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Secondary bone fracture healing is a physiological process that leads to functional tis-
sue regeneration via endochondral bone formation. In vivo studies have demonstrated that
early mobilization and the application of mechanical loads enhances the process of fracture
healing. However, the influence of specific mechanical stimuli and particular effects during
specific phases of fracture healing remain to be elucidated. In this work, we have devel-
oped and provided proof-of-concept of an in vitro human organotypic model of physiological
loading of a cartilage callus, based on a novel perfused compression bioreactor (PCB) sys-
tem. We then used the fracture callus model to investigate the regulatory role of dynamic
mechanical loading. Our findings provide a proof-of-principle that dynamic mechanical load-
ing applied by the PCB can enhance the maturation process of mesenchymal stromal
cells toward late hypertrophic chondrocytes and the mineralization of the deposited extra-
cellular matrix. The PCB provides a promising tool to study fracture healing and for the
in vitro assessment of alternative fracture treatments based on engineered tissue grafts
or pharmaceutical compounds, allowing for the reduction of animal experiments.
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INTRODUCTION
Bone fracture healing is a natural, physiological process leading
to functional tissue regeneration through a highly orchestrated
sequence (Gerstenfeld et al., 2003; Behonick et al., 2007; Marsell
and Einhorn, 2011). Primary fracture healing occurs within sta-
ble fracture sites when there is direct contact between the fracture
ends, re-establishing the anatomically correct and biomechanically
competent lamellar bone structure (Marsell and Einhorn, 2011).
However, in the majority of cases a gap is present at the fracture
site, and therefore indirect or secondary fracture healing occurs.

Secondary fracture healing, a process recapitulating the process
of endochondral bone formation, is divided into four main phases:
hemorrhage and inflammation, soft callus formation, hard callus
formation, and callus remodeling (Sfeir et al., 2005; Schindeler
et al., 2008). Following initial hemorrhage and inflammation, a
key step during secondary fracture healing is the formation of a
soft fracture callus, consisting of cartilaginous extracellular matrix,
chondrocytes, and fibroblasts. It provides mechanical support to
the fracture and serves as a template for subsequent remodel-
ing into a bony callus (Gerstenfeld et al., 2003; Sfeir et al., 2005;
Schindeler et al., 2008). During the subsequent phase of hard
callus formation, a mineralized cartilaginous template is grad-
ually replaced with unordered woven bone matrix. The callus
becomes vascularized, increasing the oxygen tension, and foster-
ing maturation of osteoblasts (Sfeir et al., 2005; Schindeler et al.,
2008). In the final phase, the woven bone is fully remodeled
toward cortical and/or trabecular bone in a spatially and tem-
porally choreographed manner (Sfeir et al., 2005; Schindeler et al.,
2008).

In vivo models have demonstrated that mechanical stimulation
of fractures can improve the secondary fracture healing process
and/or alter the biological pathways involved (Rand et al., 1981;
Goodship and Kenwright, 1985; Aro et al., 1991; Claes et al., 1997;
Park et al., 1998; Rubin et al., 2001; Chao and Inoue, 2003). How-
ever, due to the multitude of parameters that play a role in the
mechanical environment of the fracture site, these in vivo studies
did not allow for a systematic study of specific mechanical stimuli
nor their influence during the different phases of fracture healing
(Gerstenfeld et al., 2003; Schindeler et al., 2008).

As an alternative, in vitro model systems facilitate a methodical
approach to study the impact of the mechanical stimuli during dis-
tinct phases of secondary fracture healing in a controlled manner.
However, in vitro models have previously been limited to apply-
ing mechanical loads on cartilaginous tissues in order to develop
more functional tissues or to study the impact of different loading
regimes on chondrogenesis (Démarteau et al., 2003; Ballyns and
Bonassar, 2010; Sun et al., 2010; Puetzer et al., 2012), but the effect
of mechanical loading during the process of hypertrophic cartilage
formation and remodeling, critical in fracture healing, has not yet
been studied.

Here, were propose an in vitro model based on a perfused
compression bioreactor (PCB) system to: (i) apply physiolog-
ical strain/loads, (ii) perfuse a construct allowing for mass
transport and simulation of vascularization, and (iii) com-
press rigid load-bearing scaffolds in a physiological manner.
The application of dynamic mechanical loading was validated
for both collagen-based and nickel–titanium (NiTi) based tis-
sue constructs, highlighting the broad operational range of
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the system including the compressive strength (100–200 MPa)
of bone (Keaveny et al., 2004; Weiner and Wagner, 1998). In
a proof-of-concept study, we hypothesized that physiological
compressive loading applied during hypertrophy enhances extra-
cellular matrix mineralization of cartilaginous constructs and
triggers the maturation process of MSC toward late hypertrophic
chondrocytes.

MATERIALS AND METHODS
PERFUSED COMPRESSION BIOREACTOR SYSTEM
The PCB system consists of two main components: the biore-
actor chamber (Figures 1A,B) and the power transmission rack
(Figure 1C). A detailed description of the bioreactor system can
be found in Hoffmann et al. (2014b). The bioreactor chamber
holds the scaffold in place and ensures hermetic sealing as well
as force transmission onto the cell loaded construct. It consists of
medium inlets/outlets, flow distributors, a flexible force transmit-
ting disk, and the intended space for scaffold/construct placement.
The power transmission rack includes a plunger, a pre-load screw,
and a cam-shaft. The chamber is placed on the plunger and fixed
via tightening of the pre-load screw. The cam-shaft moves the
plunger in order to apply a sinusoidal compression pattern onto
the bioreactor chamber.

To minimize the potential for contamination, all electron-
ics and mechanical instrumentation were housed beneath the
bioreactor chambers in a closed environment. The overall dimen-
sions were kept sufficiently small (width× height× depth: 9 cm×
25 cm× 35 cm) to fit in a standard CO2 incubator (Figure 1C).

The system is controlled and monitored using a custom-made
program based on LabView (NI, 622X, Austin, TX, USA) installed
on a dedicated PC. This software controls the motor connected
to the cam-shaft (Figure 1D) via a belt-drive generating a sinu-
soidal waveform for compression and simultaneously monitors
data from four independent force sensors (Figure 1D, FC23
Compression Load Cell®, Measurement Specialties, VA, USA).

CELL CULTURE
Human mesenchymal stromal cells (MSC) were isolated from
bone marrow aspirates (Braccini et al., 2005), after informed
patient consent and following protocol approval by the local
ethical committee (University Hospital Basel; Prof. Dr. Kum-
mer; approval date 26/03/2007 Ref Number 78/07), and cul-
tured as previously described (Frank et al., 2002). MSC were
expanded for two to four passages for subsequent experiments.
Then MSC were seeded on type I collagen-based OPTIMAIX
scaffolds (O3D304030 Matricel, Germany, punched to cylindri-
cal shape, 3 mm height, 8 mm diameter) or NiTi scaffolds (4 mm
height, 8 mm diameter, open-porous 3D-printed structure) (Hoff-
mann et al., 2014a) with a seeding density of 4E+ 06 cells/scaffold
using a previously developed perfusion bioreactor system (Wendt
et al., 2003, 2006). During the seeding phase, bidirectional perfu-
sion was performed using syringe pumps at a perfusion velocity
of 3 mL/min.

Open-porous, metallic NiTi scaffolds were included for the ini-
tial validation to ensure the broad operational range of the PCB.
Further investigations were conducted using OPTIMAIX due to
ease of histological assessments.

FIGURE 1 | Perfused compression bioreactor (PCB). (A) Bioreactor
chamber holding the scaffold in place and ensuring hermetic sealing as well
as force transmission toward the cell loaded construct. (B) Cross section of
bioreactor chamber indicating medium inlets/outlets (1 and 2), flexible force
transmitting disk (3), and intended space for scaffold/construct
placement (4). (C) Power transmission rack including cam-shaft (6), which
moves the plunger in order to apply a sinusoidal compression pattern onto
the bioreactor chamber. The chamber is held in place with a pre-load screw
(5) allowing for defined loading regimes. (D) A complete PCB system
comprises four bioreactor chambers, four force transmission devices, and
four force sensors (placed at position 7, not shown).

CHONDROGENIC CONSTRUCT CULTURE
Mesenchymal stromal cell seeded constructs were cultured for
3 weeks in chondrogenic medium (serum free medium supple-
mented with 0.1 mM ascorbic acid 2-phosphate, 10 ng/mL TGF-β3
and 10−7 M dexamethasone) (Mackay et al., 1998; Barbero et al.,
2003). The serum free medium consists of: Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 1 mM sodium
pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL
streptomycin, 0.29 mg/mL l-glutamine, ITS (10 µg/mL insulin,
5.5 µg/mL transferrin, 5 ng/mL selenium), 0.5 mg/mL bovine
serum albumin, and 4.7 µg/mL linoleic acid. Using peristaltic
pumps, unidirectional perfusion was applied to constructs with
a perfusion velocity of 0.3 mL/min, with media changes twice per
week (Santoro et al., 2011).

HYPERTROPHIC CONSTRUCT CULTURE
In order to withstand dynamic mechanical loading, stable carti-
laginous templates are a prerequisite. Therefore, only constructs
exhibiting good chondrogenesis were included for further inves-
tigations. Following 3 weeks of culture, cartilaginous constructs
were then separated in two groups: loaded and non-loaded.
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Non-loaded specimens were maintained in the unidirectional per-
fusion bioreactor whereas loaded specimens were transferred to
the PCB system. Hypertrophic differentiation was induced by cul-
turing constructs for 2 weeks in serum free medium supplemented
with 50 nM thyroxine, 10 mM β-glycerophosphate, 10−8 M dex-
amethasone, and 0.1 mM l-ascorbic acid-2-phosphate (Scotti
et al., 2010). Loaded constructs were exposed to an intermittent
loading regime (construct displacement ∆z = 100 µm, frequency
of f= 1 Hz, three load cycles per day comprising 2 h of loading
and 6 h of rest) for 2 weeks with a pre-load ensuring press fit of the
construct. During the application of mechanical load, the applied
forces were monitored for each bioreactor chamber separately.

QUANTIFICATION OF GLYCOSAMINOGLYCAN AND DNA CONTENTS
Chondrogenic constructs were digested in proteinase K (1 mg/mL
proteinase K in 50 mM Tris with 1 mM EDTA, 1 mM iodoac-
etamide, and 10 mg/mL pepstatin A) at 56°C overnight. The gly-
cosaminoglycan (GAG) content of the cartilaginous constructs
was determined spectrophotometrically using dimethylmethyl-
ene blue, with chondroitin sulfate as standard (Farndale et al.,
1986). The DNA content of the constructs was measured using
the CyQuant cell proliferation assay kit (Molecular Probes, Eugene,
OR, USA) and used to normalize the GAG content.

REAL-TIME RT-PCR QUANTITATION OF TRANSCRIPT LEVELS
Total RNA was extracted from cells using Trizol® (LuBioScience
GmbH, Lucerne, Switzerland) and reverse-transcribed as pre-
viously described (Frank et al., 2002). The samples were ana-
lyzed using a GeneAmp® PCR System 9600 (Perkin Elmer,
www.perkinelmer.com) and the transcription levels of the fol-
lowing genes of interest were quantified: collagen type-I, collagen
type-II, aggrecan, cartilage oligomeric matrix protein (COMP),
SOX9, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
as housekeeping gene (Barbero et al., 2003).

HISTOLOGY AND IMMUNOHISTOCHEMISTRY
After in vitro cultures, the constructs were fixed in 1.5%
paraformaldehyde and embedded in paraffin. Sections (5–10 µm
thick) were stained for Safranin-O (Fluka) and Alizarin red after
rehydration. Immunohistochemical analyses were performed to
characterize the extracellular matrix using the following antibod-
ies: collagen type-II (Col II; MPBiomedicals), collagen type-X
(Col X; AbCam), and bone sialoprotein (BSP, 1:2000, A4232.1/A
4232.2, Immundiagnostik AG, Germany). Upon rehydration in
ethanol series, sections were treated as previously described for
antigen retrieval for Col II and Col X (Dickhut et al., 2009). The
immunobinding was detected with biotinylated secondary anti-
bodies and the appropriate Vectastain ABC kits. The red signal
was developed with the Vector® Red kit (Linaris AK-5000) and
sections counterstained by Hematoxylin. Negative controls were
performed during each analysis by omitting the primary antibod-
ies. Histological and immunohistochemical sections were analyzed
using an Olympus BX-63 microscope.

RESULTS
PERFUSED COMPRESSION BIOREACTOR SYSTEM
The custom-made PCB system (Figure 1) underwent a systematic
validation of the cyclic compression regime and the monitoring

of the force sensors over a period of 5 weeks. Figure 2 depicts
representative force diagrams for chondrogenic constructs cul-
tured under mechanical loading for 2 weeks. Figure 2A displays
a force diagram of the daily loading regime consisting of loading
(2 h) and resting phases (6 h). The force necessary to compress the
chondrogenic constructs remained relatively constant through-
out the entire culture period (Figure 2A). During the loading
phase (Figures 2B,C), a sinusoidal waveform can be seen with
a periodicity of approximately 1 s leading to the targeted fre-
quency of 1 Hz. Moreover, the PCB showed a broad operational
range as both collagen-based constructs (maximal force applied
110 N, Figure 2B) and NiTi-based constructs (maximal force
applied 900 N, Figure 2C) could be stimulated without further
modifications of the system.

CHONDROGENIC DIFFERENTIATION
After 3 weeks of chondrogenic culture, MSC cultured on OPTI-
MAIX scaffolds could generate cartilaginous tissues. Cells were
embedded in lacunae and deposited extracellular matrix positively
stained for GAG and collagen type II (Figure 3A). GAG contents

FIGURE 2 | Representative acquisition diagram from a force sensor.
(A) Representative force diagram acquired during 24 h of mechanical
loading showing loading (2 h) and resting phases (4 h) for OPTIMAIX-based
constructs (n=4). Representative force diagram acquired during 2.5 s of
loading showing the frequency (1 Hz) and periodicity of the sinusoidal wave
for (B) OPTIMAIX- and (C) NiTi-based constructs (n=4).
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Hoffmann et al. PCB: in vitro fracture healing model

FIGURE 3 | Characterization of chondrogenic OPTIMAIX constructs
(post 3 weeks of perfusion culture). (A) Representative histological
Safranin-O staining for GAG and immunohistochemical staining for type-II
collagen indicating cartilaginous tissue formation (n=4). Scale bar= 1 mm
(valid for both panels). (B) Gene expression levels for MSC cultured on
scaffolds for 3 weeks. Measurements are mean±SD (n=3).

were determined to be 14.6± 3.4 µg/µg (GAG/DNA). Figure 3B
shows the expression levels of genes associated with chondrogenic
differentiation.

HYPERTROPHIC DIFFERENTIATION
Following 2 weeks of hypertrophic differentiation, constructs
exhibited increased GAG deposition (Figure 4). Similar to chon-
drogenic constructs, the scaffold cores of non-loaded hypertrophic
constructs were devoid of GAG, yet containing fibrotic tissue
and limited amounts of cells. Loaded constructs exhibited a
more homogeneous distribution of GAG, but less intense stain-
ing than non-loaded constructs indicating ongoing remodeling.
Collagen type-II staining of non-loaded hypertrophically differ-
entiated constructs was increased as compared to chondrogenic
constructs and loaded hypertrophic constructs.

Alizarin red staining showed that the ECM of both loaded and
non-loaded constructs was mineralized preferentially along the
scaffold periphery. However, loaded constructs exhibited thicker
mineralized borders as compared to non-loaded constructs as well
as mineralized islets within the construct. Collagen type-X stain-
ing was also observed to be preferentially deposited at the scaffold
periphery in both loaded and non-loaded constructs. However, it
was enriched throughout the construct in loaded samples, espe-
cially in the highly mineralized regions. BSP immunohistochem-
ical staining indicated relatively few positively stained cells in the
periphery of the non-loaded scaffolds. Loaded constructs showed
high amounts of BSP-positive cells in both the peripheral regions
of the constructs and within the internal central region.

DISCUSSION
In this work, we have developed a PCB system to apply phys-
iological dynamic mechanical loads and strains on engineered

FIGURE 4 | Characterization of loaded and non-loaded constructs
following the hypertrophic culture phase. The panels depict histological
Safranin-O staining, immunohistochemical staining for collagen type-II,
alizarin red (AR) staining and immunohistochemical staining for collagen
type-X, and bone sialoprotein (BSP), respectively (n=4). Loaded constructs
show a higher degree of maturation as compared to non-loaded constructs.
Scale bar= 1 mm (valid for all panels).

constructs to investigate the process of fracture healing. A
proof-of-concept study was performed applying dynamic
mechanical loads onto cell seeded collagen- and NiTi-based con-
structs, presenting the broad operational range of the developed
system.

The PCB underwent systematic validation revealing safe and
reliable functionality to ensure defined dynamic mechanical load-
ing of viable engineered tissues. As compared to previously
described systems (Rath et al., 2008; Ballyns and Bonassar, 2010;
Sittichokechaiwut et al., 2010; Sun et al., 2010; Lujan et al., 2011;
Matziolis et al., 2011; Omata et al., 2012; Petri et al., 2012; Puet-
zer et al., 2012; Shahin and Doran, 2012), the PCB exhibits a
broader operational range. It allows for physiological mechani-
cal compression in a consistent and reliable manner in a range
from approximately 10 N up to 1 kN, while maintaining compact
dimensions.

Given the fact that the compression applied is displacement
driven, a various range of scaffolds and tissues can be easily
investigated with dynamic mechanical loading without further
adaptation of the system. Additionally, this range can be further
enlarged via exchanging the eccentric cam-shaft, thereby adapting
the displacement toward the desired range.
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Hoffmann et al. PCB: in vitro fracture healing model

Our proof-of-concept study was conducted to assess the effect
of physiological compressive loads during hypertrophic differen-
tiation as an in vitro model for the transition from a soft to a hard
callus. Since the development of a soft cartilaginous callus is a
crucial step during secondary fracture healing (Schindeler et al.,
2008), during the initial phase of the study, MSC were seeded
on OPTIMAIX scaffolds and primed toward chondrogenesis. The
resulting engineered constructs showed cartilaginous character-
istics including: (i) ECM containing GAGs and collagen type-II,
(ii) cells embedded in lacunae, and (iii) chondrocytic gene expres-
sion. Moreover, the cartilaginous constructs exhibited stable size
and shape, enabling the application of dynamic loading within
the PCB.

In our experimental setup, constructs undergoing mechanical
loading during hypertrophy exhibited a higher degree of matu-
ration than unloaded constructs. MSC embedded in the carti-
laginous extracellular matrix of mechanically loaded constructs
displayed enlarged lacunae to a higher extent than in non-loaded
constructs. Furthermore, the diminished GAG and collagen type-
II staining, as well as the high degree of mineral deposition (Mackie
et al., 2008), collagen type-X content (Mackie et al., 2008; Gawlitta
et al., 2010), and BSP staining (Sommer et al., 1996; Gawlitta et al.,
2010) within loaded constructs underlines the late hypertrophic
state of the MSC. Moreover, as BSP has been shown to be the
main nucleator of hydroxyapatite crystals and to correlate with
the initial phase of matrix mineralization (Bianco et al., 1993),
the increased BSP staining in the ECM of mechanically loaded
constructs indicates a higher degree of maturation as compared
to non-loaded constructs. While this proof-of-concept study pro-
vides evidence of loading mediated hypertrophic differentiation,
subsequent work should be aimed at further understanding the
extent of hypertrophy (e.g., gene expression profiles).

In this study, we present our mechanically loaded hypertrophic
constructs as an in vitro model of a fracture callus, which is
undergoing the transition from soft to hard callus through remod-
eling and ossification of the soft cartilaginous callus (Gerstenfeld
et al., 2003). The results obtained from our in vitro model sys-
tem, i.e., application of dynamic mechanical compression during
the hypertrophic differentiation phase, are consistent with previ-
ous in vivo models (Grundnes and Reikerås, 1991; Buckwalter and
Grodzinsky, 1999; Hardy, 2004), which demonstrated that early
mobilization and application of mechanical loads enhances the
process of fracture healing. These results thus support the use of
the PCB as an in vitro model for dynamic mechanical loading.

CONCLUSION
In this study, we have demonstrated that the developed PCB sys-
tem depicts a versatile tool for the in vitro application of dynamic
physiological mechanical loads onto scaffolding materials with a
wide range of mechanical properties. Mechanical loading applied
via the developed bioreactor system enhances ECM mineraliza-
tion during hypertrophy of cartilaginous constructs and triggers
the maturation process of MSC toward late hypertrophic chondro-
cytes as demonstrated through the decrease in GAG and collagen
type-II, the thickened mineralized border, the increased amounts
of type-X collagen and positive BSP staining. Furthermore, the
application of cyclic mechanical loading leads to the maturation

of scaffold-based constructs. In combination with the fracture cal-
lus model, the PCB displays an advanced in vitro model and a
promising tool for further studies testing alternative fracture treat-
ments, based on engineered grafts or pharmaceutical compounds.
Additionally, toward implementation of the 3R principles (replace,
reduce, and refine) (Goldberg et al., 1996), this system could lead
to a reduction of animal experiments within the field.
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