hendrix et al., 2010)

No No No No graphics
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are considered as potential new miRNAs. They are evaluated as
miRNAs using a random forest machine learning approach. The
classifier is initially trained on a set of known miRNAs from
human, rat, or nematode and dozens of features are consid-
ered, including energetics, structure, bulges, and the number of
reads mapping. The tool has fitted parameters for each species
analyzed and on publication provided packages for seven com-
monly used species. miRanalyzer is available through a webserver,
making it easily accessible for biologists with little computational
experience2.

miRanalyzer (UPDATE)
miRanalyzer (update) is an improved version with several new fea-
tures. It uses bowtie (Langmead et al., 2009) for much faster and
less memory-intensive mapping, and it includes parameter pack-
ages for 31 species, including 6 plants (Hackenberg et al., 2011). In
addition, it can perform differential expression analysis of the pro-
filed miRNAs and can predict targets using the TargetSpy tool. In
addition to the web server version, it has a stand-alone version that
can be downloaded and run on local machines. miRanalyzer pre-
dictions have been validated with several wet-lab methods (Smith
et al., 2013; Mayoral et al., 2014). Since miRanalyzer often predicts
more new miRNAs than do other tools, it is well suited for studies
where the predictions will be filtered by additional computational
tools or by high-throughput wet-lab validations2.

miRCat
miRCat has been used successfully to predict miRNAs in several
plants (Szittya et al., 2008; Pantaleo et al., 2010; Mohorianu et al.,
2011) and has recently been adapted to animal sequences, includ-
ing butterflies (Surridge et al., 2011). miRCat uses a rules-based
approach that eliminates candidates with features that are not con-
sistent with miRNA biogenesis (Moxon et al., 2008; Stocks et al.,
2012). Numerous features are investigated, including the number
of read stacks in the locus, the number of reads mapping anti-sense
to the locus, the size of bulges in the candidate miRNA duplex, the
number/fraction of paired nucleotides in the duplex and in the
hairpin, and the energetic stability of the hairpin. miRCat is part
of a suite, the UEA workbench, which includes numerous com-
putational tools, some which can be applied to the analysis of
non-miRNA small RNA sequences. miRCat predictions have been
validated in several systems (Donaszi-Ivanov et al., 2013; Kohli
et al., 2014; Pandey et al., 2014). Since it was developed for plant
miRNAs that are more variable in structure, it could be well suited
for detecting animal miRNA hairpins that are not typical for this
clade3.

miRDeep
miRDeep first filters all candidates whose structure and read sig-
nature are inconsistent with Drosha/Dicer processing (Friedländer
et al., 2008). In the next step, the fit of the structure and signature
to an explicit model of miRNA biogenesis is scored using Bayesian
statistics. Specifically, miRDeep scores the number of reads sup-
porting biogenesis, the presence of a miRNA passenger strand, the

2http://bioinfo2.ugr.es/miRanalyzer/standalone.html
3http://srna-workbench.cmp.uea.ac.uk/tools/analysis-tools/mircat/)
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Kang and Friedländer miRNA prediction from sRNA-seq data

presence of a conserved miRNA seed and the absolute and relative
energetic stability of the hairpin. While miRDeep can be run on
data filtered for known non-miRNA annotations, it can perform
robust prediction without this filtering. This means that miRNAs
derived from non-canonical host transcripts, such as snoRNAs,
can be identified (Ender et al., 2008). Further, it does not require
parameters fitted to specific species, meaning that it is not at a
disadvantage when mining emerging model systems. The tool
has been extensively benchmarked and validated by experimen-
tal methods (Friedländer et al., 2008, 2009; Metpally et al., 2013),
and has been adapted by several other research groups (Yang and
Li, 2011; Yang and Qu, 2012; Wu et al., 2013)4.

miRDeep2
miRDeep2 improves the previous version, primarily by making
more robust predictions when faced with very deep sequencing
data (Mackowiak, 2011; Friedländer et al., 2012). This includes
improved excision of candidate hairpins from the genome, allow-
ing for anti-sense miRNAs and moRs (see miRTRAP below). In
addition, the tool has been improved in terms of computational
efficiency, implementing better tools like bowtie (Langmead et al.,
2009), and it features graphics output. Last, it has been tested in
seven species, using the exact same parameters, and introduces
knock-down of key proteins necessary for miRNA maturation to
validate that novel candidates depend on the miRNA biogenesis
pathways for their expression4.

miRDeep*
miRDeep* is an extension of the first miRDeep algorithm, and
incorporates many improvements similar to miRDeep2, although
it was developed by a separate research group (An et al., 2013).
It features pre-processing, bowtie mapping, improved precursor
excision, and target prediction for known and novel miRNAs.
The tool has an extensive graphical user interface and is imple-
mented entirely in java without requiring any pre-dependent
computational tools, making it portable and easy to install. The
computational efficiency makes it run on a home computer5.

MIReNA
MIReNA is a flexible tool to predict novel miRNAs from known
miRNA sequences, next-generation sequencing data, long tran-
scripts, or hairpin precursors (Mathelier and Carbone, 2010). It
uses a rules-based scheme with sharp cut-offs to classify miRNAs
based on five criteria: the lack of base pairing in the mature miRNA,
the difference in length between the two candidate miRNA strands,
the fraction of base-paired nucleotides in the hairpin, and two
measures of energetic stability. As a second filtering step, it con-
siders only hairpins where the sequenced RNAs map in consis-
tence with Drosha/Dicer processing. MIReNA can consider several
potential miRNA duplexes within one precursor structure, e.g.,
within multiple stem precursors, giving it the potential to predict
non-canonical miRNAs6.

4https://www.mdc-berlin.de/8551903/en/research/research_teams/systems_
biology_of_gene_regulatory_elements/projects/miRDeep
5http://www.australianprostatecentre.org/research/software/mirdeep-star
6http://www.lgm.upmc.fr/mirena/index.html

miREvo
miREvo build on the miRDeep2 predictor (above) but extends
it for evolutionary analyses (Wen et al., 2012). Specifically, it uses
whole-genome alignments to identify miRNA homologs in related
species. It also includes tools to compare expression of miRNA
homologs across species, if sRNA-seq data are available for both
species. It uses modified prediction parameters for plant analyses7.

miRExpress
miRExpress is a tool for profiling miRNA expression from sRNA-
seq data (Wang et al., 2009). However, it includes a function to
predict miRNAs based on sequence homology. It maps each read
that does not correspond to a known reference miRNA against
miRBase sequences, keeping only perfect matches. These reads
are then mapped against the reference genome, and the structure
evaluated with the mfold structure prediction software (Zuker,
2003)8.

miRTRAP
miRTRAP uses a rules-based approach with two filtering steps
(Hendrix et al., 2010). In the first one, all candidate miRNAs whose
structure and read signatures do not conform to Drosha/Dicer
processing are eliminated. In the second step, all candidates that
are not located in sRNA deserts are removed. This second step
builds on the observation that miRNAs typically generates blocks
of sRNAs with few or no sequenced RNA mapping to the anti-sense
strand or in the general vicinity. In addition to this innovative fil-
tering step, miRTRAP has high accuracy when predicting miRNAs
with moRs, which are sRNAs generated from the flanks of the pre-
cursor hairpin. This development was necessary, as the tool was
initially developed for identifying miRNAs in sea squirt, a species
unusually rich in moRs (Shi et al., 2009)9.

SPECIAL APPLICATIONS
MASSIVELY POOLED DATA
Many researchers who apply miRNA prediction tools to sequenc-
ing data want to mine their own in-house data. These could be
sequences from an emerging model organism, or from a human
tissue of interest. The tools described above are all optimized for
analyzing a limited number of data sets, ranging from maybe 1 to
20 sets. However, some studies compile all the available sRNA-seq
data for a given species to give the best possible miRNA annota-
tion. There are numerous advantages to pooling tens or hundreds
of datasets (Friedländer et al., 2014). First, if the guide and pas-
senger strands are detected in two distinct data sets, combining
the information can allow analysis of the duplex features. Sec-
ond, lowly expressed miRNAs might not be well profiled in single
datasets, where it is difficult to evaluate the read signature. Third,
since sRNA-seq library preparation involves a PCR amplification
step, there is no guarantee that 10 sequencing reads in 1 dataset
do not correspond to a single over-amplified sRNA. In contrast,
if the same sequence is detected in data from 10 distinct tissues,
this provides independent evidence that the biogenesis is common.

7http://omictools.com/mirevo-s962.html
8http://mirexpress.mbc.nctu.edu.tw
9http://flybuzz.berkeley.edu/miRTRAP.html
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Kang and Friedländer miRNA prediction from sRNA-seq data

Massively pooled sRNA-seq data have previously been used to pre-
dict miRNAs in general (Friedländer et al., 2014), or of the specific
mirtron class (Ladewig et al., 2012). These are hairpins, which are
released by intronic splicing rather than Drosha cleavage. Some
mirtrons are short and their hairpin ends are defined by the splice
signals, while others are longer, and one end is trimmed to define
the hairpin end (Berezikov et al., 2007; Okamura et al., 2007; Ruby
et al., 2007). In addition, the miRBase database employs mas-
sively pooled data to refine the miRNA annotations and define a
high-confidence set of sequences (Kozomara and Griffiths-Jones,
2014). The software used in these studies has, however, not been
published, so the methods are not described in detail here.

miRdentify
miRdentify has recently been released to the public to analyze
massive pooled data (Hansen et al., 2014). It requires that both
guide and passenger miRNA strands are detected and evaluates 10
features of the structure and signature, including precision of 5′

end processing, two nucleotide 3′ overhangs, and several aspect of
stability. For each feature, the cut-off is set so that 1% of known
miRNAs is excluded. Together, the requirement for detection of
both strands and the 10 features constitute stringent criteria that
produce miRNA candidates with features similar to known hair-
pins (Hansen et al., 2014). The method thus, to some extent, trades
off sensitivity to report high-quality candidates10.

PREDICTION WITHOUT A REFERENCE GENOME
The majority of miRNA prediction tools require a reference
genome as input to enable the excision of miRNA hairpin
sequences, whose RNA structures and signatures are considered
as key features for miRNA prediction. However, even though the
price of next-generation sequencing technologies decreases, only
a handful of model species have fully assembled high-quality ref-
erence genomes. Thus, many researchers rely on emerging model
species without reference genomes, and novel methods are needed
to discover new miRNAs in order to further study their func-
tion. One way to address this problem is to use a closely related
species genome as proxy reference sequence to identify conserved
miRNA. Such a study has been undertaken to discover mosquito
miRNAs by mapping the sRNA-seq against the genomes of three
related insect species (Etebari and Asgari, 2014). For this purpose,
the miRanalyzer tool was used, and it was found that the predic-
tion accuracy is affected by the evolutionary distance between the
species of interest and the proxy species. Overall, the most abun-
dant and conserved miRNAs were identified in this study, but the
approach might be less successful for species that do not have
closely related species with genome sequences.

MirPlex
MirPlex is a tool that requires only sRNA datasets as input with
no genome sequences needed (Mapleson et al., 2013). It uses a
multi-stage process to identify genuine miRNA duplexes. First,
all overlapping sequences are assembled into contigs, and contigs
that are too long to be miRNAs are discarded (> 30 nucleotides).

10http://www.ncrnalab.dk/#mirdentify/mirdentify.php

Second, the remaining sequences are copied into two duplicate
datasets followed with separate filter pathways to obtain candidate
miRNA guide and miRNA passenger sequences. Last, the can-
didate miRNA guide and miRNA passenger sequences are then
paired into duplexes for the classification. The core algorithm of
MirPlex uses a support vector machine to classify genuine miRNA
duplexes based on 20 features that divided into three categories: the
size of sequences in the duplex, the stability of the duplex, and the
nucleotide composition of the duplex. However, MirPlex depends
on the presence of both strands in a miRNA duplex for prediction,
and so cannot discover miRNAs unless the less abundant passenger
strand is also detected by the sequencing11.

MIRPIPE
MIRPIPE identifies miRNAs through sequence homology
(Kuenne et al., 2014). It collapses duplicate reads and removes
those that have only been sequenced few times. It then further
collapses sequences that only differ in the 3′ end and last maps the
remaining sequences against known miRBase mature sequences,
using the flexible BLAST mapping (Altschul et al., 1990). Since the
method relies completely on the presence of known homologs, the
prediction accuracy will improve as more miRNAs are deposited to
miRBase. However, it cannot identify species-specific miRNAs12.

miRNA VALIDATION
NORTHERN BLOT ANALYSIS
To resolve if a predicted miRNA is genuine, it is often necessary
to validate it with methods other than next-generation sequenc-
ing. In this respect, Northern blot analysis can be considered as
the gold standard (Lee et al., 1993; Ambros et al., 2003). First, the
RNA from the cells or tissues of interest is extracted and run on
a high-resolution gel. Then, the gel is treated with probes that are
complementary in sequence to the predicted miRNA strand. If the
strand is expressed in the cells of interest, a band corresponding to
22 nucleotides will show, and in some cases the precursor, which is
around 60 nucleotides, will also show. Although this double-band
constitutes compelling evidence of miRNA biogenesis, Northern
blot analysis has low sensitivity, so many miRNAs that can be reli-
ably profiled by sequencing is below Northern blot detection limit
(Table 2).

PCR-BASED METHODS
In contrast, real-time polymerase chain reaction (RT-PCR) meth-
ods can profile and thus validate miRNAs of very low abundance.
These methods use sequence-specific primers to bind to the miR-
NAs and amplify them through reverse transcription and poly-
merase reaction (Lu et al., 2005). The abundances of amplified
sequences are measured by fluorescence, and can be used to esti-
mate the expression of the profiled miRNA. Some systems use
stem-loop primers that fold around the 3′ end of the miRNA and
can only amplify sequences with that particular end, increasing
the specificity of the measurements (Chen et al., 2005). Although
RT-PCR methods are considered reliable, the custom primers and
probes for newly predicted miRNAs can be costly and the methods
are rarely used to validate large sets of sequences.

11http://www.uea.ac.uk/computing/mirplex
12https://bioinformatics.mpi-bn.mpg.de
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Kang and Friedländer miRNA prediction from sRNA-seq data

Table 2 | Methods for miRNA validation.

Method Throughput Pros Cons

Northern blot analysis Low Length of transcripts observed, possibility of

“double-band”

Work-intensive, lack of sensitivity

PCR-based methods Low Specific to transcript 3′ end, sensitive Costly for large-scale validation

Ectopic RNA hairpin expression Low miRNA biogenesis is directly tested Work-intensive, impractical for large-scale

validation

Association with Argonaute

proteins

Low/high Directly shows interaction with effector proteins Method is not always specific for miRNAs

Inhibition of miRNA biogenesis

pathways

Low/high Directly shows dependence on biogenesis proteins Knock-downs are transient and sometimes

weak, generating knock-outs is time-consuming

Experimentally identified target

sites

Low/high Directly demonstrates target interaction or

repression

Reporter assays are work-intensive

Conservation and population

selection pressure

Sequence

analysis

No wet-lab experiments required Non-conserved miRNAs can be functional

ECTOPIC RNA HAIRPIN EXPRESSION
In some cases, an miRNA is very lowly expressed, but researchers
want to know if the miRNA biogenesis machinery would process
it, were it highly expressed. It is possible to synthesize the DNA
sequence of the candidate hairpin and clone it into a bacterial
or viral vector (Chiang et al., 2010). The vector is then trans-
fected into a cell culture, and the hairpin sequence is expressed.
If the hairpin is recognized and cleaved by the miRNA biogen-
esis machinery, the predicted miRNA strand will accumulate in
cells, and can then be detected by less sensitive methods, such as
Northern blot analysis. A disadvantage of this method is that it
is time-consuming, in that just a few miRNAs can be tested in
parallel in one experiment.

ASSOCIATION WITH ARGONAUTE PROTEINS
Since miRNAs associate with Argonaute proteins, showing that a
predicted miRNA interacts with these proteins constitutes strong
evidence of its function. There are now anti-bodies for Arg-
onaute proteins in mammals (Ender et al., 2008), meaning that
these proteins can be isolated in immuno-precipitation and their
associated sRNAs studied. This profiling was previously done by
Northern blot analysis or RT-PCR, but is now often done by next-
generation sequencing, allowing transcriptome-wide validation.
In some cases, the interaction between protein and RNA is stabi-
lized by crosslinking (Licatalosi et al., 2008; Hafner et al., 2010),
and some studies also investigate interaction with other proteins
known to interact with miRNAs, such as DGCR8 (Macias et al.,
2012). However, immuno-precipitation studies also have caveats as
they are often performed in cell lines, which may not have the same
complements of miRNAs as the tissues from which the sequences
are sometimes predicted. Further, sRNAs other than miRNAs are
sometimes immune-precipitated with Argonaute proteins (Ender
et al., 2008), and it is not understood if these reflect genuine bio-
logical realities, or rare artifacts introduced during the experiment.
Thus, the presence of an miRNA candidate in such an experiment
does not constitute final evidence that it is genuine.

INHIBITION OF miRNA BIOGENESIS PATHWAYS
It is a hallmark of canonical miRNAs that they depend on the
presence of Drosha, Dicer, and DGCR8 for their expression. Thus,
if an miRNA candidate is depleted in cells that are void of one or
more of these proteins, it constitutes strong evidence that the can-
didate is genuine. The expression of the proteins can be knocked
down through RNA interference, where artificial sRNAs comple-
mentary in sequence to the Drosha, Dicer, or DGCR8 mRNAs are
introduced into cells (Friedländer et al., 2012, 2014). The sRNAs
can bind to the mRNAs and reduce protein output transiently.
The genes can also be conditionally knocked out using genetic
methods (Babiarz et al., 2008). In this case, Drosha, Dicer, or
DGCR8 genes are deleted, leading to a collapse of the miRNA
populations. Both with RNA interference and genetic methods, it
is possible to use next-generation sequencing to profile miRNA
expression transcriptome-wide before and after the loss of the
biogenesis pathways. A limitation of the knock-down approach
is that effects on the sRNA expression level are often subtle and
transient (Friedländer et al., 2012). The genetic knock-outs give
much clearer results, but require generation of mutant animals or
cells, which is not trivial, even with the advances made with the
CRISPR/Cas9 system (Cong et al., 2013; Mali et al., 2013).

EXPERIMENTALLY IDENTIFIED TARGET SITES
Arguably, demonstrating the function of a miRNA constitutes
stronger evidence than demonstrating its biogenesis or associa-
tion with proteins. For this purpose, reporter constructs can be
designed that are fusions of a target 3′ UTR and a reporter gene
that express a marker such as luciferase (Zeng and Cullen, 2003).
If the fluorescence is specifically reduced in the presence of the
guide miRNA, this indicates an miRNA–target interaction. These
reporter assays can be designed to simulate natural cell conditions,
with endogenous miRNA and target levels and a natural number
of target sites. While this method is time-consuming and only tests
a single miRNA in one experiment, new genomics data can pro-
file miRNA–target interaction transcriptome-wide (Helwak et al.,
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2013; Grosswendt et al., 2014). These methods use exogenous or
endogenous ligases to crosslink miRNAs and their targets, and
subsequently sequence these chimeric sequences, yielding infor-
mation on miRNA–target pairs. These data have been found to
contain novel miRNA candidates linked to mRNA sites that have
typical target features (Friedländer et al., 2014).

CONSERVATION AND POPULATION SELECTION PRESSURE
Some miRNAs, like let-7, are deeply conserved and retain almost
the exact same sequence in all animals with bilateral body types,
ranging from nematode to fruit fly to human (Pasquinelli et al.,
2000). Thus miRNA validation is transitive: if a validated miRNA
is conserved in a new species, it is likely to be genuine. There are
numerous criteria for defining if an miRNA is conserved, but some
parts are more likely to be under negative selection. Often homol-
ogous genome sequences from numerous species are aligned and
the conservation studied to see which parts are most conserved.
The nucleotides 2–8 in the 5′ end of the miRNA (the “seed”) are
important for target specificity and are often conserved in evolu-
tion (Lai, 2002). In fact, miRNAs are grouping into functional gene
families based on their seed sequence. The remaining part of the
miRNA guide strand also confers binding specificity (Bartel, 2009)
and the passenger strand is important for forming duplex with the
guide. Last, the sequences flanking the two miRNA strands often
exhibit some conservation, as these regions are important for the
hairpin structure, and for recruiting proteins during biogenesis
(Han et al., 2006). There are examples of miRNAs that are species-
specific, yet have well-defined and important functions (Hu et al.,
2012). In these cases, cross-species conservation patterns cannot
be used, but intra-species population studies can reveal selection
pressures (Friedländer et al., 2014). However, since these selection
pressures can be very subtle, large numbers of novel miRNA genes
are needed to detect trends, so the population approaches are not
applicable to most studies. Further, sequences can to some extent
be conserved by chance, so it often does not constitute definite
evidence of function.

COMPUTATIONAL BENCHMARKING
Wet-lab experiments include gold standards for demonstrating
that a given miRNA candidate is genuine. But computational
benchmarking can give some estimates to the performance of
methods to predict miRNAs, and can compare strengths and weak-
nesses of distinct algorithms. An advantage of benchmarking is
further that it is easily undertaken by computational research
groups, while performing Northern blot analyses, for instance,
may require substantial investment of time and funds.

Some of the most widely used measures of prediction perfor-
mance are sensitivity, specificity, and accuracy (Table 3). Sen-
sitivity is the fraction of known distinct miRNAs in the data
that are recovered by the method. Specificity is the fraction of
(assumed) non-miRNA sequences that are correctly discarded by
the algorithm. The false positive rate is the fraction of non-miRNA
sequences that are incorrectly reported as miRNAs, or 1 – sensitiv-
ity. Accuracy is the fraction of distinct sequences that are correctly
classified by the method, summing over all miRNAs and non-
miRNAs. Another common measure of prediction performance
is the area under curve (AUC) of receiver operating characteristic

Table 3 | Sensitivity, specificity, and accuracy.

miRNA state

Genuine miRNA Not genuine miRNA

miRNA

prediction

Positive True positives (TP) False positives (FP)

Negative False negatives (FN) True negatives (TN)

Formulas Sensitivity or true positive rate TP/(TP + FN)

Specificity or true negative rate TN/(FP +TN)

Accuracy (TP +TN)/(TP + FP + FN +TN)

(ROC) Curve. The sensitivity is plotted as a function of the false
positive rate, showing the trade-off between sensitivity and speci-
ficity. The area under the curve indicates performance, with the full
area (100%) corresponding to perfect prediction, while half area
(50%) corresponding to prediction that is no better than random.

However, the problem of predicting miRNAs from sRNA-seq
data is often a skewed one. That is, if tens of thousands of candidate
hairpins are being investigated, the number of genuine miRNA
precursors is typically in the hundreds. In other words, the num-
ber of negatives often vastly outnumbers the positives. Therefore,
a modest reduction in sensitivity can often be tolerated, while a
modest reduction in specificity can result in an unmanageable
number of false positives. For instance, a reduction in sensitiv-
ity from 99 to 90% will mean a 9% loss of genuine miRNAs,
while a corresponding reduction in specificity will cause a 10-fold
increase in false positives, potentially rendering the resulting pre-
dictions useless. To address this, true positives and false positives
are often reported as absolute numbers, to give a concrete idea of
the number of sequences a user of the methods will encounter.
Some methods, like miRDeep and miRDeep2, include computa-
tional controls to give the user an idea of the number of false
positives generated by each run.

Most studies presenting tools to predict miRNA genes include
benchmarking of their own method, often comparing it to com-
petitor methods. A summary of these comparisons would be
too comprehensive for this review; however, we have listed all
the benchmarking in Table 1. However, two independent stud-
ies have been undertaken to compare the prediction performance
of miRNA discovery tools. One study found miRExpress to be the
most sensitive method and the mirTools suite (which uses miRD-
eep for prediction) to be the most accurate method (Li et al., 2012).
However, we caution against relying too much on the findings of
this study, as the inferred performance of the distinct tools dif-
fers widely from other performance comparisons (as referenced
in Table 1). Another independent study has been undertaken to
compare the prediction performance of miRDeep, miRDeep2, and
miRanalyzer (updated version), which are some of the most widely
used methods in the field (Williamson et al., 2013). One tool,
DSAP, which quantifies miRNAs in sRNA-seq was also included
in the study, but is not described here as it does not predict new
miRNAs. The tools were tested against six biological datasets from
cell lines and one simulated negative control data set. miRDeep2
was overall found to have the highest sensitivity, while miRan-
alyzer reported the most novel miRNA candidates. However, it
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also reported miRNAs from the simulated data, suggesting that
some of the ones reported from the biological data are false pos-
itives. miRDeep had the best overall trade-off between sensitivity
and specificity, as measured by AUC, followed by miRDeep2. It
should be mentioned that this benchmarking just represents per-
formance in a few use cases, and more independent studies should
be undertaken to evaluate the strengths and weaknesses of the
existing methods.

VISUAL INSPECTION OF STRUCTURE AND READ SIGNATURE
Many tools for miRNA prediction generate graphics of the novel
candidates, showing the RNA structure and the positions of the
sequenced RNAs relative to the hairpin. With experience, it is pos-
sible to make estimates which of the novel candidate miRNAs can
be validated in wet-lab experiments, and which will turn out to be
false positive predictions. The human eye is a sensitive tool that can
discriminate subtle features that are difficult to score computation-
ally without loss of sensitivity. For instance, the miRNA hairpin
structure will rarely contain large bulges, but will also rarely form
a tight stem. Also, the processing of miRNA 5′ ends tends to be
more precise than processing of the 3′ end (Ruby et al., 2006).
Spending some time looking at gold standard known miRNAs can
teach a researcher to identify these and more features. Of course,
visual inspection of structure and read signature is no substitute
for validation, but it can give the trained miRNA researcher an
estimate of the quality of his predictions.

FUTURE DIRECTIONS OF THE FIELD
RESOLVING AMBIGUOUS SEQUENCES
Any miRNA prediction depends on read mappings that trace the
sequenced RNAs to the genome loci from which they were tran-
scribed. sRNA-seq presents difficulties that are rarely encountered
in mRNA sequencing. We know from biology that each deep
sequenced RNA has been transcribed from exactly one genome
locus. However, when sequenced sRNAs are mapped to the ref-
erence genome, many map to more than one locus. This is in
some cases because the RNA is transcribed from a gene with many
copies in the genome, like a transposable element. In some cases,
it will be “spurious” mappings, meaning that a short sequence
can have chance matches to biologically unrelated positions in the
genome, especially when the reference genome is large. A solution
to the problem could be to assume that most deep sequencing
reads have originated from a relatively small number of genome
loci, and attempt to map the reads such that most of them locate
to the fewest possible number of loci. In some concrete cases,
this appears reasonable. For instance, imagine a read that maps
equally well to two genome loci. One locus is a “read desert” with
no other reads mapping nearby. The other locus is an rRNA gene
that has thousands of reads mapping. In this case, it would seem
reasonable to assume that the read should be mapped to the highly
expressed rRNA locus. Some work has already been made toward
overcoming these challenges. The tool SeqCluster first fuses reads
that overlap in sequence in a tiled way, and subsequently maps
the fused sequences to the genome (Pantano et al., 2011). These
methods can resolve many, although not all, ambiguous mappings.

CROSS-MAPPING EVENTS
Even though next-generation sequencing quality has improved
the last years, some nucleotides are inevitably called incorrectly.
Similarly, sRNAs can undergo biological editing events or have
untemplated nucleotides added to their 3′ ends. In these cases, an
sRNA will no longer map perfectly to the genome position; it was
originally transcribed from, but it may map perfectly to a distinct
genome position (de Hoon et al., 2010). These wrongly mapped
sRNAs will often be considered by miRNA prediction algorithms
and may cause false positives. In one study, an explicit statisti-
cal model to correct these errors was developed, and numerous
wrong mappings were corrected (de Hoon et al., 2010). However,
this model has to our knowledge never been implemented as a
user-friendly mapping tool. Ideally, such a model could be com-
bined with a method to unambiguously trace sequenced RNAs to
a single genome position (above). This would provide the sRNA
community with a custom tool to handle some of the difficul-
ties inherent in studying short sequences, and would provide an
excellent platform for miRNA prediction.

REPEAT-DERIVED miRNAs
The most commonly used tools for miRNA prediction discards
mature sequences that map to many genome loci. This is a practical
step to reduce the number of genome loci investigated and thus
the number of false positives. However, it is well established that
miRNA hairpins can arise from repetitive sequences such as trans-
posable elements (Smalheiser and Torvik, 2005; Berezikov, 2011),
and these cannot be detected by current prediction methods,
unless the hairpins have diverged in sequence from the consen-
sus repeats. Since repeat-derived sRNAs have been shown to have
important functions in, for instance, the mammalian germ line
(Aravin et al., 2006; Girard et al., 2006; Grivna et al., 2006; Lau
et al., 2006; Watanabe et al., 2006, 2008; Tam et al., 2008), it would
be interesting to investigate the prevalence and function of repeat-
derived miRNAs. However, such a study could be complicated by
multi-mapping problems (above) and would be much facilitated
by the development of custom mapping and sequence analysis
tools. Overall, the field of mapping sRNAs is understudied, and
advances in this field could benefit the community.

REDUCING sRNA-seq BIASES
It is well established that library preparation introduces strong
biases in sRNA-seq. One study has shown that artificial miRNAs
introduced to a buffer in carefully controlled equal abundance give
rise to numbers of reads that differ by orders of magnitude (Linsen
et al., 2009). This means that some miRNAs give rise to dispro-
portionate large numbers of reads, while others are difficult to
detect and thus also more difficult to discover using sequencing.
A recent study has traced these biases back to the ligase protein
that joins the miRNA with sequencing adapters (Sorefan et al.,
2012). miRNAs and adapters together form structures, some of
which are easily ligated and some of which are difficult to ligate.
In fact, since most sRNA-seq studies use the same ligase and the
same adapters (from the Illumina small RNA TruSeq protocol),
the miRBase database has been biased toward miRNAs that are
easily ligated with this protocol. The researchers of this study has
developed an alternative “high definition” protocol using pools of

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology January 2015 | Volume 3 | Article 7 | 10

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kang and Friedländer miRNA prediction from sRNA-seq data

adapters that even out the biases, giving a more even representa-
tion of miRNAs and facilitating identification of novel sequences
(Sorefan et al., 2012). As this protocol becomes more widely used
in miRNAs discovery efforts, the skew in the miRBase database
will, for sure, be corrected.

UNDERSTANDING THE FEATURES THAT DETERMINE HAIRPIN
BIOGENESIS
The human transcriptome contains more than 100,000 hairpin
structures that resemble miRNA precursors (unpublished results).
More than half of these are located in protein coding transcripts.
Thus, while many mRNAs and miRNA primary transcripts resem-
ble each other in being capped, poly-adenylated, and containing
hairpin structures, the mRNAs are transported to the cytosol
and translated, while the pri-miRNAs are cleaved into regulatory
sRNAs. This mystery underlines our incomplete understanding of
miRNA biogenesis: which features determine if a given hairpin
is cleaved into miRNAs or left untouched? Does the presence of
protein factors protect the hairpin or make it available for Drosha
processing? Or does protein competition determine the hairpin
fate? And which structural and sequence features of the hairpin
determine which proteins are bound? Studies are unraveling these
interactions (Auyeung et al., 2013) but it is clear that our under-
standing is still incomplete. If we would understand what hairpin
features license biogenesis, we would be able to computation-
ally predict from genome sequence, which hairpins are cleaved
to miRNAs and which are left untouched.

ACKNOWLEDGMENTS
Wenjing Kang and Marc Riemer Friedländer acknowledge funding
from the Strategic Research Area program of the Swedish Research
Council through Stockholm University.

REFERENCES
Abelson, J. F., Kwan, K. Y., O’Roak, B. J., Baek, D. Y., Stillman, A. A., Morgan, T.

M., et al. (2005). Sequence variants in SLITRK1 are associated with Tourette’s
syndrome. Science 310, 317–320. doi:10.1126/science.1116502

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410. doi:10.1016/S0022-2836(05)
80360-2

Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X.,
et al. (2003). A uniform system for microRNA annotation. RNA 9, 277–279.
doi:10.1261/rna.2183803

An, J., Lai, J., Lehman, M. L., and Nelson, C. C. (2013). miRDeep*: an integrated
application tool for miRNA identification from RNA sequencing data. Nucleic
Acids Res. 41, 727–737. doi:10.1093/nar/gks1187

Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N.,
et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes.
Nature 442, 203–207. doi:10.1038/nature04916

Auyeung, V. C., Ulitsky, I., Mcgeary, S. E., and Bartel, D. P. (2013). Beyond sec-
ondary structure: primary-sequence determinants license pri-miRNA hairpins
for processing. Cell 152, 844–858. doi:10.1016/j.cell.2013.01.031

Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P., and Blelloch, R. (2008). Mouse
ES cells express endogenous shRNAs, siRNAs, and other microprocessor-
independent, dicer-dependent small RNAs. Genes Dev. 22, 2773–2785. doi:10.
1101/gad.1705308

Bartel, D. P. (2009). microRNAs: target recognition and regulatory functions. Cell
136, 215–233. doi:10.1016/j.cell.2009.01.002

Bentwich, I. (2005). Prediction and validation of microRNAs and their targets. FEBS
Lett. 579, 5904–5910. doi:10.1016/j.febslet.2005.09.040

Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals.
Nat. Rev. Genet. 12, 846–860. doi:10.1038/nrg3079

Berezikov, E., Chung, W. J., Willis, J., Cuppen, E., and Lai, E. C. (2007). Mammalian
mirtron genes. Mol. Cell 28, 328–336. doi:10.1016/j.molcel.2007.09.028

Berezikov, E., Guryev, V., Van De Belt, J., Wienholds, E., Plasterk, R. H., and Cuppen,
E. (2005). Phylogenetic shadowing and computational identification of human
microRNA genes. Cell 120, 21–24. doi:10.1016/j.cell.2004.12.031

Berninger, P., Gaidatzis, D., Van Nimwegen, E., and Zavolan, M. (2008). Compu-
tational analysis of small RNA cloning data. Methods 44, 13–21. doi:10.1016/j.
ymeth.2007.10.002

Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001). Role for
a bidentate ribonuclease in the initiation step of RNA interference. Nature 409,
363–366. doi:10.1038/35053110

Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z.,
et al. (2003). Dicer is essential for mouse development. Nat. Genet. 35, 215–217.
doi:10.1038/ng1253

Bushati, N., and Cohen, S. M. (2007). microRNA functions. Annu. Rev. Cell Dev.
Biol. 23, 175–205. doi:10.1146/annurev.cellbio.23.090506.123406

Calabrese, J. M., Seila, A. C., Yeo, G. W., and Sharp, P. A. (2007). RNA sequence
analysis defines dicer’s role in mouse embryonic stem cells. Proc. Natl. Acad. Sci.
U.S.A. 104, 18097–18102. doi:10.1073/pnas.0709193104

Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., et al.
(2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic
Acids Res. 33, e179. doi:10.1093/nar/gni178

Chen, C. J., and Heard, E. (2013). Small RNAs derived from structural non-coding
RNAs. Methods 63, 76–84. doi:10.1016/j.ymeth.2013.05.001

Chiang, H. R., Schoenfeld, L. W., Ruby, J. G., Auyeung, V. C., Spies, N., Baek,
D., et al. (2010). Mammalian microRNAs: experimental evaluation of novel
and previously annotated genes. Genes Dev. 24, 992–1009. doi:10.1101/gad.
1884710

Christensen, B. C., Moyer, B. J., Avissar, M., Ouellet, L. G., Plaza, S. L., Mcclean,
M. D., et al. (2009). A let-7 microRNA-binding site polymorphism in the KRAS
3′ UTR is associated with reduced survival in oral cancers. Carcinogenesis 30,
1003–1007. doi:10.1093/carcin/bgp099

Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al.
(2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad.
Sci. U.S.A. 102, 13944–13949. doi:10.1073/pnas.0506654102

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Mul-
tiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.
doi:10.1126/science.1231143

Davalos, V., Moutinho, C., Villanueva, A., Boque, R., Silva, P., Carneiro, F., et al.
(2012). Dynamic epigenetic regulation of the microRNA-200 family mediates
epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31,
2062–2074. doi:10.1038/onc.2011.383

de Hoon, M. J., Taft, R. J., Hashimoto, T., Kanamori-Katayama, M., Kawaji, H.,
Kawano, M., et al. (2010). Cross-mapping and the identification of editing sites
in mature microRNAs in high-throughput sequencing libraries. Genome Res. 20,
257–264. doi:10.1101/gr.095273.109

Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004).
Processing of primary microRNAs by the microprocessor complex. Nature 432,
231–235. doi:10.1038/nature03049

Dezulian, T., Remmert, M., Palatnik, J. F., Weigel, D., and Huson, D. H. (2006).
Identification of plant microRNA homologs. Bioinformatics 22, 359–360. doi:
10.1093/bioinformatics/bti802

Donaszi-Ivanov, A., Mohorianu, I., Dalmay, T., and Powell, P. P. (2013). Small RNA
analysis in Sindbis virus infected human HEK293 cells. PLoS One 8:e84070.
doi:10.1371/journal.pone.0084070

Ender, C., Krek, A., Friedländer, M. R., Beitzinger, M., Weinmann, L., Chen, W., et al.
(2008). A human snoRNA with microRNA-like functions. Mol. Cell 32, 519–528.
doi:10.1016/j.molcel.2008.10.017

Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet. 12,
861–874. doi:10.1038/nrg3074

Etebari, K., and Asgari, S. (2014). Accuracy of microRNA discovery pipelines in
non-model organisms using closely related species genomes. PLoS One 9:e84747.
doi:10.1371/journal.pone.0084747

Farazi, T. A., Juranek, S. A., and Tuschl, T. (2008). The growing catalog of small RNAs
and their association with distinct Argonaute/Piwi family members. Development
135, 1201–1214. doi:10.1242/dev.005629

Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N. (2008). Mechanisms of
post-transcriptional regulation by microRNAs: are the answers in sight? Nat.
Rev. Genet. 9, 102–114. doi:10.1038/nrg2290

www.frontiersin.org January 2015 | Volume 3 | Article 7 | 11

http://dx.doi.org/10.1126/science.1116502
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1261/rna.2183803
http://dx.doi.org/10.1093/nar/gks1187
http://dx.doi.org/10.1038/nature04916
http://dx.doi.org/10.1016/j.cell.2013.01.031
http://dx.doi.org/10.1101/gad.1705308
http://dx.doi.org/10.1101/gad.1705308
http://dx.doi.org/10.1016/j.cell.2009.01.002
http://dx.doi.org/10.1016/j.febslet.2005.09.040
http://dx.doi.org/10.1038/nrg3079
http://dx.doi.org/10.1016/j.molcel.2007.09.028
http://dx.doi.org/10.1016/j.cell.2004.12.031
http://dx.doi.org/10.1016/j.ymeth.2007.10.002
http://dx.doi.org/10.1016/j.ymeth.2007.10.002
http://dx.doi.org/10.1038/35053110
http://dx.doi.org/10.1038/ng1253
http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406
http://dx.doi.org/10.1073/pnas.0709193104
http://dx.doi.org/10.1093/nar/gni178
http://dx.doi.org/10.1016/j.ymeth.2013.05.001
http://dx.doi.org/10.1101/gad.1884710
http://dx.doi.org/10.1101/gad.1884710
http://dx.doi.org/10.1093/carcin/bgp099
http://dx.doi.org/10.1073/pnas.0506654102
http://dx.doi.org/10.1126/science.1231143
http://dx.doi.org/10.1038/onc.2011.383
http://dx.doi.org/10.1101/gr.095273.109
http://dx.doi.org/10.1038/nature03049
http://dx.doi.org/10.1093/bioinformatics/bti802
http://dx.doi.org/10.1371/journal.pone.0084070
http://dx.doi.org/10.1016/j.molcel.2008.10.017
http://dx.doi.org/10.1038/nrg3074
http://dx.doi.org/10.1371/journal.pone.0084747
http://dx.doi.org/10.1242/dev.005629
http://dx.doi.org/10.1038/nrg2290
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kang and Friedländer miRNA prediction from sRNA-seq data

Friedländer, M. R., Adamidi, C., Han, T., Lebedeva, S., Isenbarger, T. A., Hirst, M.,
et al. (2009). High-resolution profiling and discovery of planarian small RNAs.
Proc. Natl. Acad. Sci. U.S.A. 106, 11546–11551. doi:10.1073/pnas.0905222106

Friedländer, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S.,
et al. (2008). Discovering microRNAs from deep sequencing data using miRD-
eep. Nat. Biotechnol. 26, 407–415. doi:10.1038/nbt1394

Friedländer, M. R., Lizano, E., Houben, A. J., Bezdan, D., Banez-Coronel, M., Kudla,
G., et al. (2014). Evidence for the biogenesis of more than 1,000 novel human
microRNAs. Genome Biol. 15, R57. doi:10.1186/gb-2014-15-4-r57

Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N. (2012).
miRDeep2 accurately identifies known and hundreds of novel microRNA genes
in seven animal clades. Nucleic Acids Res. 40, 37–52. doi:10.1093/nar/gkr688

Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009). Most mam-
malian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.
doi:10.1101/gr.082701.108

Ghildiyal, M., and Zamore, P. D. (2009). Small silencing RNAs: an expanding uni-
verse. Nat. Rev. Genet. 10, 94–108. doi:10.1038/nrg2504

Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M.,
Baskerville, S., et al. (2005). microRNAs regulate brain morphogenesis in
zebrafish. Science 308, 833–838. doi:10.1126/science.1109020

Girard, A., Sachidanandam, R., Hannon, G. J., and Carmell, M. A. (2006). A
germline-specific class of small RNAs binds mammalian Piwi proteins. Nature
442, 199–202. doi:10.1038/nature04917

Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N.,
et al. (2004). The microprocessor complex mediates the genesis of microRNAs.
Nature 432, 235–240. doi:10.1038/nature03120

Grivna, S. T., Beyret, E., Wang, Z., and Lin, H. (2006). A novel class of small RNAs in
mouse spermatogenic cells. Genes Dev. 20, 1709–1714. doi:10.1101/gad.1434406

Grosswendt, S., Filipchyk, A., Manzano, M., Klironomos, F., Schilling, M., Her-
zog, M., et al. (2014). Unambiguous identification of miRNA:target site inter-
actions by different types of ligation reactions. Mol. Cell 54, 1042–1054.
doi:10.1016/j.molcel.2014.03.049

Guo, L., and Lu, Z. (2010). The fate of miRNA* strand through evolutionary analy-
sis: implication for degradation as merely carrier strand or potential regulatory
molecule? PLoS One 5:e11387. doi:10.1371/journal.pone.0011387

Ha, M., and Kim, V. N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol.
Cell Biol. 15, 509–524. doi:10.1038/nrm3838

Hackenberg,M.,Rodriguez-Ezpeleta,N.,and Aransay,A. M. (2011). miRanalyzer: an
update on the detection and analysis of microRNAs in high-throughput sequenc-
ing experiments. Nucleic Acids Res. 39, W132–W138. doi:10.1093/nar/gkr247

Hackenberg, M., Sturm, M., Langenberger, D., Falcon-Perez, J. M., and Aransay,
A. M. (2009). miRanalyzer: a microRNA detection and analysis tool for next-
generation sequencing experiments. Nucleic Acids Res. 37, W68–W76. doi:10.
1093/nar/gkp347

Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P.,
et al. (2010). Transcriptome-wide identification of RNA-binding protein and
microRNA target sites by PAR-CLIP. Cell 141, 129–141. doi:10.1016/j.cell.2010.
03.009

Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., and Kim, V. N. (2004). The Drosha-
DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027.
doi:10.1101/gad.1262504

Han, J., Lee, Y., Yeom, K. H., Nam, J. W., Heo, I., Rhee, J. K., et al. (2006). Mole-
cular basis for the recognition of primary microRNAs by the Drosha-DGCR8
complex. Cell 125, 887–901. doi:10.1016/j.cell.2006.03.043

Hansen, T. B., Veno, M. T., Kjems, J., and Damgaard, C. K. (2014). miRdentify: high
stringency miRNA predictor identifies several novel animal miRNAs. Nucleic
Acids Res. 42, e124. doi:10.1093/nar/gku598

He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S.,
et al. (2005). A microRNA polycistron as a potential human oncogene. Nature
435, 828–833. doi:10.1038/nature03552

Helwak, A., Kudla, G., Dudnakova, T., and Tollervey, D. (2013). Mapping the human
miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153,
654–665. doi:10.1016/j.cell.2013.03.043

Hendrix, D., Levine, M., and Shi, W. (2010). miRTRAP, a computational method for
the systematic identification of miRNAs from high throughput sequencing data.
Genome Biol. 11, R39. doi:10.1186/gb-2010-11-4-r39

Hill, D. A., Ivanovich, J., Priest, J. R., Gurnett, C. A., Dehner, L. P., Desruisseau, D.,
et al. (2009). DICER1 mutations in familial pleuropulmonary blastoma. Science
325, 965. doi:10.1126/science.1174334

Hu, H. Y., He, L., Fominykh, K., Yan, Z., Guo, S., Zhang, X., et al. (2012). Evo-
lution of the human-specific microRNA miR-941. Nat. Commun. 3, 1145.
doi:10.1038/ncomms2146

Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs: contribu-
tions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110.
doi:10.1038/nrg2936

Hutvagner, G., Mclachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore,
P. D. (2001). A cellular function for the RNA-interference enzyme dicer
in the maturation of the let-7 small temporal RNA. Science 293, 834–838.
doi:10.1126/science.1062961

Jiang, P., Wu, H., Wang, W., Ma, W., Sun, X., and Lu, Z. (2007). MiPred: clas-
sification of real and pseudo microRNA precursors using random forest pre-
diction model with combined features. Nucleic Acids Res. 35, W339–W344.
doi:10.1093/nar/gkm368

Johnston, R. J., and Hobert, O. (2003). A microRNA controlling left/right neu-
ronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849. doi:10.1038/
nature02255

Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk,
R. H. (2001). Dicer functions in RNA interference and in synthesis of small
RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.
doi:10.1101/gad.927801

Kloosterman, W. P., and Plasterk, R. H. (2006). The diverse functions of microRNAs
in animal development and disease. Dev. Cell 11, 441–450. doi:10.1016/j.devcel.
2006.09.009

Knight, S. W., and Bass, B. L. (2001). A role for the RNase III enzyme DCR-1 in RNA
interference and germ line development in Caenorhabditis elegans. Science 293,
2269–2271. doi:10.1126/science.1062039

Kohli, D., Joshi, G., Deokar, A. A., Bhardwaj, A. R., Agarwal, M., Katiyar-Agarwal,
S., et al. (2014). Identification and characterization of wilt and salt stress-
responsive microRNAs in chickpea through high-throughput sequencing. PLoS
One 9:e108851. doi:10.1371/journal.pone.0108851

Kozomara, A., and Griffiths-Jones, S. (2011). miRBase: integrating microRNA
annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157.
doi:10.1093/nar/gkq1027

Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confi-
dence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73.
doi:10.1093/nar/gkt1181

Kuenne, C., Preussner, J., Herzog, M., Braun, T., and Looso, M. (2014). MIR-
PIPE: quantification of microRNAs in niche model organisms. Bioinformatics
30, 3412–3413. doi:10.1093/bioinformatics/btu573

Ladewig, E., Okamura, K., Flynt, A. S., Westholm, J. O., and Lai, E. C. (2012). Dis-
covery of hundreds of mirtrons in mouse and human small RNA data. Genome
Res. 22, 1634–1645. doi:10.1101/gr.133553.111

Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identifica-
tion of novel genes coding for small expressed RNAs. Science 294, 853–858.
doi:10.1126/science.1064921

Lai, E. C. (2002). microRNAs are complementary to 3′ UTR sequence motifs
that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364.
doi:10.1038/ng865

Lai, E. C., Tomancak, P., Williams, R. W., and Rubin, G. M. (2003). Compu-
tational identification of Drosophila microRNA genes. Genome Biol. 4, R42.
doi:10.1186/gb-2003-4-7-r42

Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome
critical region gene 8 and its D. melanogaster homolog are required for miRNA
biogenesis. Curr. Biol. 14, 2162–2167. doi:10.1016/j.cub.2004.11.001

Langenberger, D., Pundhir, S., Ekstrom, C. T., Stadler, P. F., Hoffmann, S., and Gorod-
kin, J. (2012). deepBlockAlign: a tool for aligning RNA-seq profiles of read block
patterns. Bioinformatics 28, 17–24. doi:10.1093/bioinformatics/btr598

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10, R25. doi:10.1186/gb-2009-10-3-r25

Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001). An abundant class of
tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294,
858–862. doi:10.1126/science.1065062

Lau, N. C., Seto, A. G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D. P.,
et al. (2006). Characterization of the piRNA complex from rat testes. Science 313,
363–367. doi:10.1126/science.1130164

Lee, R. C., and Ambros,V. (2001). An extensive class of small RNAs in Caenorhabditis
elegans. Science 294, 862–864. doi:10.1126/science.1065329

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology January 2015 | Volume 3 | Article 7 | 12

http://dx.doi.org/10.1073/pnas.0905222106
http://dx.doi.org/10.1038/nbt1394
http://dx.doi.org/10.1186/gb-2014-15-4-r57
http://dx.doi.org/10.1093/nar/gkr688
http://dx.doi.org/10.1101/gr.082701.108
http://dx.doi.org/10.1038/nrg2504
http://dx.doi.org/10.1126/science.1109020
http://dx.doi.org/10.1038/nature04917
http://dx.doi.org/10.1038/nature03120
http://dx.doi.org/10.1101/gad.1434406
http://dx.doi.org/10.1016/j.molcel.2014.03.049
http://dx.doi.org/10.1371/journal.pone.0011387
http://dx.doi.org/10.1038/nrm3838
http://dx.doi.org/10.1093/nar/gkr247
http://dx.doi.org/10.1093/nar/gkp347
http://dx.doi.org/10.1093/nar/gkp347
http://dx.doi.org/10.1016/j.cell.2010.03.009
http://dx.doi.org/10.1016/j.cell.2010.03.009
http://dx.doi.org/10.1101/gad.1262504
http://dx.doi.org/10.1016/j.cell.2006.03.043
http://dx.doi.org/10.1093/nar/gku598
http://dx.doi.org/10.1038/nature03552
http://dx.doi.org/10.1016/j.cell.2013.03.043
http://dx.doi.org/10.1186/gb-2010-11-4-r39
http://dx.doi.org/10.1126/science.1174334
http://dx.doi.org/10.1038/ncomms2146
http://dx.doi.org/10.1038/nrg2936
http://dx.doi.org/10.1126/science.1062961
http://dx.doi.org/10.1093/nar/gkm368
http://dx.doi.org/10.1038/nature02255
http://dx.doi.org/10.1038/nature02255
http://dx.doi.org/10.1101/gad.927801
http://dx.doi.org/10.1016/j.devcel.2006.09.009
http://dx.doi.org/10.1016/j.devcel.2006.09.009
http://dx.doi.org/10.1126/science.1062039
http://dx.doi.org/10.1371/journal.pone.0108851
http://dx.doi.org/10.1093/nar/gkq1027
http://dx.doi.org/10.1093/nar/gkt1181
http://dx.doi.org/10.1093/bioinformatics/btu573
http://dx.doi.org/10.1101/gr.133553.111
http://dx.doi.org/10.1126/science.1064921
http://dx.doi.org/10.1038/ng865
http://dx.doi.org/10.1186/gb-2003-4-7-r42
http://dx.doi.org/10.1016/j.cub.2004.11.001
http://dx.doi.org/10.1093/bioinformatics/btr598
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1126/science.1065062
http://dx.doi.org/10.1126/science.1130164
http://dx.doi.org/10.1126/science.1065329
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kang and Friedländer miRNA prediction from sRNA-seq data

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell
75, 843–854. doi:10.1016/0092-8674(93)90529-Y

Li,Y., Zhang, Z., Liu, F.,Vongsangnak, W., Jing, Q., and Shen, B. (2012). Performance
comparison and evaluation of software tools for microRNA deep-sequencing
data analysis. Nucleic Acids Res. 40, 4298–4305. doi:10.1093/nar/gks043

Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., et al. (2008).
HITS-CLIP yields genome-wide insights into brain alternative RNA processing.
Nature 456, 464–469. doi:10.1038/nature07488

Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., Yekta, S., Rhoades, M. W.,
et al. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008.
doi:10.1101/gad.1074403

Linsen, S. E., De Wit, E., Janssens, G., Heater, S., Chapman, L., Parkin, R. K., et al.
(2009). Limitations and possibilities of small RNA digital gene expression pro-
filing. Nat. Methods 6, 474–476. doi:10.1038/nmeth0709-474

Lu, D. P., Read, R. L., Humphreys, D. T., Battah, F. M., Martin, D. I., and Rasko, J. E.
(2005). PCR-based expression analysis and identification of microRNAs. J. RNAi
Gene Silencing 1, 44–49.

Macias, S., Plass, M., Stajuda, A., Michlewski, G., Eyras, E., and Caceres, J. F. (2012).
DGCR8 HITS-CLIP reveals novel functions for the microprocessor. Nat. Struct.
Mol. Biol. 19, 760–766. doi:10.1038/nsmb.2344

Mackowiak, S. D. (2011). Identification of novel and known miRNAs in deep-
sequencing data with miRDeep2. Curr. Protoc. Bioinformatics 12, 10. doi:10.
1002/0471250953.bi1210s36

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., Dicarlo, J. E., et al. (2013).
RNA-guided human genome engineering via Cas9. Science 339, 823–826.
doi:10.1126/science.1232033

Mapleson, D., Moxon, S., Dalmay, T., and Moulton, V. (2013). MirPlex: a tool for
identifying miRNAs in high-throughput sRNA datasets without a genome. J. Exp.
Zool. B Mol. Dev. Evol. 320, 47–56. doi:10.1002/jez.b.22483

Mathelier, A., and Carbone, A. (2010). MIReNA: finding microRNAs with high
accuracy and no learning at genome scale and from deep sequencing data. Bioin-
formatics 26, 2226–2234. doi:10.1093/bioinformatics/btq329

Mayoral, J. G., Etebari, K., Hussain, M., Khromykh, A. A., and Asgari, S. (2014).
Wolbachia infection modifies the profile, shuttling and structure of microRNAs
in a mosquito cell line. PLoS One 9:e96107. doi:10.1371/journal.pone.0096107

Medina, P. P., and Slack, F. J. (2008). microRNAs and cancer: an overview. Cell Cycle
7, 2485–2492. doi:10.4161/cc.7.16.6453

Mencia, A., Modamio-Hoybjor, S., Redshaw, N., Morin, M., Mayo-Merino, F.,
Olavarrieta, L., et al. (2009). Mutations in the seed region of human miR-96 are
responsible for nonsyndromic progressive hearing loss. Nat. Genet. 41, 609–613.
doi:10.1038/ng.355

Metpally, R. P., Nasser, S., Malenica, I., Courtright, A., Carlson, E., Ghaffari, L., et al.
(2013). Comparison of analysis tools for miRNA high throughput sequencing
using nerve crush as a model. Front. Genet. 4:20. doi:10.3389/fgene.2013.00020

Mohorianu, I., Schwach, F., Jing, R., Lopez-Gomollon, S., Moxon, S., Szittya, G.,
et al. (2011). Profiling of short RNAs during fleshy fruit development reveals
stage-specific sRNAome expression patterns. Plant J. 67, 232–246. doi:10.1111/
j.1365-313X.2011.04586.x

Morita, S., Horii, T., Kimura, M., Goto, Y., Ochiya, T., and Hatada, I. (2007).
One Argonaute family member, Eif2c2 (Ago2), is essential for development
and appears not to be involved in DNA methylation. Genomics 89, 687–696.
doi:10.1016/j.ygeno.2007.01.004

Moxon, S., Schwach, F., Dalmay, T., Maclean, D., Studholme, D. J., and Moulton,
V. (2008). A toolkit for analysing large-scale plant small RNA datasets. Bioinfor-
matics 24, 2252–2253. doi:10.1093/bioinformatics/btn428

Nam, J. W., Shin, K. R., Han, J., Lee, Y., Kim, V. N., and Zhang, B. T. (2005). Human
microRNA prediction through a probabilistic co-learning model of sequence
and structure. Nucleic Acids Res. 33, 3570–3581. doi:10.1093/nar/gki668

Ohler, U., Yekta, S., Lim, L. P., Bartel, D. P., and Burge, C. B. (2004). Patterns of flank-
ing sequence conservation and a characteristic upstream motif for microRNA
gene identification. RNA 10, 1309–1322. doi:10.1261/rna.5206304

Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., and Lai, E. C. (2007). The
mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell
130, 89–100. doi:10.1016/j.cell.2007.06.028

Okamura, K., Phillips, M. D., Tyler, D. M., Duan, H., Chou, Y. T., and Lai, E. C.
(2008). The regulatory activity of microRNA* species has substantial influ-
ence on microRNA and 3′ UTR evolution. Nat. Struct. Mol. Biol. 15, 354–363.
doi:10.1038/nsmb.1409

Pandey, R., Joshi, G., Bhardwaj, A. R., Agarwal, M., and Katiyar-Agarwal, S. (2014). A
comprehensive genome-wide study on tissue-specific and abiotic stress-specific
miRNAs in Triticum aestivum. PLoS One 9:e95800. doi:10.1371/journal.pone.
0095800

Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T., et al. (2010).
Identification of grapevine microRNAs and their targets using high-throughput
sequencing and degradome analysis. Plant J. 62, 960–976. doi:10.1111/j.0960-
7412.2010.04208.x

Pantano, L., Estivill, X., and Marti, E. (2011). A non-biased framework for the anno-
tation and classification of the non-miRNA small RNA transcriptome. Bioinfor-
matics 27, 3202–3203. doi:10.1093/bioinformatics/btr527

Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller,
B., et al. (2000). Conservation of the sequence and temporal expression of let-7
heterochronic regulatory RNA. Nature 408, 86–89. doi:10.1038/35040556

Pundhir, S., and Gorodkin, J. (2013). microRNA discovery by similarity search
to a database of RNA-seq profiles. Front. Genet. 4:133. doi:10.3389/fgene.2013.
00133

Ruby, J. G., Jan, C., Player, C., Axtell, M. J., Lee, W., Nusbaum, C., et al. (2006).
Large-scale sequencing reveals 21U-RNAs and additional microRNAs and
endogenous siRNAs in C. elegans. Cell 127, 1193–1207. doi:10.1016/j.cell.2006.
10.040

Ruby, J. G., Jan, C. H., and Bartel, D. P. (2007). Intronic microRNA precursors that
bypass Drosha processing. Nature 448, 83–86. doi:10.1038/nature05983

Sheng, Y., Engstrom, P. G., and Lenhard, B. (2007). Mammalian microRNA predic-
tion through a support vector machine model of sequence and structure. PLoS
One 2:e946. doi:10.1371/journal.pone.0000946

Shi, W., Hendrix, D., Levine, M., and Haley, B. (2009). A distinct class of small RNAs
arises from pre-miRNA-proximal regions in a simple chordate. Nat. Struct. Mol.
Biol. 16, 183–189. doi:10.1038/nsmb.1536

Smalheiser, N. R., and Torvik, V. I. (2005). Mammalian microRNAs derived from
genomic repeats. Trends Genet. 21, 322–326. doi:10.1016/j.tig.2005.04.008

Smith, L. K., Tandon, A., Shah, R. R., Mav, D., Scoltock, A. B., and Cid-
lowski, J. A. (2013). Deep sequencing identification of novel glucocorticoid-
responsive miRNAs in apoptotic primary lymphocytes. PLoS ONE 8:e78316.
doi:10.1371/journal.pone.0078316

Sorefan, K., Pais, H., Hall, A. E., Kozomara, A., Griffiths-Jones, S., Moulton, V., et al.
(2012). Reducing ligation bias of small RNAs in libraries for next generation
sequencing. Silence 3, 4. doi:10.1186/1758-907X-3-4

Stefani, G., and Slack, F. J. (2008). Small non-coding RNAs in animal development.
Nat. Rev. Mol. Cell Biol. 9, 219–230. doi:10.1038/nrm2347

Stocks, M. B., Moxon, S., Mapleson, D., Woolfenden, H. C., Mohorianu, I., Folkes, L.,
et al. (2012). The UEA sRNA workbench: a suite of tools for analysing and visu-
alizing next generation sequencing microRNA and small RNA datasets. Bioin-
formatics 28, 2059–2061. doi:10.1093/bioinformatics/bts311

Surridge, A. K., Lopez-Gomollon, S., Moxon, S., Maroja, L. S., Rathjen, T., Nadeau,
N. J., et al. (2011). Characterisation and expression of microRNAs in developing
wings of the neotropical butterfly Heliconius melpomene. BMC Genomics 12:62.
doi:10.1186/1471-2164-12-62

Szittya, G., Moxon, S., Santos, D. M., Jing, R., Fevereiro, M. P., Moulton, V., et al.
(2008). High-throughput sequencing of Medicago truncatula short RNAs iden-
tifies eight new miRNA families. BMC Genomics 9:593. doi:10.1186/1471-2164-
9-593

Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M., and Mattick, J. S. (2010). Non-coding
RNAs: regulators of disease. J. Pathol. 220, 126–139. doi:10.1002/path.2638

Tam, O. H., Aravin, A. A., Stein, P., Girard, A., Murchison, E. P., Cheloufi, S., et al.
(2008). Pseudogene-derived small interfering RNAs regulate gene expression in
mouse oocytes. Nature 453, 534–538. doi:10.1038/nature06904

Wang, W. C., Lin, F. M., Chang, W. C., Lin, K. Y., Huang, H. D., and Lin,
N. S. (2009). miRExpress: analyzing high-throughput sequencing data for
profiling microRNA expression. BMC Bioinformatics 10:328. doi:10.1186/1471-
2105-10-328

Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., et al. (2005). microRNA identifica-
tion based on sequence and structure alignment. Bioinformatics 21, 3610–3614.
doi:10.1093/bioinformatics/bti562

Wang, Y., Medvid, R., Melton, C., Jaenisch, R., and Blelloch, R. (2007). DGCR8 is
essential for microRNA biogenesis and silencing of embryonic stem cell self-
renewal. Nat. Genet. 39, 380–385. doi:10.1038/ng1969

Watanabe, T., Takeda, A., Tsukiyama, T., Mise, K., Okuno, T., Sasaki, H., et al. (2006).
Identification and characterization of two novel classes of small RNAs in the

www.frontiersin.org January 2015 | Volume 3 | Article 7 | 13

http://dx.doi.org/10.1016/0092-8674(93)90529-Y
http://dx.doi.org/10.1093/nar/gks043
http://dx.doi.org/10.1038/nature07488
http://dx.doi.org/10.1101/gad.1074403
http://dx.doi.org/10.1038/nmeth0709-474
http://dx.doi.org/10.1038/nsmb.2344
http://dx.doi.org/10.1002/0471250953.bi1210s36
http://dx.doi.org/10.1002/0471250953.bi1210s36
http://dx.doi.org/10.1126/science.1232033
http://dx.doi.org/10.1002/jez.b.22483
http://dx.doi.org/10.1093/bioinformatics/btq329
http://dx.doi.org/10.1371/journal.pone.0096107
http://dx.doi.org/10.4161/cc.7.16.6453
http://dx.doi.org/10.1038/ng.355
http://dx.doi.org/10.3389/fgene.2013.00020
http://dx.doi.org/10.1111/j.1365-313X.2011.04586.x
http://dx.doi.org/10.1111/j.1365-313X.2011.04586.x
http://dx.doi.org/10.1016/j.ygeno.2007.01.004
http://dx.doi.org/10.1093/bioinformatics/btn428
http://dx.doi.org/10.1093/nar/gki668
http://dx.doi.org/10.1261/rna.5206304
http://dx.doi.org/10.1016/j.cell.2007.06.028
http://dx.doi.org/10.1038/nsmb.1409
http://dx.doi.org/10.1371/journal.pone.0095800
http://dx.doi.org/10.1371/journal.pone.0095800
http://dx.doi.org/10.1111/j.0960-7412.2010.04208.x
http://dx.doi.org/10.1111/j.0960-7412.2010.04208.x
http://dx.doi.org/10.1093/bioinformatics/btr527
http://dx.doi.org/10.1038/35040556
http://dx.doi.org/10.3389/fgene.2013.00133
http://dx.doi.org/10.3389/fgene.2013.00133
http://dx.doi.org/10.1016/j.cell.2006.10.040
http://dx.doi.org/10.1016/j.cell.2006.10.040
http://dx.doi.org/10.1038/nature05983
http://dx.doi.org/10.1371/journal.pone.0000946
http://dx.doi.org/10.1038/nsmb.1536
http://dx.doi.org/10.1016/j.tig.2005.04.008
http://dx.doi.org/10.1371/journal.pone.0078316
http://dx.doi.org/10.1186/1758-907X-3-4
http://dx.doi.org/10.1038/nrm2347
http://dx.doi.org/10.1093/bioinformatics/bts311
http://dx.doi.org/10.1186/1471-2164-12-62
http://dx.doi.org/10.1186/1471-2164-9-593
http://dx.doi.org/10.1186/1471-2164-9-593
http://dx.doi.org/10.1002/path.2638
http://dx.doi.org/10.1038/nature06904
http://dx.doi.org/10.1186/1471-2105-10-328
http://dx.doi.org/10.1186/1471-2105-10-328
http://dx.doi.org/10.1093/bioinformatics/bti562
http://dx.doi.org/10.1038/ng1969
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kang and Friedländer miRNA prediction from sRNA-seq data

mouse germline: retrotransposon-derived siRNAs in oocytes and germline small
RNAs in testes. Genes Dev. 20, 1732–1743. doi:10.1101/gad.1425706

Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata,
Y., et al. (2008). Endogenous siRNAs from naturally formed dsRNAs regulate
transcripts in mouse oocytes. Nature 453, 539–543. doi:10.1038/nature06908

Wen, M., Shen,Y., Shi, S., and Tang, T. (2012). miREvo: an integrative microRNA evo-
lutionary analysis platform for next-generation sequencing experiments. BMC
Bioinformatics 13:140. doi:10.1186/1471-2105-13-140

Williamson,V., Kim, A., Xie, B., Mcmichael, G. O., Gao,Y., and Vladimirov,V. (2013).
Detecting miRNAs in deep-sequencing data: a software performance comparison
and evaluation. Brief. Bioinformatics 14, 36–45. doi:10.1093/bib/bbs010

Wu, J., Liu, Q., Wang, X., Zheng, J., Wang, T., You, M., et al. (2013). mir-
Tools 2.0 for non-coding RNA discovery, profiling, and functional annotation
based on high-throughput sequencing. RNA Biol. 10, 1087–1092. doi:10.4161/
rna.25193

Yang, J. H., and Qu, L. H. (2012). DeepBase: annotation and discovery of microR-
NAs and other noncoding RNAs from deep-sequencing data. Methods Mol. Biol.
822, 233–248. doi:10.1007/978-1-61779-427-8_16

Yang, J. S., Phillips, M. D., Betel, D., Mu, P., Ventura, A., Siepel, A. C., et al.
(2011). Widespread regulatory activity of vertebrate microRNA* species. RNA
17, 312–326. doi:10.1261/rna.2537911

Yang, X., and Li, L. (2011). miRDeep-P: a computational tool for analyzing the
microRNA transcriptome in plants. Bioinformatics 27, 2614–2615. doi:10.1093/
bioinformatics/btr430

Zeng,Y., and Cullen, B. R. (2003). Sequence requirements for micro RNA processing
and function in human cells. RNA 9, 112–123. doi:10.1261/rna.2780503

Zhang, B. H., Pan, X. P., Cox, S. B., Cobb, G. P., and Anderson, T. A. (2006a). Evidence
that miRNAs are different from other RNAs. Cell. Mol. Life Sci. 63, 246–254.
doi:10.1007/s00018-005-5467-7

Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al.
(2006b). microRNAs exhibit high frequency genomic alterations in human can-
cer. Proc. Natl. Acad. Sci. U.S.A. 103, 9136–9141. doi:10.1073/pnas.0508889103

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization pre-
diction. Nucleic Acids Res. 31, 3406–3415. doi:10.1093/nar/gkg595

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 15 October 2014; accepted: 07 January 2015; published online: 26 January
2015.
Citation: Kang W and Friedländer MR (2015) Computational prediction of
miRNA genes from small RNA sequencing data. Front. Bioeng. Biotechnol. 3:7. doi:
10.3389/fbioe.2015.00007
This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Bioengineering and Biotechnology.
Copyright © 2015 Kang and Friedländer. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology January 2015 | Volume 3 | Article 7 | 14

http://dx.doi.org/10.1101/gad.1425706
http://dx.doi.org/10.1038/nature06908
http://dx.doi.org/10.1186/1471-2105-13-140
http://dx.doi.org/10.1093/bib/bbs010
http://dx.doi.org/10.4161/rna.25193
http://dx.doi.org/10.4161/rna.25193
http://dx.doi.org/10.1007/978-1-61779-427-8_16
http://dx.doi.org/10.1261/rna.2537911
http://dx.doi.org/10.1093/bioinformatics/btr430
http://dx.doi.org/10.1093/bioinformatics/btr430
http://dx.doi.org/10.1261/rna.2780503
http://dx.doi.org/10.1007/s00018-005-5467-7
http://dx.doi.org/10.1073/pnas.0508889103
http://dx.doi.org/10.1093/nar/gkg595
http://dx.doi.org/10.3389/fbioe.2015.00007
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

	Computational prediction of miRNA genes from small RNA sequencing data
	miRNA biology
	miRNA biogenesis
	miRNAs in human disease

	miRNA Prediction
	Prediction from genome sequence
	Sanger sequencing
	Next-generation sequencing

	Specific algorithms
	deepBlockAlign
	miRanalyzer
	miRanalyzer (update)
	miRCat
	miRDeep
	miRDeep2
	miRDeep*
	MIReNA
	miREvo
	miRExpress
	miRTRAP

	Special applications
	Massively pooled data
	miRdentify

	Prediction without a reference genome
	MirPlex
	MIRPIPE


	miRNA Validation
	Northern blot analysis
	PCR-based methods
	Ectopic RNA hairpin expression
	Association with argonaute proteins
	Inhibition of miRNA biogenesis pathways
	Experimentally identified target sites
	Conservation and population selection pressure

	Computational benchmarking
	Visual Inspection of Structure and Read Signature
	Future Directions of the Field
	Resolving ambiguous sequences
	Cross-mapping events
	Repeat-derived miRNAs
	Reducing sRNA-seq biases
	Understanding the features that determine hairpin biogenesis

	Acknowledgments
	References


