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This paper examines MRI analysis of neurodegeneration in Alzheimer’s Disease (AD) in a
network of structures within the medial temporal lobe using diffeomorphometry methods
coupled with high-field atlasing in which the entorhinal cortex is partitioned into eight
subareas. The morphometry markers for three groups of subjects (controls, preclinical
AD, and symptomatic AD) are indexed to template coordinates measured with respect
to these eight subareas. The location and timing of changes are examined within the
subareas as it pertains to the classic Braak and Braak staging by comparing the three
groups. We demonstrate that the earliest preclinical changes in the population occur
in the lateral most sulcal extent in the entorhinal cortex (alluded to as transentorhinal
cortex by Braak and Braak), and then proceeds medially which is consistent with the
Braak and Braak staging. We use high-field 11T atlasing to demonstrate that the network
changes are occurring at the junctures of the substructures in this medial temporal lobe
network. Temporal progression of the disease through the network is also examined via
changepoint analysis, demonstrating earliest changes in entorhinal cortex. The differential
expression of rate of atrophy with progression signaling the changepoint time across
the network is demonstrated to be signaling in the intermediate caudal subarea of the
entorhinal cortex, which has been noted to be proximal to the hippocampus. This coupled
to the findings of the nearby basolateral involvement in amygdala demonstrates the
selectivity of neurodegeneration in early AD.

Keywords: shape, diffeomorphometry, preclinical Alzheimer’s disease, entorhinal cortex, cell–cell hypothesis

Introduction

Structural brain imaging via magnetic resonance imaging (MRI) has advanced our knowledge of
regional brain atrophy in several major neurodegenerative brain diseases including Alzheimer’s
Disease (AD). There is a consensus that MRI measures are an indirect reflection of neuronal injury
occurring in the brain as AD progresses.
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The three regions of the medial temporal lobe – amygdala,
hippocampus, and entorhinal cortex (ERC) – are central to the
examination of AD since the first histopathological findings sug-
gest they are affected during the earliest phases of AD (Herzog
and Kemper, 1980; Tsuchiya and Kosaka, 1990; Arnold et al.,
1991; Scott et al., 1991, 1992; Arriagada et al., 1992). Specifically
fibrillary lesions such as plaques and tangles have been observed to
accumulate in these regions. The density of these lesions correlates
with AD severity and may be associated with the integrity of
the performant pathway (Garcia-Sierra et al., 2000). Within the
medial temporal lobe, the distribution of these lesions follows a
progression first beginning in layer II of the ERC, hippocampal
region, CA1/subiculum connections with layer IV of the ERC, and
then cortex, as first described by Braak and Braak (1991).

For at least two decades, MRI research in AD focused on
patients with AD dementia andmild cognitive impairment (MCI)
[for reviews see Atiya et al. (2003) and Kantarci and Jack (2004)].
More recently, attention has turned to the preclinical phase of AD,
the phase when individuals are cognitively normal but pathol-
ogy is accumulating. Brain changes during this early phase of
AD are likely to be subtle, requiring more novel approaches
for explication. Over the past decade, comparative morphology
methods derivative of D’Arcy Thompson have emerged based on
diffeomorphic mapping of populations to dense template coordi-
nate systems. The introduction of diffeomorphic mapping allows
for the calculation of metric change, termed diffeomorphometry
(Miller et al., 2014b). Diffeomorphometry provides correspon-
dences between the population and template via geodesic position-
ing, as well as to other coordinate systems such as the high field
ERC and hippocampus atlases which we introduce here to study
atrophy. The geodesic positioning system also provides an associ-
ated set of geodesic coordinates positioning the population in the
metric space centered on the template providing a powerful statis-
tical frame (Miller et al., 2014b). These geodesic coordinates are of
the proper dimension for encoding the anatomical phenotype of
the network and act as a sensitive marker of neurodegeneration.
We generate population statistics on these geodesic coordinates
using linear effects modeling in which significance is assessed
via permutation testing against the null hypothesis while taking
multiple comparisons into account.

Focusing on networks of structures via time series of biomark-
ers offers an opportunity to examine both the temporal onset
of morphometric changes through their differential expression
across the subcortical structures, as well as their differential spatial
expression.We call the first our temporal ordering or changepoint
progressionmodel inwhich atrophy across the population ismod-
eled as following one regimen in the control group during aging,
and changes to a second regimen at some random changepoint
time. The changepoint signals a dramatic shift in behavior during
progression of network neurodegeneration, serving as an epoch
time during one’s transition from normal morphometric change
to the disease phase. The longitudinal nature of the changepoint
model provides us with the progression of the groups of subjects
within a common population allowing us to provide a picture into
the temporal ordering of the disease, the when associated to the
structural process of neurodegeneration. The second technology
associated with geodesic positioning of the high-field atlases for

the ERC and temporal lobe structures allows us to examine more
carefully thewhere of the differential expression of neurodegener-
ation within the networks of structures. Importantly, the temporal
and positional positioning technologies for studying AD allow us
to explore in the living human being one of the questions associ-
ated with several neurodegenerative illnesses, the degree to which
pathogenesis spreads in a systematic way within a network, and
whether this spread might be consistent with cell-to-cell circuit
based interactions.

Materials and Methods

Data
The study known as the BIOCARD study is uniquely positioned
to provide information concerning the evolution of brain changes
during the earliest phase of AD. All subjects were cognitively
normal when recruited, their mean age at baseline was 57.1 years,
and have now been followed for up to 17 years. By design, approxi-
mately three quarters of the participants had a first degree relative
with dementia of the Alzheimer type. MRI scans, cerebrospinal
fluid (CSF), and blood specimenswere obtained every 2 years. The
study was initiated at the NIH in 1995, and was stopped in 2005.
In 2009, a research team at the Johns Hopkins School of Medicine
was funded to re-establish the cohort, continue the annual clin-
ical and cognitive assessments, collect blood, and evaluate the
previously acquired MRI scans, CSF, and blood specimens.

The clinical and cognitive assessments of the participants have
been described elsewhere (Albert et al., 2014) and only summa-
rized here. Briefly, the cognitive assessment consisted of a neu-
ropsychological battery covering all major cognitive domains (i.e.,
memory, executive function, language, spatial ability, attention,
and processing speed). A clinical assessment was also conducted
annually. Since the study has been conducted at Johns Hop-
kins, this has included the following: a physical and neurological
examination, record of medication use, behavioral and mood
assessments (Yesavage et al., 1982; Cummings et al., 1994), family
history of dementia, history of symptom onset, and a clinical
dementia rating (CDR), based on a semi-structured interview
(Hughes et al., 1982; Morris, 1993).

The diagnostic procedures are comparable to those used in
the Alzheimer’s Disease Research Centers program involving a
two-step process by which a decision is first made about whether
the subject is normal, mildly impaired, or demented (based on
the clinical history and the cognitive testing), and then (if the
subject is judged not to be normal) the likely cause(s) of the
cognitive impairment is determined. The estimated age-of-onset
of clinical symptoms used in the changepoint analyses was estab-
lished during the clinical interview by the clinician, who evaluated
the subject (or on the basis of clinical notes in the record) and
re-confirmed during the consensus conference.

The MRI scans analyzed here were acquired during the period
1995–2005 involved 335 participants at baseline, with a total of
a total of 805 obtained in total over subsequent years, with a
mean of 2.3 scans per person. The mean interval between follow-
up scans was 2.02 years. The scans acquired at the NIH were
obtained using a standard multi-modal protocol using GE 1.5T
scanner. Coronal SPGR scans were used for analyses presented
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here, the Coronal SPGR (Spoiled Gradient Echo) sequence
(TR= 24, TE= 2, FOV= 256× 256, thickness/gap= 2.0/0.0mm,
flip angle= 20, 124 slices).

Of the 335 subjects with scans at baseline, a total of 230 individ-
uals remained cognitively normal, and 50 or so developed incident
cognitive impairment and were diagnosed with MCI (of these,
8 subsequently progressed to AD dementia). The subjects who
were control at the time of the scans were obtained but became
impaired over time are referred to here as having “preclinical AD”
(Sperling et al., 2011). Of the 230 control, who remained control
on follow-up, 136 had repeatMRI scans (M= 2.98/subject). Of the
50 or so participants with preclinical AD, 33 had repeatMRI scans
(M= 2.94/subject). In addition, 20 or so participants received
a diagnosis of MCI or AD dementia during the time that the
MRI scans were obtained and are referred to as the symptomatic
group. The analyses described below have been completed for
the amygdala, hippocampus, and ERC for 221 control subjects,
50 preclinical subjects, and 20 symptomatic subjects with average
ages at entry of 55, 62, and 64, respectively, with ApoE-carrier
status of 32, 33, and 70%, respectively. The number of scans within
each group was 2.2, 2.3, and 3.6, respectively. For details seeMiller
et al. (2013).

Diffeomorphometry and Geodesic Positioning
Surface LDDMM
Shape diffeomorphometry of subcortical structures (Miller et al.,
2014a, 2013; Tang et al., 2014; Younes et al., 2014a) follows three
steps: (i) segmentation of the target structures, (ii) generation of a
single template coordinate system from the population of baseline
scans, and (iii) generation of the shape markers by mapping of the
template onto each of the target segmented structures represented
via triangulated meshes. For the segmentation of the amygdala,
ERC, and hippocampus structures, we use large deformation
diffeomorphic metric mapping (LDDMM) with landmarks to
ensure consistency of mappings (Miller et al., 2013; Younes et al.,
2014a). All surfaces are rigidly aligned via rotation and translation,
with right subvolumes flipped before alignment to ensure that
all structures may be compared. From these sets of surfaces,
we do template estimation and the linear mixed-effects (LME)
modeling.

The morphometry shape statistics are indexed to a common
template coordinate system by computing a smooth, invertible,
diffeomorphic correspondence between the template and the sur-
faces using LDDMM (Vaillant et al., 2007; Qiu and Miller, 2008).
As depicted in Figure 1 for the longitudinal mapping, given
targets St1 , St2 , . . . , StN , 0 < t1 . . . < tN = 1, the mapping
solves a variational problem transforming the triangulated surface
template onto the targets satisfying φ̇t = vt ◦φt, φ0 = id, mini-
mizing an integrated energy density ∥vt∥2V for the vector fields,
and a summedmatching cost E(·,·) between template and surfaces
given by ∫ 1

0
∥vt∥2Vdt+

N∑
i=1

E
(
φti (Stemp) , Si

)
(1)

The first term is a geodesic distance in shape space correspond-
ing to a least-deformation path for deforming coordinate systems

(Grenander and Miller, 2007; Younes, 2010). When there is only
one target surface, then the sum reduces to one term.

The N error terms compute the mismatch between surfaces by
assuming the deformed template and target surfaces have local
parameterizations S = q(u), u ∈ U, S′ = q′(u), u ∈ U,
with the distance between smooth coordinates based on the dis-
parity between the normals of the surfaces. This is described in
Appendix 1.

Since the vector space v∈V of vector fields is spatially smooth,
it has a reproducing kernel defined as K implying that the varia-
tionalminimizers of Eq. 1 will involve the kernel (see Appendix 1).
The variational problem of Eq. 1 is solved by representing the
deforming surfaces as a dynamical system, with state q0, u∈U,
qt =φt(Stemp), q0 = Stemp, which evolve to match the boundary
conditions given by the terms in the variational problem Eq. 1.
The target surfaces enter through boundary conditions involving
the state transforming the template (see Appendix 1).

Template Estimation from Populations
While single volume numbers can be averaged across subjects,
the morphometry markers must be synchronized by building
correspondences across the population, requiring registration to
the common template coordinates. This is performed by rigidly
aligning volumes and creating a single family of template shapes
using a Bayesian generative model of the surfaces as random
deformations of an unknown, to be estimated, template (Ma et al.,
2010). Figure 10 shows the amygdala, ERC, and hippocampus
templates used for the statistical studies with the triangulated
meshes with morphometry markers superimposed. The template
shape coordinates were computed by running the template gener-
ation algorithm on the population of 325 baseline scans and are
blind to group labels. The high-field templates shown in Figure 2
are defined with the same definitions at the high resolution as the
definitions used for constructing the template in the population.

High Field Atlasing via Diffeomorphometry and
Geodesic Positioning
Diffeomorphometry provides a geodesic positioning system
enabling both the positioning or transfer of label maps from one
coordinate system relative to another, as well as geodesic coor-
dinates (Miller et al., 2014b). The geodesic coordinates encode
the shape phenotype and form the biomarker Jacobian in the
statistical shape analysis described below. The geodesic position-
ing is what is required for using our high field 11T label maps
for amygdala, ERC, and hippocampus. The geodesic positioning
algorithm provides diffeomorphic correspondence between the

multiple atlas coordinate systems X11T
φ
�
φ−1

Xbiocard, with the corre-

spondence φ transporting the label maps on the high-field 11T
atlas L11T(x), x∈X11T from the high-definition coordinate system
to the population template according to

Lbiocard (x) = φ · L11T(x) = L11T ◦ φ−1 (x) , x ∈ X11T. (2)

This equation is the algebraic definition of transporting the
dense label map from one coordinate system to another, with
interpolation to coordinate centers.
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FIGURE 1 | Cross-sectional and longitudinal template-centered
analyses. For cross-sectional analyses, only first scan is depicted being carried
to common template coordinates. For high-dimensional shape
diffeomorphometry, the common template coordinate system is generated to
which all information in the population is registered. For longitudinal analysis,

template-centered analyses map every element to the template; geodesic
analyses uses the subjects own scan as its subject-dependent template (within
individual), from which rates of change and intercept can be computed (>2
scans for rate). For high-dimensional shape, this information is mapped
cross-sectionally to the common template coordinates.

FIGURE 2 | High-field 11T atlas of amygdala, ERC, and hippocampus.
ERC parcelation as defined (Krimer et al., 1997). Abbreviations in the legend
are named (from top to bottom) Sulcal, PR Prorhinal, MR, MC, Medial rostral,
and caudal, IS, IC, IR intermediate superior, caudal, rostral, L lateral.
Hippocampus parcelation Sub Subiculum, CA3/Dentate Gyrus, CA2, CA1.
Amygdala as defined (Miller et al., 2014a) with AM, CM, BM, BL, L
centromedial, basomedial basolateral, lateral, not available to this view. Planar
section cuts perpendicularly at 17mm along the rostral–caudal axis (R–C) of
hippocampus through the Intermedial caudal parcel (light blue), which is most
proximate to hippocampus. In the coordinate system for the temporal lobe,
the R–C axis lying along the hippocampus has the rostral end of the ERC with
beginning of S, L, PR, and rostral end of amygdala with lateral and basolateral
structures beginning at 7.5mm along the R–C axis. The head of the
hippocampus CA1 begins caudally several mm at the 11mm R–C axis.

Figure 2 shows the high field partitions of amygdala, ERC,
and the hippocampus. We have already published the high-field
amygdala partition into core and non-core structures including
subvolumes of lateral, basolateral, basomedial, and centromedial

(Miller et al., 2014a), and a high-field hippocampus partition into
CA1, CA2, CA3/dentate-gyrus, subiculum (Tang et al., 2014).
Definitions for these atlases are described in http://caportal.cis.
jhu.edu/protocols. Also shown in Figure 2 is the parcelation of
the ERC based on eight subfields defined by Krimer et al. (1997).
Five main subfields (prorhinal, lateral, intermediate, sulcal, and
medial – Pr, L, I,M, and S)were definedwith subareaswithin these
subfields demarcated, with subfield I divided further into three
subareas, and M and S each divided into rostral and caudal sub-
areas. The parcelation was based on stereological measurements
from post-mortem human data such as neuronal size and density
as well as subdivisional volume and laminar thickness, which are
different in the subfields.

Using Seg3D (Scientific Computing and Imaging Institute), the
procedure for delineation begins with the ERC reconstructions
(Miller et al., 2013) with the ERC viewed as the representa-
tion of the Brodmann Area 28 and part of Area 35. Then the
six coronal sections that appear visually correspondent to the
sections in Figures 3A–F of Krimer et al. (1997) were located.
These sections are effectively the lines A–F delineated in the
2D parcelation map of Van Essen and Maunsell (1980) into the
five main subfields Pr, L, I, M, and S; see Figure 2 in Krimer
et al. (1997). In each of the six sections, landmarks corresponding
to the lateral and medial extents of the subfields were placed,
with the landmarks joined by lines along the pial and gray/white
surfaces. Appendix 4 describes these subfields. In Figure 2, the
axis coordinate system is shown in millimeters, with the ros-
tral–caudal (R–C) axis in parallel with that of the hippocam-
pus. The planar section is shown being perpendicular to the
R–C axis through the intermedial caudal partition (light blue)
at 17mm along the R–C axis. In our coordinate system, the
R–C axis lying along the hippocampus has the rostral end of
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the ERC with beginning of S, L, PR, and rostral end of amygdala
with lateral and basolateral begin at 7.5mm along the R–C axis.
The head of the hippocampal CA1 subfield begins caudally at the
11mm point of the R–C axis.

Figure 3 shows mapping of labels from the high field 11T
ERC atlas onto BIOCARD ERC population template Eq. 2. Col-
umn 1 shows high-field parcelation of the 11T atlas; column 2
shows BIOCARD population atlas deformed onto the 11T atlas

FIGURE 3 | Mapping of labels from high-field 11T ERC atlas onto
BIOCARD ERC population template showing local coordinate system
in millimeters around the ERC. Column 1 shows high field parcelation of
11T atlas; column 2 shows BIOCARD population atlas deformed onto the 11T
atlas transferring 11T high field subfield labels; column 3 shows high-field
atlas labels transferred to BIOCARD template. The regions abbreviated in the
legend are named (from top to bottom) Sulcal, Prorhinal, Medial rostral,
Medial caudal, Intermediate superior, Intermediate rostral, Intermediate
caudal, Lateral. S in dark red denotes sulcal region which is most lateral.
Biocard (right column) has been registered to high-field atlas (left column); so
rostral–caudal axis has units in millimeters associated to Figure 2, 11T atlas.
ERC starts at 7.5mm rostral–caudal.

FIGURE 4 | Panel 1 shows an example of the surface meshes, generated
from segmentations of the entorhinal cortices (ERC’s); Panels 2 and 3
show the coronal and sagittal views of surface intersecting the MRI
entorhinal cortex boundaries. Red lines depict the surface (red) lying on
the gray-white matter interface. Panel 4 shows the Labeled Cortical

Distance Mapping (LCDM) from the gray matter segmentation and the
surface, depicting the frequency of gray matter voxel as a function of
distance to the gray-white surface. Thickness is calculated as the 95%
point of the cumulative distribution function generated from the distance
histogram.

transferring 11T high-field labels; column 3 shows high-field atlas
labels transferred to BIOCARD template.

The ERC is modeled as both a subvolume for morphome-
try as well as a thin laminar cortical structure with a laminar
thickness dimension. Here, a closed smooth surface is generated
from the gray matter volume from which the gray/white surface
is extracted by curvature-based dynamic programing delineation
of the extremal boundaries (Ratnanather et al., 2003) so that the
surface closest to the white matter is retained. Figure 4 illustrates
a reconstruction of the surface meshing of the ERC segmenta-
tion, which is cut to extract the surface (red) that lies on the
gray–white matter interface. From this, we calculate the labeled
cortical distance mapping (LCDM) (Miller et al., 2003, 2000)
which calculates the set distances of the gray matters voxels to
the cut surface. Several metrics for thickness can be extracted; the
first is the constant thickness, zero-curvature approximation in
which the thickness is approximated by the volume/surface-area,
the second is the 95th percentile of the LCDM density profile.
Figure 5 (right column) shows the surface areas (top row) and
thicknesses (middle row) of ERC for control (blue), preclinical
(green), and symptomatic (red) groups.

Mixed Linear Effects Models of Shape Morphometry
Diffeomorphometry and GPS provides geodesic coordinates,
which are directly linked to the Jacobian of the mappings systems

X biocard
template

φ
�
φ−1

X biocard
population

defining the correspondences between

coordinate systems in the population of control, preclinical, and
symptomatic subjects. The Jacobian det

(
∂φ
∂x

)
measures the local

expansion/compression of the target coordinate system relative to
the template coordinate system, indexed over the surfaces of the
three structures (the amygdala, ERC, and hippocampus) between
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FIGURE 5 | Left column shows amygdala (top), ERC (middle), and
hippocampus (bottom), volumes for control (blue), preclinical (green), and
symptomatic (red) subjects. Right column shows ERC surface area (top)
and thickness derived from 95% of LCDM distances (middle). The bottom

right panel shows atrophy rates for volumes in the amygdala, hippocampus,
and ERC, and surface area and thickness in the ERC. Note the
hippocampus volume for preclinical subjects was not significant and thus
omitted.

the groups (control, preclinical AD, and symptomatic AD). The
morphometry marker is modeled using several LME models
(Miller et al., 2013; Younes et al., 2014a,b): (i) a longitudinal time-
series model in which the time-series within each subject is mod-
eled as a linear-slope as a function of age at the time of the scan and
an intercept α +α′age for control, corrected by β + β′age for the

disease category becoming a purely cross-sectional model when
only a single scan for each subject is examined (or available) with
testing between the groups determined byα,β alone, (ii) a change-
point model synchronizing all the population data at the time of
clinical symptom onset and models the measures in the network
of structures has having rate α +α′age up to changepoint time
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tsymptom −∆ and switching to α + (α′ + β′) age after changepoint.
∆ is the unknown time in years before clinical symptom onset
that the atrophy switches. For cross-sectional analyses, there is
no age; for the longitudinal time-series then age is a descriptor;
for changepoint detection an explicit variable is selected for the
changepoint from one to the other model.

Each subject’s left and right structures is registered to the tem-
plate, resulting in the computation of a normalized deformation
marker Jv(s) defined as the logarithm of the surface Jacobian
indexed to the template surface at vertex v in subject s, measur-
ing the logarithm of the local expansion/reduction around each
vertex relative to the targets. The statistics on shape markers are
constructed via linear, mixed effects modeling taking the mean
of the atrophy as determined by an intercept and a rate. A single
volume marker is also analyzed.

Themixed effectsmodel (Bernal-Rusiel et al., 2012;Miller et al.,
2013; Younes et al., 2014a,b) corresponds to representing the noise
in measuring the shape marker as corresponding to two differ-
ent processes: one associated to the time series within a subject
and the second noise associated to the cross-sectional variation
from subject to subject. The analysis includes age, gender, and
log intracranial volumes as covariates, and computes statistics at
each vertex of the triangulated template surface returning p-values
corrected for multiple comparisons using permutation testing
(Nichols and Hayasaka, 2003). The models are summarized as
follows:

1. Model I – longitudinal analysis: Introducing group variables
g(s) equal to 1 if subject s belonged to a diseased group, and
to 0 otherwise, the LMEmodel longitudinal model is given by:

Jvj(s) = (αv + αv
′ aj(s)) + (βv + βv

′ aj(s))g(s)
+ γvd(s) + δvi(s) + εvj(s), (3a)

where aj the age of the jth scan in the time series, with the
covariates of gender d(s) and logarithm of intracranial vol-
ume i(s), and v is vertex marker number. The null hypothesis
has β = β′ = 0 for all markers, while correcting for multiple
comparisons.
The cross-sectional version has only the first scan (no time

series) with no additional rate parameter α′ = β′ = 0, the
model reducing to:

Jv (s) = αv + βvg (s) + γvd (s) + δvi (s) + εv (s). (3b)

2. Model II – longitudinal analysis with changepoint: With change-
point, then the indicator (Heaviside) function (rather than
group) determines regime change.

Jvj(s) = αv + αv
′ aj(s)

+ βv
′ (aj(s)− (tsymptom − ∆))H(aj(s)− (tsymptom − ∆))

+ γvd(s) + δvi(s) + εvj(s), (4)

where the Heaviside function H(x)= 1 for x≥ 0 and 0 other-
wise, and a= tsymptom −∆ is the age before clinical symptom
time exhibiting biomarker changepoint. ∆ is the random vari-
able representing the time in years before clinical symptom of
slope change.

In the longitudinal case, the noise is modeled as
εvj(s)=ηv(s)+ ζvj(s), where ηv(s) is a “random effect” measuring
between-subject variation, and ζvj(s) measures within-subject
variation; both processes are centered Gaussian, variance ρvσ

2
v

and σ2
v , respectively. The within-subject variation does not

appear in the cross-sectional model. The model parameters
θv = (αv, α′

v, βv, β′
v), σ2

v , ρv are estimated using maximum-
likelihood, with the estimation procedure derived in the appendix
for all dimensions, v the hypotheses in the likelihood ratio test.
Evaluating the log-likelihood, Eq. 5 below, at the MLEs of the
parameters gives the log-likelihood determined by the mixed
sums of squares as described in Appendix 2 in the Supplementary
Materials. For Models I and II, we test for the null hypothesis
with H0

v:β
′
v = βv = 0 for all v, while correcting for multiple

comparisons. For volume testing, the logarithm of the volume is
used. For the changepoint onset model, ∆ is estimated as well. For
Model II changepoint there is only one offset so βv = 0 under
all hypotheses. The p-values are computed using permutation
sampling (Nichols and Hayasaka, 2003) running until 10%
accuracy is reached with high probability. The joint test statistic
is computed by taking the log-likelihood difference between the
null hypothesis H0

v : β′
v = βv = 0 and the alternative general

hypothesis H1
v : (β

′
v, βv) ̸= (0, 0), computing

Sv = LH1
v − LH0

v . (5)

For the linear effects model, the log-likelihood difference
between the hypotheses H1

v :βv ̸= 0 and the null is equivalent
to computing, for each coordinate v, the logarithm of ratio of
the residual variance for the complete H1

v hypothesis to the one
obtained from the null hypothesis. The p-values are computed
by random permutation of the residuals, correcting for multiple
comparisons. To compute p-values, S*= maxvSv, the global statis-
tic maximizing over shape coordinate v, is computed for a large
number of permutations of the subjects randomizing the model
residuals, with the p-value given by the fraction of times S* is larger
than the value obtained; see section A1.4 in Appendix A in Younes
et al. (2014a).

This permutation testing provides a conservative estimate on
the set of vertices v on which the null hypothesis is not valid at a
5% family wise error rate (FWER). This set is defined by D= {v:
Sv ≥ q*} where q* is the 95th percentile of the observed value over
the permutations (Nichols and Hayasaka, 2003).

For the cross-sectional Model I, with spatially normalized
deformation marker Jv(s) measuring the amount of expan-
sion/atrophy at vertex v of the template surface in registering it to
subject s, then the group variables g(s)= 1 if subject s belongs to
the symptomatic group, and 0 otherwise belonging to the control
group. The covariates are gender and intracranial volume as above
with residual noise εv(s) Gaussian distributed with variance σ2

v ,
then

Jv (s) = αv + βvg (s) + γvd (s) + δvi (s) + εv (s) (6a)

Letting ε0ν(s) denoting the residuals for the model under H0
v :

βv = 0 permuting the residuals underH0 = null, with π a random
permutation of the subjects gives

Jπ
v (s) = α0

v + γ0vd (s) + δ0
vi (s) + ε0v (πs) (6b)
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We test for the null hypothesis withH0
v:βv = 0 for all v. To com-

pute p-values, S* is computed for a large number of permutations
of the residuals, with the p-value given by the fraction of times S*
is larger than the value obtained with the true groups.

Results

Volumes and Atrophy Rates
The left column of Figure 5 shows the volumes of amygdala (top
row), ERC (middle row), and the hippocampus (bottom row) for
the left temporal lobe structures. The control, preclinical, and
symptomatic subjects are shown as blue, green red circles respec-
tively. The top two rows of the right column show the surface areas
and thickness of the ERC.

From these volumes, atrophy rates can be calculated since
within-subject volumes in the time-series are available. For com-
puting atrophy rates, only subjects with three or more scans were
included. The bottom right panel of Figure 5 shows a summary
of the atrophy rates for linear fits of the amygdala, hippocampus,
and ERC volumes as a function of scan number for the control, the
preclinical group, and the symptomatic group. Left column shows
the total atrophy of amygdala inmm3 andpercentage, respectively;
right column shows the same for the hippocampus. Preclinical
the atrophy rates in the amygdala are 0.6% in control, increasing
to 1.2% and doubling again to 2.4%. The hippocampus atrophy
rate in the symptomatic group has an atrophy rate of 1.6% which
is more than double than that of the control group (0.7%). The
rightmost part of the bottompanel ofFigure 5 shows the summary
of the bilateral results for the atrophy rates in percentages for the
ERC, as volumes in mm3, surfaces in mm2 and thickness in mm.
The ERC shows the most extreme atrophy increasing from 1% in
control to 2.7% in the preclinical group to 4.6% in symptomatic
group.

Differential Expression of Degenerative Change
Across Structures
Clearly, the volume and atrophy rates signals the fact that degen-
eration is expressed differentially across the structures. In addi-
tion, there is sufficient measurement and anatomical variation in
the markers that likelihood modeling to calculate the statistical
significance of the apparent atrophy rates and atrophies asso-
ciated to the disease states is required. So the LME models of
I, II modeling the Jacobian and volume markers are used. For
studying populations, the distribution of high-dimensional mark-
ers of diffeomorphometry presents significant challenges. While
single volume numbers can be averaged across subjects, the mor-
phometry markers must be synchronized across the population,
requiring registration to the common template coordinates which
is performed by rigidly aligning volumes and creating a single
family of template shapes (Ma et al., 2010); see Figure 10 for
sample template shapes. To examine the differential manifestation
of neurodegeneration across the network of structures in the
groups, the cross-sectional linear effect Model I is the simplest
using only the first scan for each subject. Table 1 presents the
p-values from cross-sectional testing (only first scan included)
between the control and symptomatic groups based on the volume
(column 2) and Vertex (column 3) morphometry measures. The

TABLE 1 | p-value of cross-section linear mixed-effects morphometry
modeling including first scan only from Model I comparing control and
symptomatic groups.

Cross-section Model I (first scan only) Volume Vertex

Control versus symptomatic p-Values p-Values

Amygdala (L) 0.04 0.009
Amygdala (R) 0.08 0.003
Hippocampus (L) 0.06 0.21
Hippocampus (R) 0.1 0.0005
ERC (L) 0.00002 0.0002
ERC (R) 0.002 0.0005

The table presents the p-values from cross-sectional testing of linear mixed-effects model
for control versus symptomatic groups based on the volume (column 2) and vertex (column
3) morphometry measures. Columns list p-values for the volume markers (1 dimension per
structure) and vertex (750–1500 dimensions per structure).

TABLE 2 | Differences in estimated onset of morphometric change in
relationship to symptom onset for the amygdala, ERC, and hippocampus
for Model II.

Changepoint Model II Volume Vertex

p-value ∆ ±SD p-value ∆ ±SD

Amygdala (L) 0.0005 6±2.6 0.00005 4±1.4
Amygdala (R) 0.007 3.5±4.0 0.0024 3.5±1.9
Hippocampus (L) 0.019 3±2.4 0.035 3±0.9
Hippocampus (R) 0.13 5.5±3.8 0.029 5±1.5
ERC(L) 0.000025 7±3.7 0.000025 9±1.6
ERC (R) 0.0056 8.5±4.9 0.006 8±3.2

Onset is shown as average±SD (∆ ±SD). Results based on groups with 221 control, 50
MCI, and 20 AD versus previous (230 control, 49 MCI, and 17 AD); based on bootstrap
averages and rounding to integer.

columns list the p-values. For the cross-sectional Model I, left and
right structures for each control and symptomatic subject were
registered to the template giving spatially normalized deformation
marker Jv(s)measuring the amount of expansion/atrophy at vertex
v of the template surface in registering it to subject s. Taking the
group variables, g(s)= 1 if subject s belongs to the symptomatic
group, and 0 otherwise belonging to the control group with the
covariates as gender and intracranial volume as in Eqs 6a and 6b.

The p-values generated from permutation of the vertex based
linear effects deformation markers of Eqs. 6a and 6b are shown
in the rightmost columns of Table 2; the volume results in which
J is replaced by the structure volume are shown in column 2.
For volume statistics no multiple testing correction is required (1
volume dimension versus the 750–1500 vertex dimensions).

To illustrate the differential spatial extent of significant atrophy,
Figure 6 shows the vertices satisfying the FWER criterion at 5%
(this means that, with probability 0.95, there is no false detection
among the vertexes considered as significant); also shown are the
vertex markers that were significant with the color of the vertices
given by the atrophy measure −βv. Since the left hippocampus
was marginally significant, we deleted the FWER plot (bottom
left panel). In almost all cases, the sensitivity of the vertex based
method is illustrated by the rejection of the null hypothesis. The
sensitivity of the ERC compared to the hippocampus for example
is demonstrated by its extreme significance. Also, notice that
all change is represented via monotonically decreasing relative

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2015 | Volume 3 | Article 548

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Miller et al. High-field atlasing of entorhinal cortex

FIGURE 6 | Longitudinal Model I cross-section, first scan only,
symptomatic versus control: Atrophy visualization FWER 5% as
measured by testing group model testing αv versus αv + βv showing
atrophy relative to control template of symptomatic as signaled by

Jacobian of atrophy and atrophy rate demonstrating percentage
decrease of control to symptomatic group. Top row shows amygdala,
middle row entorhinal cortex, and bottom row hippocampus. Only right
hippocampus is shown because the other side is not significant.

volume of groups relative to control corresponding to the warm
red colors (blue denotes no change, red shrinkage), with the ERC
demonstrating as much as 18% decrease in local surface area
vertex by vertex relative to the control group. The amygdala shows
less change, maximally 12%.

The “When” of Network Degeneration via
Temporal Changepoint Modeling
The monotonic decrease in relative volume of the disease group
to the control group as indicated by the maximal surface area
decrease of 18% locally is what we term the atrophy. It acts as
our localized marker or signal associated to the underlying neu-
rodegeneration process. The localized markers shown in Figure 6
are all derived from one sample per subject. There is no use of
the fact that many subjects, at least 80 have three scans or more
corresponding to a time-series from which a temporal ordering
of change can be estimated. Our changepoint model attempts to
do this by introducing a global time ordering to the change which
must be estimated and using the cross-sectional responses of each
individual to fill in the information to this temporal ordering.

Figure 5 illustrates the massive confounder that an individual’s
age presents in understanding the neurodegeneration process as
manifest by the disease. While age is a risk factor for disease,
the profile of neurodegeneration is individualized, alignment of
atrophy measures cross-sectionally has an associated inherent

confounding variation appearing tomask the trend. The temporal
ordering changepoint model we have developed attempts to syn-
chronize the change dependence of individuals according to their
clinical time rather than their ages. So, we model the processes
of atrophy in reverse, proceeding backwards or in negative time
relative to the synchronizing clinical time, thereby allowing us to
align all of the subjects based on their estimated clinical time. This
acts to remove the confounder associated to the fact that different
subjects follow their own time courses determined by when their
clinical symptom time is.

The changepointModel II assumes that there is a regime change
in the neurodegeneration process that occurs at some random
time for all subjects in the disease populations, an unknown ∆
years before clinical symptom time. This random time ∆ preceed-
ing symptom time is subject dependent as well as – structure in
the network – dependent. It must be estimated. The changepoint
models neurodegeneration so that for ages age< tsymptom −∆, the
atrophy process follows one regimen or slope given byαv+α′

vage,
and for individuals after their changepoint time age≥ tsymptom −∆
they follow a separate regimen with the atrophy slope increas-
ing with identical intercept αv + (α′

v + β′
v) age. We can view

the symptomatic time as the X= 0 ordinate or origin for all
subjects, with time progression preceding clinical symptom time
expressed relative to the clinical symptom time or origin. So,
X= 0 clinical symptom time plays the role of the synchronizing
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FIGURE 7 | Longitudinal changepoint Model II fits of left amygdala
(red), ERC (blue), and hippocampus (green). The Y-axis shows percent
decrease of surface area relative to control averaged over template vertices
Morphometry markers plotted using subject’s changepoint time ∆ relative to
clinical onset time X= 0 occuring at the sharp bend). Changepoint occurs at
the sharp bend in curves between ∆:8 and 9 years for the ERC. The median
changepoint times (before onset) in the bootstrap samples were ERC: 9 years
(left) and 10 years (right), Amygdala: 4.0 years (left) and 3 years (right),
Hippocampus: 2.5 years (left) and 5.0 years (right). Graphs have been scaled
so that they all start at 0% decrease and end at 100%.

event for the population. The slope parameters α′
vage before

changepoint are estimated from the control subjects and from
preclinical and symptomatic subjects before changepoint ∆ and
the slope parameters (α′

v+ β′
v) age after onset are estimated from

the preclinical and symptomatic populations after changepoint,
the changepoint time ∆ being determined so that the data like-
lihood is maximized. The changepoint model was applied to all
of the structures with permutation testing calculated for rejection
of the null hypothesis with H0

v:βv = 0 for all v. Table 2 shows
the result of applying Model II for changepoint estimation, with
the associated p-values depicted for each structure in columns
2 and 4, corrected for multiple hypotheses. The onset time and
SDs were estimated for each changepoint model ∆ ± SD and are
in columns 3 and 5. We see in all cases, the likelihood ratio
testing based on the high dimensional vertex markers is strongly
significant for ERC and amygdala, with the hippocampus giving
the weakest rejection of the null hypothesis. Not only is the ERC
the most sensitive signaler of significant atrophy rate change dur-
ing progression, but also earliest as indicated by the time before
clinical symptom onset being on the order of 8 years. The left
ERC shows the most significant changepoint profile, occurring
earliest.

Figure 7 shows the changepoint model estimated from the
population of left temporal lobe structures, ERC (blue), amygdala
(green), and hippocampus (red). The models shown are based
on the estimated parameters αv, α′

v, β′
v, ∆ whose p-values are

given in Table 2, but have been scaled to show 100% change
for all three curves. The model curves are depicted for each
structure with slope parameters before changepoint and after
changepoint, each with their own changepoint time ∆ relative to

synchronizing clinical symptom time denoted as X= 0 on the X-
axis. The Y-axis shows surface area percent decrease averaged
over the vertices relative to the original template. Changepoint
occurs at the sharp bend in curves between ∆: 9 and 10 years
for the ERC, with a SD of 1.5–3.5 years (see Table 2). The left
ERC appears to have a strong atrophy rate after change point.
The median changepoint times (before onset) in the bootstrap
samples were 9 years (left) and 10 years (right) for ERC, 4.0 years
(left) and 3 years (right) for amygdala, and 2.5 years (left) and
5.0 years (right) for hippocampus. Figure 8 shows a histogram
of time-differences between estimated changepoints for the ERC
compared to amygdala (left column) and ERC compared to hip-
pocampus (right column) for 10,000 bootstrap samples for left
(top) and right (bottom) sides. For the left, onset times were
larger in ERC than in amygdala 98.1% of the time and larger
in ERC than in hippocampus 99.7% of the time with a median
difference of 5.0 and 6.5 years. On the right, it was 87.5% and
82.5% for amygdala and hippocampus, respectively, with amedian
difference of 6.2 and 4.3 years.

The ERC is clearly differentially more sensitive than the other
structures in the network in that atrophy occurs earliest, but we
also see that the left ERC appears to be more strongly significant
in p-value when tested against the null hypothesis withH0

v:β
′
v = 0

for all v. The atrophy rate slope of the left ERC across the vertices
is large. Figure 9 depicts the annualized atrophy rates of the ERC
vertices β′

v, which are most significant under the FWER at 5%
permutation testing of the changepoint model. The significant
vertices contributing to the strong p-values under the FWER at
5% criterion are colored with the annualized atrophy rate β′

v
occurring after changepoint; non-significant vertices are depicted
as blue. The top and bottom rows of Figure 9, respectively, show
the superior and inferior views. Notice that the left ERC has a
maximum value of β′

v = 4.5% atrophy rate per year as compared
to the right having a maximum value of β′

v=1.3% atrophy rate per
year. It appears as if the changepointmodel for neurodegeneration
in the ERC is being most strongly signaled by the annualized
atrophy rate parameter.

The “Where” of Neurodegeneration via High-Field
Atlasing
Having examined the when of the neurodegeneration of the net-
work of structures, we now examine the where in the network
the localized atrophy is occurring. Returning to the longitudinal
time-series, we use Model I to define the single most sensitive
markers for signaling where change is occurring, independent of
the temporal order onset model. Notice Model I does not include
the extra parameters of a changepoint or regime time within the
longitudinal time-series of each individual. The vertex deforma-
tion marker Jv(s) is modeled as αv+ α′

v (s) a (s) + β′
(v) a (s) g (s),

with the group category of symptomatic determining the extra
slope rate of annualized atrophy. In this model we perform the
permutation testing for computing p-value on the mixed effects
model by testing against the null hypothesis with H0

v:β
′
v = 0

for all v and permuting the residuals checking for the number
of times the true labeling under the model is rejected, correcting
for multiple comparisons. Figure 10 shows atrophy visualization
of the FWER significant vertices for symptomatic and control
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FIGURE 8 | Histogram of time-difference between estimated
changepoints for left-side (first row) and right-side (second row)
structures (left: ERC – Amygdala; right: ERC – Hippocampus) based
on 10,000 bootstrap samples. On the left side, onset times were found

larger in ERC than in Amygdala 98.1% of the time (87.5% on the right side)
and larger in ERC than in hippocampus 99.7% of the time (82.5% on the
right side), with respective median difference of 5.0 and 6.5 years (6.2 and
4.3 on the right side).

groups. For the statistically significant vertices as defined by the
FWER at 5%, the vertices are colored with the atrophy measure
with value −(β + β′

v age) where age is the average age in the
symptomatic AD population, with the natural log of Jacobian
of atrophy rate at that vertex plotted as a percentage decrease
of the control to symptomatic group. The values β , β′

v are
estimated according to the Model I using maximum-likelihood
estimation (see Appendix 2) with a parameter value at each vertex.
In Figure 10, the structures are placed into the coordinates of one
brain depicting the relative relationships of the most significant
changes shown in color from blue to red, with blue depicting the
non-significant vertices as measured by the FWER at 5% proce-
dure. Maximum change of relative surface area of symptomatic
population to control population is 21% in the ERC, with 15%
maximal changes in the hippocampus and amygdala. All vertices
for which change is not significant in the permutation testing are
denoted as blue; change is one direction, atrophy.

Table 3 shows the p-value significance for substructures
between the control versus the symptomatic group category based
on the longitudinal time-series Model I for all scans modeling
the log Jacobian of change as αv+ α′

vaj (s) + β′
vaj (s) g (s). The

permutations on residuals are tested under the null hypothesis
with H0

v:β
′
v = 0 for all v, correcting for multiple comparisons.

Significance is shown in column2 for volume only (one dimension
per structure) and in column 3 for the vertex-based modeling
(750–1500 dimensions per structure). All structures are signifi-
cant with the significance increasing from the volume testing to
the vertex based high-dimensional markers.

The table presents the p-values from LME longitudinal time-
series Model I testing control versus symptomatic group based
on the volume (column 2, 1 dimension) and vertex (column 3,
750–1500 dimensions) morphometry markers.

Comparing to Braak and Braak Staging via
High-Field Atlasing
We use high-field 11T atlasing to demonstrate that the network
changes are occurring at the lateral most extent of the medial
temporal lobe network in the high field atlas. Specifically, we
use the high-field parcelation of the ERC that we have developed
based on eight subfields derived: prorhinal, lateral, intermediate,
sulcal, and medial – Pr, L, I, M, and S with subareas within these
subfields demarcated. Figure 11 shows the ERC in the same ori-
entation as the ERC in the top row of Figure 9, depicting the tran-
sition from preclinical (top row) to symptomatic (bottom row).
The left and right columns show the left and right ERC population
FWER 5% from the BIOCARD population, with the right ERC
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FIGURE 9 | Longitudinal changepoint Model II depicting atrophy rate
with atrophy rate annualized per year of left ERC on left ERC template
(left column) and right ERC projected on left ERC template (right
column) on the statistically significant vertices based on the FWER of
5% testing of vertices. Non-significant vertices are depiced as blue.

Significant vertices are colored with the annualized atrophy rate β′
v occurring

after changepoint. Top and bottom rows, respectively, shows superior and
inferior views. Left ERC has maximum value of β′

v = 4.5% atrophy rate per
year; right has maximum value of β′

v = 1.3% atrophy rate per year. Sulcal and
intermediate caudal are two partitions in high-field atlas.

FIGURE 10 | Longitudinal time-series Model I, symptomatic versus
control with a view of the significant vertices as measured by
log-Jacobian change between control and symptomatic group.
Significant vertices showing consistent local volume decreases as determined
by the FWER at 5% linear effects Model I; blue vertices represent vertices which
are not significant. Color codes percentage decrease of surface area from
control to symptomatic, with color given by −

(
β + β′

v age
)
, with age the

average age of the symptomatic group. Structures placed into coordinates of
one brain depicting the relative relationships of the most significant changes in
color from blue to red. Maximum changes of relative surface area of
symptomatic population to control population are 21% for ERC; the maximum
for hippocampus is 15.5%, and 15% for amygdala; all significant change
(non-blue) is atrophy. Sulcal region denoting the most lateral portion of ERC is
depicted.

projected onto the left template so it appears in similar left orien-
tation. Color intensity shown on the templates are proportional
to atrophy level, given by −(β + β′

v age), where age is the average

age in the study and are estimated according to the cross-sectional
Model I using maximum-likelihood estimation (see Appendix 2)
with a parameter value at each vertex. These values are all positive
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indicating that group difference reflects atrophy. The left ERC is
more significant as demonstrated by the atrophy range percentage,
but also demonstrates the strong spread from the preclinical case
in the lateral part of the ERC (top row) to a greater extent of
the ERC (bottom row). The maximum value of change is 17%
for preclinical and increases to 22% at the maximum value for
the symptomatic case. The maximum value for the preclinical
occurs at the sulcal region which is denoted by the arrow at the
most lateral extent. The panels show only the vertices on the
surfaces of the templates which are statistically significant for
atrophy as measured by the FWER at 5% permutation testing.
Non-significant vertices have zero intensity and are shown in blue.

The strongly significant change in the preclinical group in
the sulcal region of the high-field partition (indicated by S red
color in Figure 3) is in the lateral extent of the ERC. This
spread extends medially in the transition from preclinical to

TABLE 3 | Morphometry measures comparing normal group versus symp-
tomatic group via linear mixed-effects longitudinal time-series Model I.

Longitudinal time-series Model I p-values Volume Vertex
Control versus symptomatic group

Amygdala (L) 0.005 <0.00001
Amygdala (R) 0.0020 0.00018
Hippocampus (L) 0.055 0.019
Hippocampus (R) 0.1330 0.00103
ERC (L) 0.00008 <0.00001
ERC (R) 0.0060 0.005

FIGURE 11 | Longitudinal time-series Model I: spreading of significant
morphometry marker from preclinical (top row) to symptomatic (bottom
row); left column shows left ERC population change in left ERC
template, right column shows right ERC projected onto the left ERC
template. Atrophy visualization for FWER at 5% as measured by linear effects.
Color codes percentage decrease of surface area from control to preclinical

group (top row) and control to symptomatic group (bottom row), given by
−

(
β + β′

v age
)
, age the average age of the preclinical group (top) and

symptomatic group (bottom). All significant change (non-blue) is atrophy with
maximum changes of 18% for preclinical and 22% for symptomatic; blue is
non-significant vertices with all change atrophy. Sulcal partition is S from
high-field atlas.

symptomatic. This is consistent with the Braak and Braak (1991)
staging of the preclinical case as illustrated in Figure 12. The left
panel of Figure 12 shows stages 1 and 2 of the cellular changes in
the earliest preclinical phase (indicated by the arrow) from Braak
and Braak. Stage 1 (top) is similar to the earliest periods of our
imaging measurements. Here the changes are in the layer II of the
lateral part of the ERC and trans-ERC. This then spreads from lat-
eral tomedial in the ERC in Stage 2. The right panel shows a planar
section through the high field atlas (see Figure 2) depicting the
location in the atlas of the EC S (red), IC (cyan), IS (blue) regions.
The arrow is placed at the lateral most extent of the sulcal S region
and depicts the location that the 5% statistically significant FWER
diffeomorphometry population marker is signaling (as depicted
in top row of Figure 11).

Discussion

An important question in the field of neurodegeneration is the
pattern of regional degeneration in the earliest phases of disease.
The notion of cell–cell interaction hypothesis is being examined
in several neurodegenerative illnesses, where the pathogenesis
depends on brain circuitry (Polymenidou and Cleveland, 2011)
in a prion- like manner [see Brundin et al. (2010) for a general
review]. In this model, pathogenesis would depend, at least in
part, on brain circuitry. Determining whether neurodegeneration
in AD follows a consistent circuit-based pathway is important
for identifying outcomes that might be measured during an
intervention trial which directly targets the brain. Our findings
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FIGURE 12 | Left: Braak and Braak staging of AD neuropathology based
on the pattern of neurofibrillary change adapted from Figure 9 of Braak
and Braak (1991) who suggested that stages I–II characterize the silent
periods of AD with stages III–IV corresponding to preclinical AD and
stages V–VI for fully developed AD. Note that the progression is from
lateral ERC and spreads medially. Right: Section through the high-field

atlas of Figure 2 at position 17mm along the axis. Purple red shows the
S sulcal region in the high-field atlas which in the preclinical phase is the
only region exhibiting significant morphometry marker change in range of
15% atrophy (top row, Figure 11). Notice the placement of the amygdala
in the high-field atlas with basolateral, basomedial, and centromedial
subfields.

seem to support this notion of circuit based locality of the
spread. The fact that the ERC as a structure is most sensitive
in terms of localized change associated to disease progression
across the spectrum of AD, and earliest structure to be chang-
ing is manifests in the largest atrophy rates in percentages in
the symptomatic group and the <0.00001 p-values for the high-
dimensional surface-based vertex measures signaling localized
atrophy in the symptomatic group. Based on onset analysis,
atrophy rates and p-value significance for the hippocampus and
amygdala demonstrate morphometric change later in the disease
progression.

With respect to the ERC (Small et al., 2011), it is worth noting
that layer II connects to the dentate gyrus (DG) in the hippocam-
pal formation via the perforant pathway, and in turn the DG
connects to the CA3 whose neurons connect with other CA3
neurons along the hippocampal axis or CA1, and finally CA1
connects to the subiculum. Layer II also connects with CA3 while
layer III projects to the CA1 and subiculum. The ERC also receives
inputs from the amygdala in an anterior–posterior gradient, which
allows it to connect with the hippocampus. The subfield parce-
lation of the ERC in our high field atlas actually reflects the
differences in the cellular and neuronal densities in Layer II based
on stereological analysis. For example, in the Pr subfield, Layer
II is thin and takes up 5% of the subfield volume while in the L
subfield, it is larger in size relative to the I subfield; Ir takes up 10%
of the volume and Is neurons are small; Mr and Mc it becomes
thinner and more continuous; and finally in S the neurons are
relatively medium sized. So, a localized shape difference in the
ERC may be a manifestation of the changes in Layer II of the
ERC subfields as has been suggested by several studies including
Braak andBraak (1991). However, additional studies that correlate
shape diffeomorphometry results with histopathological analysis

of the same dataset similar to that done for Area 46 of in a
fetal irradiation macaque model (Selemon et al., 2013) will be
necessary.

These MRI findings are consistent with the patterns of pathol-
ogy with brain regions demonstrating heavy deposits of neurofib-
rillary tangles (Arnold et al., 1991; Braak and Braak, 1991; Price
and Morris, 1999). Our high-field localized shape morphometry
demonstrated in the ERC are consistent with histological findings
indicating that AD begins to manifest itself in the ERC (Gomez-
Isla et al., 1996). The transentorhinal region referred to by Braak
and Braak (1991) connects to the lateral boundary that shows
significant atrophy in these analyses. Associating the high-field
atlas with the results in Figures 8, 10, and 11 demonstrate this
clearly. The vertex-based diffeomorphometry allows us to see the
localized atrophy giving rise to the statistically significant visual-
ization of the regions in the hippocampus and amygdala which
are demonstrating change. This includes the CA1 and subiculum
of the hippocampal region and its interface to the basolateral and
basomedial regions of the amygdala. It is interesting to note that
this rostral end region of the hippocampus actually abuts the Ic
subfield of the ERC, whichwe observed to be significantly affected
(Figure 9). Also shape changes, specifically reduced cortical thick-
ness, has been observed in the transentorhinal cortex which is
more lateral to the focus of this study but in the later Braak and
Braak stages in subjects with MCI (Yushkevich et al., 2015). This
provides strong support that shape diffeomorphometry modeling
can be a powerful way of demonstrating the cell–cell circuitry
model of AD. We have previously demonstrated via amygdala 7T
and 11T atlases that preclinical change in amygdala was occurring
in the basolateral and lateral areas (Miller et al., 2014a). We have
demonstrated that the amygdalar atrophy changes tend to occur
between the junctures of the networks or structures.
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These findings are consistent with the cell–cell hypothesis,
which has been advocated as a model of the spread of neurode-
generation in networked deep brain structures in Huntington’s
Disease (Ross et al., 2014), Parkinson’s Disease (Visanji et al.,
2013; Kordower, 2014), AD (Yin et al., 2014), and depression
(Small et al., 2011). It is believed that the spread via intercellular
communication in which plaque transmission from cell to cell
occurs in a prion-like manner (Small et al., 2011). At the same
time, excitatory and/or inhibitory processes may occur in a sim-
ilar manner. However, further development is needed in order
to better visualize the laminar structure within this network to
determine the selectivity of involvement in early disease and the
pattern of change over time. If neuroimaging studies such as the
BIOCARD study or PREDICT-HD (Younes et al., 2014b) can
pinpoint the initial substrates of the disease, it may be possible
to develop therapeutic interventional strategies to minimize the
spread of disease from these substrates.
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