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Liquid-chromatography high-resolution mass spectrometry provides capability to
measure >40,000 ions derived from metabolites in biologic samples. This presents
challenges to confirm identities of known chemicals and delineate potential metabolic
pathway associations of unidentified chemicals. We provide an R package for metabolic
network analysis, MetabNet, to perform targeted metabolome-wide association study of
specific metabolites to facilitate detection of their relatedmetabolic pathways and network
structures.
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Introduction

Metabolomics using high-resolution mass spectrometry coupled to liquid chromatography
(LC/MS) provides a practical approach to detail physiological chemistry for personalized medicine
(Johnson et al., 2010; Soltow et al., 2013; Uppal et al., 2013). Advances have occurred at all
levels in instrumentation, standard operating procedures, and data extraction and analysis (Chen
et al., 2012; Ivanisevic et al., 2013; Uppal et al., 2013). Current capabilities at Emory University
allow detection of >40,000 ions within individual samples and >100,000 ions within popula-
tion studies. The number of ions detected depends upon the stringency of the data extraction
parameters; many of the ions have relatively poor coefficient of variability and/or are present
in only a small number of samples. Presently, data are filtered to much smaller numbers for
statistical analyses. In principle, however, the spectrum of chromatographic methods and detection
techniques could allow routine quantification of even more chemicals if systematically applied
and appropriately curated. Such development would have considerable utility for study of complex
mechanisms of human disease involving diet, environmental exposures, microbiome, and health
behaviors (Jones et al., 2012). Application in a systematic way would also provide an approach
to elucidate impact of cumulative lifetime exposures, termed the exposome (Wild, 2005, 2012;
Miller and Jones, 2013).

Metabolome-wide association studies (MWAS), illustrated as Manhattan plots of the negative
log of the p-values for association of each metabolite with a parameter of interest, are useful for
characterization of metabolites associated with disease or experimental manipulation (Osborn et al.,
2013; Go et al., 2014). We use the term “targeted MWAS” to refer to metabolome-wide associations
with a specific known chemical target. The purpose of this paper is to describe an R package,
MetabNet, to facilitate use of targeted MWAS for pathway and network mapping. To illustrate the
logic and use ofMetabNet, we selected choline, an important precursor for phosphatidylcholines and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2015 | Volume 3 | Article 871

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://dx.doi.org/10.3389/fbioe.2015.00087
https://creativecommons.org/licenses/by/4.0/
mailto:dpjones@emory.edu
http://dx.doi.org/10.3389/fbioe.2015.00087
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00087/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00087/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00087/abstract
http://loop.frontiersin.org/people/203718/overview
http://loop.frontiersin.org/people/176261/overview
http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Uppal et al. MetabNet: R package for MWAS

FIGURE 1 | Overview of the study design.

a dietary precursor for 1-carbon metabolism linked to cardiovas-
cular disease (Tang et al., 2013), as a useful example. A schematic
overview of the study design is presented in Figure 1.

Materials and Methods

Plasma from Common Marmosets (Callithrix
jacchus)
Data for the present study were derived from plasma samples
from 50 healthy marmosets, aged 2–14 years, selected from ongo-
ing aging studies of marmosets (Roede et al., 2013); the sam-
ples included an equal number of males and females. Animal
care was as described (Soltow et al., 2013). Briefly, marmosets
were housed at the New England Primate Research Center and
fed commercial food (New World Primate Chow 8791, Harlan
Teklad, Indianapolis, IN, USA) supplemented with a combina-
tion of fresh fruits, vegetables, seeds, eggs, and/or mealworms.
Fresh water was provided ad libitum. EDTA plasma was pre-
pared from blood collected under ketamine anesthesia during
routine physical examination and stored at −80°C before LC/MS
analysis. The facility is AAALAC-accredited, and all works were
approved by Harvard Medical School’s Standing Committee on
Animals.

Plasma from Healthy Humans
Data for the present study were derived from EDTA plasma
samples from 50 healthy humans analyzed as part of an ongo-
ing healthy aging study (A.A. Quyyumi, Emory IRB protocol #
IRB00024767). The study included individuals between 30 and
90 years, with even distribution of sex, and included individuals
of different races and ethnicities present in the Atlanta area. All

individuals were extensively screened to assure good health in
terms of the absence of diseasemarkers and absence of therapeutic
drug use. Because the samples were de-identified and analysis
was randomized and blinded, no additional details are available.
Plasma was stored at−80°C before LC/MS analysis.

High-Resolution Metabolomics
Samples were extracted and analyzed as previously described
(Soltow et al., 2013; Uppal et al., 2013). Briefly, extractions were
performed with acetonitrile containing a mixture of internal stan-
dards and maintained in an autosampler maintained at 4°C until
injection. Liquid chromatography was performed using a C18
column (HigginsAnalytical, Targa, 2.1× 10 cm)with a short, end-
capped C18 pre-column (Higgins Analytical, Targa guard) and
an acetonitrile gradient. Mass spectrometry was performed using
an LTQ-Velos-Orbitrap mass spectrometer (Thermo Fisher, San
Diego, CA, USA): HESI probe with S-lens combination for ESI;
MS1 mode scanning m/z range of 85–2000; resolution, 60,000;
maximum number of ions collected, 5.00× 105; the maximum
injection time, 5µL/s; capillary temperature, 275°C; source heater,
45°C; voltage, 4.6 kV; sheath gas, 45; auxillary gas flow, 5; sweep
gas flow, 0. Each sample was run in triplicate with 10µL injec-
tion volume. Data were collected continuously over the 10-min
chromatographic separation and stored as .raw files. These files
were converted using XCalibur file converter software (Thermo
Fisher, San Diego, CA, USA) to .cdf files for further data pro-
cessing. The .raw files are time and date stamped and electroni-
cally archived as the original data for use in subsequent reanal-
ysis as necessary. The data were processed for peak extraction
and quantification of ion intensities using xMSanalyzer software
(Uppal et al., 2013) with apLCMS (Yu et al., 2009). Feature
and sample filtering retained features that had a median CV
<50%, a Pearson correlation >0.7 among technical replicates,
and <30% missing values. Features were annotated by searching
Metlin with m/z tolerance of 10 ppm. Correlation analysis was
performed using Pearson’s correlation method. False discovery
rate correction was performed using the Benjamini andHochberg
procedure (Benjamini and Hochberg, 1995). Both .raw and .cdf
files have been submitted to the NIH Metabolomics Workbench
repository.

Results

Fifty plasma samples from common marmosets (Callithrix jac-
chus) were sent to a commercial laboratory (Metabolon, Durham,
NC, USA) for measurement of choline. A targeted MWAS for
plasma choline (Figure 2A) was obtained by testing for correlation
of these targeted choline measurements with the ion intensity for
each m/z feature among the 5407 measured by high-resolution
metabolomics (HRM; Soltow et al., 2013; Uppal et al., 2013) in the
same samples at the Emory facility (Figure 2A). Results showed
that two m/z features (m/z 105.1095, 53 s; m/z 104.1062, 51 s)
in HRM, matching the 13C and 12C forms of choline [M+H]+,
respectively, had high Pearson correlations (r= 0.72, 0.68, respec-
tively) with the Metabolon data, and were significant at FDR
<0.05 (raw p-values< 10−7). MS/MS confirmed identification of
m/z 104.1062 as choline (data not shown). Two other features
that significantly correlated with Metabolon data were not readily
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FIGURE 2 | Targeted MWAS for choline. (A) Type 1 Manhattan plot for
Pearson correlation of targeted choline measurements (Metabolon) with each
m/z feature in high-resolution metabolomics (HRM) for 50 plasma samples
from common marmosets. (B) Comparison of Metabolon values with
corresponding HRM analysis at Clinical Biomarkers Laboratory. Values are
expressed as relative units. (C) Type 2 Manhattan plot of targeted choline
measurements as a function of retention time of m/z feature suggests
association of choline with lipids. (D) Type 3 Manhattan plot of targeted
choline measurements as a function of ion intensity shows that correlated
12C and 13C forms of choline have expected differences in ion intensity and
that other significantly associated and unidentified m/z features are present

with lower ion intensities. (E) Internal Targeted MWAS is shown as type 2
Manhattan plot for Pearson correlation of choline within the HRM analysis.
Results show significant associations of choline with m/z features eluting after
350 s. (F) Targeted MWAS for choline in human plasma. Type 2 Manhattan
plot for Pearson correlation of choline within the HRM analysis of plasma of
50 healthy humans shows significant associations of choline m/z features
eluting after 350 s. Mean choline concentration was 5.8±0.8µM. In (E) and
(F), self-correlations of different forms of choline were removed to facilitate
visualizations of correlation of choline with other m/z features. Positive
correlations are shown in blue and negative correlations in red. FDR
corrected significance level is shown as broken line.

identifiable (841.9269 had no matches in Metlin, and 361.1802
matched 12 tripeptides as [M+H]+, 18 tripeptides as [M+ 2Na-
H]+, an insecticide and natural products as [M+Na]+, and a
plant-derived diterpenoid as [M-H2O]+). A direct plot of the
Metabolon values with the intensity form/z 104.1062 (Figure 2B)
illustrates concurrence of themethods. Thus, this simple approach
provides a convenientmeans for cross-validation of platforms and
conversion of an untargetedHRMplatform into a hybrid platform
in whichm/z featuresmatched tometabolites in database searches
are verified by significant correlation with authenticated chemical
analysis.

Re-plotting the significance test data as a function of retention
time, which we term a “type 2”Manhattan plot (Figure 2C), yields
information on chromatographic properties of the correlatedm/z
features. A similar “type 3” Manhattan plot as a function of ion
intensity visualizes the relationship of the abundance of signals

for 13C and 12C forms of choline (Figure 2D). Importantly, in
the type 2 Manhattan plot, many m/z features that elute after
350 s are weakly correlated with choline even though choline
eluted at 52 s. This is more directly visualized by performing an
internal targeted MWAS in which m/z 104.1062 [choline+H]+
is regressed against other m/z features within the same analysis
(Figure 2E), thereby eliminating inter-laboratory, cross-platform
differences.With this analysis, 198 features significantly associated
(FDR <0.05) with choline (Supplementary Results, Table S1 in
SupplementaryMaterial).Many lipids elute after 350 s under these
chromatographic conditions suggestive of associations of choline
with blood lipids. Correlatedm/z feature matches included phos-
phocholine (m/z 184.0719 [M+H]+), glycerophosphocholine
(m/z 258.1083 [M+H]+), and a number of phosphatidylcholines,
some detected inmultiple forms (Table 1). Out of 42 withmatches
to [M+H]+ in Metlin, 18 matched phospholipids, including
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TABLE 1 | Selected m/z features correlated (FDR <0.05) with choline in
targeted MWAS.

Match Adduct m/z Retention
time (s)

r Log
intensity

Fifty marmoset samples
Phosphocholine [M+H]+ 184.0719 417 0.55 7.16
Glycerophosphocholine [M+H]+ 258.1083 426 0.46 5.84
PC(16:1/0:0) [M+H]+ 494.3207 378 0.65 7.94
PC(16:1/0:0) [M-H2O]

+ 476.3099 380 0.61 6.22
PC(16:1/0:0) [M+Na]+ 516.3030 379 0.58 6.45
13C-PC(16:1/0:0) [M+Na]+ 517.3063 377 0.61 5.83
PC(16:0/0:0) [M+H]+ 496.3376 442 0.59 8.93
PC(18:1/0:0) [M+H]+ 522.3532 460 0.54 8.60
Fifty human samples
Phosphocholine [M+H]+ 184.0724 381 0.57 5.23
Glycerophosphocholine [M+H]+ 258.1089 378 0.55 5.75
PC(16:1/0:0) [M+H]+ 494.3239 354 0.54 5.28
PC(16:1/0:0) [M-H2O]

+ 476.3103 360 0.53 6.09
PC(16:1/0:0) [M+Na]+ 516.3047 351 0.64 5.13
13C-PC(16:1/0:0) [M+Na]+ 517.3065 351 0.47 5.80
PC(16:0/0:0) [M+H]+ 496.3358 395 0.55 5.44
PC(18:1/0:0) [M+H]+ 522.3513 410 0.58 5.49

6 ceramides and other complex lipids, and 3 matched tripep-
tides. Importantly, 156 of the 198 m/z features did not have
Metlin database matches despite the extensive nature of this
database, reinforcing the contemporary challenges to curation of
the metabolome.

To test generalization of the targeted MWAS approach for
detection of metabolic associations, HRM data from 50 healthy
human subjects were examined for the apparent pathway associa-
tions detected inmarmosets. The results showed that the 13C form
of choline (m/z 105.1097 [M+H]+, 42 s) correlated with m/z
104.1064 (44 s; r= 0.96; p= 1.5× 10−19) in the human samples.
Significant m/z features (Table S2 in Supplementary Material)
were present, which correlated with choline and matched the
same adducts in Metlin, as obtained for the marmoset samples
(Table 1).

Comparison of the significant features for the marmoset and
human data using the getVenn function in xMSanalyzer (Uppal
et al., 2013) showed that 67 m/z features were common to
both species (Figure 3A). Pathway enrichment analyses for these
67 features using MetaCore (Thomson Reuters; https://portal.
genego.com/) showed significant enrichment of phosphocholine-
related lipid pathways (Figure 3B). A correlation test at signifi-
cance level of 0.05 was performed to evaluate the similarity of the
pairwise correlation patterns of the 67 features between the two
species. This resulted in detection of 18 features common to both
species that were significantly correlatedwith choline and also had
similar expression patterns in the two species. Subsequently, asso-
ciation networks derived from the Spearman correlations of these
metabolites with others (|r|> 0.3; q< 0.05) were generated tomap
the direct and indirect associations of choline in both species
(Figure 3C). Phospholipids were found in clusters more highly
associated with choline than clusters containing terpenoids and
steroids. Thus, the results show that targetedMWAS can be useful
tomapmetabolic pathway associations, facilitating curation of the
metabolome.

FIGURE 3 | Ions correlated with choline in both marmoset and human
samples map to phosphocholine pathways in network enrichment
analysis. (A) Venn diagram shows 67 ions were common among the 198
correlated ions for marmosets and 309 correlated ions for humans.
(B) Analysis of these 67 ions by MetaCore showed significant pathway
enrichments after FDR correction for multiple phosphocholine pathways.
(C) Metabolome-wide network structure. Correlation analyses showed that 18
of the 67 ions had similar pairwise correlation patterns for marmosets and
humans at p<0.05. These were tested for correlations among other ions,
and features that had absolute Spearman correlation >0.3 at FDR <0.05 are
shown for marmosets and humans, demonstrating ability to map the broader
network structure associated with choline. Stratification according to
strengths of associations showed that the most highly associated clusters
contained phospholipids, while terpenoids and steroids were present in less
strongly associated clusters.

Discussion

Targeted MWAS does not replace MSn or other targeted analysis
for verification of identity of chemicals. The method does, how-
ever, provide a useful complement to (1) detect multiple forms
of a chemical (e.g., 12C and 13C forms of choline), (2) verify
quantification by different platforms, (3) associate unidentified
ions with established metabolic pathways and (4) map metabolic
network structure with a target of interest. This complements
other approaches to map metabolic networks (Kanehisa et al.,
2002; Li et al., 2013) for curation of the metabolome.

The procedures of targeted MWAS and generation of pan-
els for Figure 2 involved commonly available software (Excel,
Microsoft). Similarly, data annotation and pathway mapping used
readily available and easy-to-use online resources. Consequently,
the approach can be rapidly assimilated into metabolomics
research, allowing translation of older targeted metabolomics
methods to studies using contemporary high-resolution mass
spectrometers. Alternatively, we have incorporated the function-
ality to perform targeted MWAS and generate correlation-based
networks in an R package, MetabNet, which is available at: https:
//sourceforge.net/projects/metabnet/. The package can be used to
generate full or partial correlation networks. Partial correlation
network analysis, where the correlation between two variables is
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FIGURE 4 | Systematic variation in stringency of correlation allows
visualization of primary and secondary network structures. Analysis of
ions positively and negatively correlated with a metabolite, as shown in
Figure 2, aid in identification of unknown ions, especially when there are many
database matches to the ion. By including secondary correlations in the
analysis, as shown in Figure 3, one can begin to see a broader network
organizational structure. This functionality is facilitated in MetabNet by providing
ability to readily examine this network structure at different stringencies. At low

stringency (|r|>0.3), a large number of secondary correlations with choline are
apparent. At greater stringency (|r|>0.5), a number of secondary networks are
evident in which many ions are significantly correlated with ions that are
correlated with choline. This provides a basis to study perturbation in
association with diet, genetic variation, and other causes of disease. Even higher
stringency (|r|>0.7) is useful in some cases to simplify the network structure to
a small number of strong associations and also to facilitate identification of
multiple ions, adducts, or isotopes derived from chemicals in the target list.

adjusted by taking into account the effect of other variables, is
performed using the cor2pcor function in the corpcor R package.
(Schäfer and Strimmer, 2005; Opgen-Rhein and Strimmer, 2007)
The metabnet function in the MetabNet package can be used to
perform full or partial correlation network analysis. The main
input arguments are described below:

feature_table_file: Feature table that includes the m/z, retention
time, and measured intensity in each sample. The first two
columns should be the m/z and time. The remaining columns
should correspond to the samples in the class labels file with
each column including the intensity profile of a sample. Full
path required, e.g., C:/My Documents/test.txt. The feature table
should be in a tab-delimited format. An example input file is pro-
vided on the project website: https://sourceforge.net/projects/
metabnet/files/Tutorial_files/.
target.metab.file: File that includes them/z and/or retention time
of the targeted m/z features corresponding to metabolites of
interest. The first column should contain them/z of the features.
Alternatively, retention time information could be provided in
the second column to search by both m/z and time. The file
should be in a tab-delimited format.
sig.metab.file: (Optional) file with list of m/z of the discrimina-
tory features, e.g., features that are significantly different between
case vs control, to perform targeted MWAS with these features.
Default value: NA.
class_labels_file: (Optional) File with class/group information for
each sample. Samples should be in the same order as in the
feature table. Default value: NA.

Output
The program generates a PDF file with network plots and also
writes a network file in the GML format that can be used as
input for Cytoscape (Shannon et al., 2003) to facilitate interac-
tive visualization and downstream network analysis. The package
generates text files. Currently, the package does not automatically
generate output compatible with data repositories; however, an
Rda file is generated that includes all the user-defined options,
input file names and data matrices, and output correlation matrix
as R objects. This allows users to retrieve the input options used for
network analysis for analysis reproducibility. Furthermore, users
can use the R objects in the Rda file to generate the output matrix
according to requirements of public data repositories without
re-running the analysis.

More information can be found in the package man-
ual available at: http://sourceforge.net/projects/metabnet/files/
MetabNet-manual.pdf. A tutorial with installation and usage
instructions is provided as Supplementary Material (Data Sheet
S1 in Supplementary Material).

Functionality ofMetabNet tomap outmetabolic network struc-
ture is illustrated in Figure 4. In this example, the stringency
of correlation is systematically varied to visualize the networks
of ions associated with choline, and the secondary network of
metabolites correlated with those significantly correlated with
choline. At low stringency (|r|> 0.3), large numbers of ions
are correlated, most with positive correlation (blue lines) and a
smaller number with negative correlation (red lines). At higher
stringency (|r|> 0.5), secondary clusters of metabolites are clearly
evident, providing a basis to study secondary metabolic processes
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that are linked to metabolites correlated with choline. This visual-
ization can be important, for instance, in studies to evaluate effects
of dietary or genetic variations of choline metabolism. Higher
stringency (|r|> 0.7) further limits the number of correlations
and simplifies initial characterization. High stringencies are also
useful for ion identification because high positively correlated fea-
tures that are also co-eluting often represent different ions derived
from the same chemical as shown in recent studies. (Alonso et al.,
2011; Lynn et al., 2015) This capability is useful to discriminate
metabolites with extensive interactions with other metabolites,
e.g., central energy metabolites, from those with little interaction,
e.g., environmental or dietary components.

Conclusion

MetabNet provides a convenient way to use targeted MWAS to
improve curation of the metabolome and map out pathway and
network structures. Human plasma contains a complex mixture
of chemicals derived from diet, microbiome, infectious agents,
pharmaceuticals, commercial products, and the environment. At

current levels of detection using high-resolution mass spectrom-
etry, 40,000 ions are detected; in principle, this number may
be increased with improved separation, detection, and computa-
tional methods. MetabNet can be useful to simplify data analysis
and enhance the utility of this high-resolution data by improved
documentation of chemical identities and discovery of network
structures and substructures that contribute to disease risk and
responses to therapies.
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