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Realizing the promise of metabolic engineering has been slowed by challenges related to 
moving beyond proof-of-concept examples to robust and economically viable systems. 
Key to advancing metabolic engineering beyond trial-and-error research is access to 
parts with well-defined performance metrics that can be readily applied in vastly different 
contexts with predictable effects. As the field now stands, research depends greatly on 
analytical tools that assay target molecules, transcripts, proteins, and metabolites across 
different hosts and pathways. Screening technologies yield specific information for many 
thousands of strain variants, while deep omics analysis provides a systems-level view 
of the cell factory. Efforts focused on a combination of these analyses yield quantitative 
information of dynamic processes between parts and the host chassis that drive the 
next engineering steps. Overall, the data generated from these types of assays aid 
better decision-making at the design and strain construction stages to speed progress 
in metabolic engineering research.
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introduction

Over the past decade, the field of metabolic engineering has realized several significant  achievements 
centered on production of bulk (Atsumi et al., 2008; Saxena et al., 2009; Yim et al., 2011; Jarboe et al., 
2012), high-value (Yang et al., 2013; Zhang and Stephanopoulos, 2013), and therapeutic compounds 
(Paddon et al., 2013). Stemming from these efforts have been transformational developments in 
the design–build–test–learn (DBTL) paradigm to accelerate pathway discovery, construction, 
characterization, and understanding. Innovative tools in each component of the cycle are propel-
ling the field from the artisanal/single researcher model of science toward engineering principles 
of standardization, parameterization, and robust operation (Figure 1). Yet, attempts to generalize 
knowledge from earlier studies have not led to rapid progress toward these goals. As a result, suc-
cessful integration of each component into a coherent whole that can rapidly inform subsequent 
engineering efforts is still a challenging endeavor. True paradigm-shifting advancement in meta-
bolic engineering requires seamless workflows that are capability matched across all components 
to inform subsequent cycles.

Until recently, strain design was often treated as a one-off process, relying heavily on 
domain expertise with no standardization. Now, many software platforms that integrate and 
automate design parameters, enable strain construction, and incorporate knowledge from past 
experiments are readily available (Kelwick et al., 2014). A variety of novel computational tools are 
available to identify biosynthetic gene clusters (Hatzimanikatis et al., 2005; Campodonico et al., 2014;  
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Medema et al., 2014; Weber et al., 2015), select pathways based 
on retrosynthesis of products (Hatzimanikatis et  al., 2005; 
Campodonico et al., 2014; Carbonell et al., 2014a,b) or retro-fit 
enzymes to engineered pathways (Brunk et al., 2012). Likewise, 
genome-scale models (Feist and Palsson, 2008; Schellenberger 
et al., 2011; McCloskey et al., 2013) can identify beneficial host 
modifications in  silico to prioritize changes based on factors 
related to target molecule production.

Once the pathway is chosen, there remain many questions 
related to which specific enzymes and how much of them are 
optimal, as well as which expression system should be used to 
achieve balanced protein levels. Consequently, a significant 
amount of research has focused on characterization of libraries 
of promoters (Alper et al., 2005; Anderson et al., 2010; Babiskin 
and Smolke, 2011; Davis et  al., 2011; Mutalik et  al., 2013) and 
terminators (Chen et al., 2013), as well as develop tools to predict 
ribosome-binding strength (Salis et al., 2009) or control protein 
location in the cell (Dueber et al., 2009). New technologies have 
advanced the Build component via low cost gene synthesis, rapid 
genome modifications [e.g., CAS9/CRISPR (Jinek et al., 2012)], 
and facile methods to rationally generate strain diversity [i.e., 
multiplex automated genome engineering (MAGE) (Wang et al., 
2009) and trackable multiplex recombineering (TRMR) (Warner 
et  al., 2010)]. As the scope of strain construction has grown, 

FiGURe 1 | The design–build–test–learn cycle of metabolic engineering highlighting important parts of each of the components. The Design 
component identifies the problem, selects the desired pathway and host; the Build component selects, synthesizes, and assembles parts for incorporation into the 
host; the Test component validates the engineered strains for target molecule production, transcripts, proteins, and metabolites; the Learn component analyzes the 
Test data and informs subsequent iterations of the cycle.

combinatorial approaches, like multivariate modular metabolic 
engineering (Ajikumar et al., 2010), have been applied to various 
parts to rapidly balance flux through the pathway (Latimer et al., 
2014; Smanski et al., 2014). Yet, knowledge from previous work is 
infrequently predictive for new pathways, genes, and gene expres-
sion levels (Cardinale and Arkin, 2012; Kittleson et  al., 2012). 
This problem is compounded when multiple genetic circuits or 
pathways are combined into a single organism often leading to 
unintended consequences. Thus, massive over construction of a 
pathway is required to find the best strain.

As a result, large-scale analysis of the engineered organisms is 
needed from the Test component. Yet, it lags far behind the recent 
Design- and Build-related advancements especially with respect 
to throughput, robustness, and generalizability. High-throughput 
assays, such as screens or selections that assay the target molecule, 
are ideally suited to strain optimization efforts, yet fail to provide 
sufficient information to efficiently identify pathway bottlenecks. 
Alternatively, detailed analyses of transcripts, proteins, and 
metabolites to query strain function can provide a rich dataset 
to identify bottlenecks that inform subsequent strain design, 
albeit for only a tiny fraction of strains that can be built. Detailed 
analyses of strain function are needed because engineering efforts 
often disrupt native cell processes that compete with the intended 
result. It is currently possible to analyze only a tiny fraction of the 
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TABLe 1 | Analytical attributes of common target molecule assay types.

Sample 
throughput 
(per day)

Sensitivity 
(LLOD)

Flexibility Linear 
response

Dynamic 
range

Chromatography 10–100 mM ++ +++ +++
Direct mass 
spectrometry

100–1000 nM +++ +++ ++

Biosensors 1000–10,000 pM + + +
Screens 1000–10,000 nM + ++ ++
Selection 107+ nM + + +

The optimal method for a given criteria is highlighted in bold.
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engineered strains for detailed omics analysis and quantification. 
The net result is a significant capability gap between the Design 
and Build components and that of the Test component of the 
DBTL cycle.

Unfortunately, learning is possibly the most weakly supported 
step in current DBTL cycle. Learn efforts to generalize knowledge 
from past experiments to inform design and build process decisions 
with the explicit goal of increasing the rate of successful outcomes 
are frequently limited. Many failure modes are possible and they 
are often difficult to identify and alleviate. Successful learning stems 
from observations from multiple iterations of the cycle, including 
analysis of failure modes at multiple functional levels (i.e., tran-
scripts, proteins, metabolites). From this knowledge, improved 
design rules for assembling biological systems with predictable 
behavior can be created. With the Design and Build capabilities 
outpacing Test developments metabolic engineers face distinct 
difficulties making significant progress. This lack of actionable data 
prevents meaningful learning from past efforts. This review will 
detail the common analytical techniques to enable characterization 
of a broad range of components and their interactions.

Target Molecule Detection

By far the most common assay, and arguably the only necessary 
one, in metabolic engineering is target molecule detection. Target 
molecule detection takes several common forms that balance 
throughput and flexibility, with increased throughput typically 
coming at the cost of lower flexibility (Table 1). Small-scale engi-
neering efforts often quantify the target of interest by using tech-
niques such as gas or liquid chromatography (GC, LC) with UV 
absorbance or mass spectrometry (MS) detection (Figure 2A). 
The vast majority of older metabolic engineering studies relied 
heavily on these assays for initial pathway validation. Mass specific 
detection is particularly powerful because it permits monitoring 
the target molecule and, in many cases, pathway intermediates 
within complex matrices. Furthermore, assay development is 
typically fast and easy when standard compounds are available 
making them applicable to many types of targets. These methods 
produce confident target identifications with high sensitivity 
as well as accurate and precise quantification. There are many 
tools to generate rationally designed libraries or random strain 
diversity, which push the sample throughput capacity of these 
assays. More recently, these methods have been used to verify the 
top “hits” from high-throughput screening (HTS) assays.

While flexibility and confident identification are highly 
desired for proof-of-concept experiments, higher throughput 
assays, such as screens, selections, or biosensors, are preferred 
(Dietrich et  al., 2010; Van Rossum et  al., 2013) for titer, yield, 
and productivity optimization, steps required to develop eco-
nomically viable strains. To achieve the necessary throughput, 
the vast majority of HTS assays rely on spectroscopic measure-
ments, such as colorimetric, UV absorbance, or fluorescence in 
micro-well plates or via fluorescent-activated cell sorting (FACS) 
(Figure  2B). High-throughput measurements remain difficult 
for most target molecules because they lack an appropriate fluo-
rophore, chromophore, or may not be essential for cell growth. 
A variety of chemical biology tools are available to overcome 
this complication by modifying target molecules with chemi-
cal tags. Bio-orthogonal chemistries, such as “Click” chemistry 
(Kolb et al., 2001), as well as protein bio-conjugation methods 
(Stephanopoulos and Francis, 2011) can be used to identify 
glycans, proteins, lipids, and nucleic acids. However, much effort 
is necessary to develop quantitative assays based on chemical 
biology tools. Ultimately, the usefulness of these assays depends 
on key performance features: dynamic range, sensitivity, and 
linear range of detection (Dietrich et al., 2010).

Most biosensors function via protein or transcript-based sens-
ing of a target molecule coupled to some reporter (Figure 2C). By 
far, the most common use of biosensor assays is for spectroscopic 
measurement of the consumption or production of a cofactor, 
changes to pH, or H2O2. If gene expression as a response to target 
molecule production is known, then the expression of a reporter 
protein can be used. Recently, many enzymatic reporter systems 
have been generalized to broaden their applicability to new target 
molecules (Eggeling et al., 2015), but many lack suitable ligand 
recognition or binding elements. Consequently, engineering 
RNA aptamers (Win and Smolke, 2008; Babiskin and Smolke, 
2011; Carothers et al., 2011; Michener et al., 2012; Zhang et al., 
2012a), transcription factors (Binder et al., 2012; Dietrich et al., 
2013), ligand binding proteins (Looger et  al., 2003; Tang and 
Cirino, 2011; Shong and Collins, 2013), and protein–protein 
interactions (Dueber et al., 2003; Skerker et al., 2008) are fertile 
areas of research. Likewise, biosensors engineered to report via 
light/dark changes can be tuned to report on target production or 
various cell functions (Tabor et al., 2011). Whole cell biosensors 
that respond to target molecules via growth (Pfleger et al., 2006) 
effectively separate the reporter from the engineered microbe. 
These systems remove sensor components from the producer 
strain simplifying assay development and troubleshooting. By 
using synthetic transcription factors, one can produce metabolic 
enzyme sensors that recognize specific target molecules. Despite 
many examples of high-throughput assays in the literature, it is 
challenging to build a biosensor or screen with sufficient dynamic 
range, sensitivity, and linear response for a broad range of opti-
mization conditions. To alleviate this constraint, more effort is 
needed to engineer genetic circuits that permit tight control of 
signal transduction, amplification, and response time (Kobayashi 
et al., 2004; Tabor et al., 2009).

Mass spectrometry is capable of the necessary throughput, 
sensitivity, and linear response for screening studies; however, 
signal repression from the complex matrix associated with 
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FiGURe 2 | Methods for target molecule measurements, (A) chromatography; (B) spectroscopy-based fluorescent-activated cell sorting (FACS); 
(C) biosensors; (D) direct injection mass spectrometry; (e) selection-based assays.
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cellular analyses confounds many MS assays, requiring slow 
separations prior to MS detection. New technologies, such as the 
Agilent RapidfireTM system, attempt to overcome this limitation 
by integrating solid phase extraction with HT direct infusion 
analyses (Figure 2D) at a rate of one analysis per 10–12 s (one 
96-well plate in (11  min). Initially applied to drug discovery 
studies (Vanderporten et  al., 2013), there is a great interest in 
implementing the system to screen cell extracts for metabolic 
engineering research. This technique has the potential to deter-
mine target levels and comprehensively analyze multiple types 
of cell metabolites in much greater throughput than currently 
possible. Alternatively, development of less complex engineer-
ing hosts or cell-free systems would simplify MS measurements 
overcoming this obstacle.

Key to screen development is establishing conditions that 
produce accurate quantitative results that can be used to identify 
strains with improved production. Statistical methods, lever-
aged from drug discovery studies to verify hits, reduce false 
positives and false negatives (Malo et  al., 2006, 2010) facilitate 
differentiation of subtle improvements. For industrial applica-
tions, the quality of the screen with respect to scale-up process 
requirements determines the ultimate success of the method. 

Consequently, development of these assays typically requires 
significant time, resources, and testable strains to ensure that 
quantitative improvements determined for micro-bioreactor 
conditions translate into analogous gains at production scale.

Despite the high-throughput nature of screening, there 
remains several bottlenecks that limit the number of strains 
that can be tested. Heavy reliance on colony picking and liquid 
handling systems produce a practical limit to throughput in 
addition to significant needs for culturing space. Selections, 
which circumvent these obstacles, are powerful methods to test 
very large libraries (1010 cells) to rapidly identify the optimal 
genotype (Figure  2E). Techniques such as TRMR (Warner 
et  al., 2010) use selections to improve host tolerance and tar-
get production, yet few target molecules meet the criteria for 
selection-based assays (Dietrich et  al., 2010). It can be very 
difficult to engineer a chosen host organism to be auxotrophic 
for a specific target molecule; consequently, there is a great 
interest in methods to adapt existing selections to new targets 
via biosensors. Biosensors combined with feedback-regulated 
evolution of phenotype (FREP) (Chou and Keasling, 2013) 
are a powerful way to evolve traits. Fluorescent-activated cell 
sorting of strains engineered with biosensor reporters offers 
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FiGURe 3 | Next-generation sequencing data examples for (A) engineered strain QA/QC indicating potential problems in transcript levels in parts of 
the pathway and (B) comparative RNA-seq analysis indicating higher expression of three genes in one strain relative to another strain.
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significant increase in throughput without the associated cultur-
ing and colony-picking bottlenecks. Yet, variance is often broad 
requiring follow-up screens or chromatography-based assays 
to validate strain improvement. In most situations, achieving 
well-defined performance criteria for high-throughput assays is 
a long arduous process.

Transcriptomic Analysis

Since the primary mechanism of change via metabolic engi-
neering is DNA, many studies have focused on techniques 
and methods that reduce the cost of gene synthesis, strain 
construction, and other aspects of molecular biology. Through 
analysis of transcript levels and mapping the outcomes of failed 
systems, new constraints can be applied to successive iterations 
of the cycle. Traditional methods like real-time quantitative 
PCR (RT-qPCR) and microarray analyses are routinely used 
to verify that the host has been engineered correctly and to 
query regulatory and stress-related effects under production 
conditions. Combining microarray analysis with pathway inter-
mediate detection, Kizer et al. (2008) identified stress response 
in Escherichia coli due to an imbalanced mevalonate pathway 
that accumulated 3-hydroxy-3-methylglutaryl-coenzyme A 
(HMG-CoA).

Transcript analysis has been particularly helpful for host-
engineering efforts. Oh and Liao (2000) examined E. coli grown 
on glucose, acetate, and glycerol media and identified transcripts 
that were up- or down-regulated during protein overexpression. 
Alternatively, transcriptome analysis aided the identification of 
promoters responsive to specific growth conditions, such as the 
presence of inhibitors, pathway intermediates, and oxygenation 
state of the cell (Rutherford et al., 2010; Zhang et al., 2012a). For 
instance, to increase E. coli tolerance to the presence of ionic 
liquids microarray analysis was used to identify native E. coli 
promoters responsive to sub-lethal concentrations of ionic liquid 
(Frederix et  al., 2014). Dynamic control of a newly discovered 
pump was engineered to alleviate ionic liquid toxicity. Designing 
dynamic control of pathway enzymes based on accumulation of 

pathway intermediates is greatly desired for commercial scale 
fermentations to eliminate the need for costly inducer com-
pounds. Microarrays have also been used to identify promoters 
that respond to pathway intermediate accumulation. Amorpha-
4,11-diene production in E. coli was improved by engineering 
pathway enzyme production in response to increased farnesyl 
pyrophosphate (FPP) levels (Dahl et al., 2013).

Next-generation sequencing (NGS) technologies (Smith 
et al., 2009) are emerging as the preferred approach for transcript 
analysis. NGS assays are suited to a broad range of applications, 
including quality assurance/quality control (QA/QC) of DNA 
construction efforts and quantitative whole genome transcript 
analysis (i.e., RNA-seq experiments) (Figure  3), due to high 
sensitivity, multiplex advantages, and dynamic range (Robles 
et  al., 2012; Ghaffari et  al., 2015). The most direct use of NGS 
is for QA/QC experiments of engineering pathways and strains. 
Tracking genomic changes during pathway and host engineering 
is crucial to determining the true (and testable) source of pro-
duction improvements. NGS permits comprehensive validation 
of engineered strains to identify unintended mutations or other 
types of transcriptional failures (Figure 3A). For instance, iden-
tification of transcript read-through of terminators facilitated 
optimization of nitrogen fixation pathway in E. coli (Smanski 
et  al., 2014). Genomic characterization of engineered strains 
via NGS is especially useful to rapidly identify single nucleotide 
changes that contribute to the observed phenotype. Comparative 
RNA-seq analysis was used to characterize the transcriptional 
response of E. coli to aromatic inhibitors from pretreated biomass 
and discover a d-galacturonic acid transporter candidate gene in 
Neurospora crassa that was then expressed in yeast (Benz et al., 
2014). Similarly, it was used to identify xylose utilization genes 
and their regulation in Saccharomyces cerevisiae (Feng and Zhao, 
2013). Additionally, RNA-seq is foundational to multi-omic 
analyses where integrated datasets are used to elucidate complex 
cellular interactions and identify differences between strains. 
Data generated from RNA-seq are also useful for genome-scale 
metabolic models (GSMs) as it is complementary to flux analysis 
(Gowen and Fong, 2010).
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Proteomic Analysis

Transcriptomic analysis readily queries the success or failure of 
strain construction efforts, yet it is often a poor proxy for protein 
abundance. Consequently, proteomic analysis is valuable for 
characterization of the functional aspects of engineered strains. 
Proteomic analysis is inherently more challenging than transcrip-
tomic analysis because proteins are not readily amplified nor are 
they easily separated from each other; factors that dramatically 
impact sample throughput. Protein detection and quantification 
are frequently achieved via immunoblot assays because they are 
selective, established, fast, and easily analyzed in parallel. A vari-
ety of techniques are available for quantification of proteins via 
immunoblot assays or with fluorescent protein surrogates; how-
ever, these are also often inaccurate (Cardinale and Arkin, 2012). 
Furthermore, it can be challenging to obtain accurate quantitative 
information from these methods when assaying many different 
proteins in the same strain as is common for multi-step pathway 
engineering.

Current shotgun proteomic methods based on LC-MS/MS are 
useful for identification and quantification of thousands of pro-
teins. Differential relative quantification is frequently achieved 
by culturing strains in media containing isotopically labeled 
substrates or by using functional group-specific chemical labels 
[e.g., iTRAQ (Shadforth et  al., 2005), TMT (McAlister et  al., 
2012)] during sample preparation, or by so-called “label-free” 
techniques (Arike et al., 2012), such as data-independent analysis 
(DIA) (Gillet et al., 2012). Shotgun proteomic analyses are often 
combined with transcriptomic analyses to characterize cell stress 
responses to high levels of pathway intermediates or the final 
product (Rutherford et al., 2010) and to identify metabolic sinks 
that reduce carbon flux through the pathway.

For more specific hypotheses, a targeted proteomics approach, 
via selected-reaction monitoring (SRM) MS can be used to 
accurately quantify a select group of proteins (Picotti et al., 2009; 
Picotti and Aebersold, 2012). The targeted proteomics approach 
has been applied in a variety of ways to test engineered microbes. 
Redding-Johanson et al. (2011) used targeted proteomics to iden-
tify protein-associated bottlenecks in the mevalonate pathway 
expressed in E. coli, resulting in over threefold improvement in 
the final product. This technique has been used to quantify pro-
tein levels for promoter and ribosome-binding site (RBS) variants 
(Nowroozi et  al., 2014), comparison of enzyme homologs (Ma 
et  al., 2011), and to track dynamic regulation of protein levels 
(Zhang et al., 2012b; Dahl et al., 2013) (Figure 4). More recently, 
targeted proteomic methods have been optimized for greater 
throughput (Batth et al., 2014) as well as used to characterize and 
quantify stable post-translational modifications for engineered 
microbes. For instance, on polyketide synthases (PKS), by target-
ing the active site peptide the degree to which it is modified by acyl 
precursors can be monitored via a phosphopantetheinyl-ejection 
assay (Dorrestein et al., 2006; Meier et al., 2011). Bottlenecks in 
PKS function can be determined from this assay similar to path-
way metabolite analysis for modular pathways. It has been used 
to identify competing reactions and characterize the mechanism 
of PKS function (Hagen et al., 2014; Poust et al., 2015). Pairing 
bioinformatics tools to identify gene clusters with assays specific 

to PKS and NRPS enzymes will stimulate discovery of novel natu-
ral products (Bumpus et al., 2009). Adaptation of this technique 
to other PTMs will facilitate characterization of other classes of 
enzymes for metabolic engineering applications.

Metabolite Analysis

Measuring protein levels in the cell goes a long way toward char-
acterizing a microbial cell factory, yet, assuming that all of the 
protein is functional is often incorrect. Consequently, metabolite 
analyses at the pathway and organism level provide functional 
information for both pathway and host-engineering research. 
Tools for strain improvement, such as metabolic flux analysis 
and constraint-based reconstruction and analysis (COBRA), rely 
heavily on accurate metabolite data and carbon-flux measure-
ments to restrict parameters for model predictions. Monitoring 
metabolites that are part the engineered pathway as well as 
central carbon metabolism aids identification of bottlenecks, and 
helps identify where increasing specific protein levels can yield 
dramatic improvements to the product titer or where allosteric 
regulation is limiting flux through the pathway. Metabolite 
analysis is commonly carried out as a part of GC-MS and LC-MS 
target molecule detection assays since pathway intermediates 
often have similar chemical structures to the target. Fortunately, 
LC-MS methods that were developed to study central metabolism 
(Bajad et al., 2006; Lu et al., 2008; Reaves and Rabinowitz, 2011) 
are directly applicable to metabolic engineering work. Various 
methods to quantify changes in secondary metabolites or specific 
pathway intermediates can be readily implemented by labs with 
the necessary instrumentation. Yet, developing assays for each 
pathway intermediate is often challenging due to the lack of 
available standards, intermediates that degrade rapidly, or ones 
that are isomers. These complications often result in incomplete 
information regarding the pathway metabolite levels. Designing 
specific methods for each pathway or class of target molecule is 
a time- and resource-consuming process that typically results 
in long LC-MS methods, severely limiting sample throughput. 
One way to circumvent low throughput LC-MS methods is by 
using flow-injection acquisition (FIA) (Fuhrer et al., 2011) that 
omits the chromatography step, relying on high mass accuracy, 
high-resolution MS for confident metabolite identification. FIA is 
heavily dependent on reproducible extraction and sample prepa-
ration conditions for quantification. A potential compromise 
between direct injection and long chromatographic methods 
is the combination of an on-line solid-phase extraction (SPE) 
method with direct MS detection (Vanderporten et al., 2013).

Non-targeted, discovery-based metabolomics experiments 
offer great opportunities for metabolic engineering based on 
comprehensive metabolome analysis. Extensions of genome-
scale models to fully utilize the metabolome and integrate mul-
tiple omic data-types (Schellenberger et al., 2011; Lerman et al., 
2012) have recently been developed to provide greater predictive 
power for engineered microbes. Coupling multiple extraction, 
sample preparation, and chromatography methods enables near 
complete characterization of the small molecule component of a 
microbe. Yet, sample complexity necessitates long chromatogra-
phy gradients to adequately separate metabolites. Despite recent 
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FiGURe 4 | (Left column) Targeted proteomic assay workflows: acquire data from LC/MS, curate data in Skyline, quantify and analyze protein levels 
and behavior; (Right column) Applications of targeted proteomics for metabolic engineering: identification of pathway bottlenecks, characterization 
of synthetic biology parts, and tracking dynamic processes.
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improvements in metabolite identification (Pan et al., 2011), non-
targeted metabolomics is still a significant challenge requiring 
many control samples, metabolite standards, or extensive follow-
up experiments. As a result, non-targeted metabolomics methods 
are most applicable for discovery experiments where the identity 
of the desired product is not well known, but are challenging to 
implement for high-throughput quantitative analyses.

Developing Tools

Beyond these technologies are new tools that have the potential 
to be catalysts for metabolic engineering research. Some of the 
most promising of these technologies are microfluidic (Liu and 
Singh, 2013; Wang et al., 2014; Shih et al., 2015) or droplet-based 
(Abate et al., 2013; Lim and Abate, 2013; Basova and Foret, 2015) 
systems to build, culture, and analyze many thousands of strains 
(Figure  5). These systems offer the tantalizing possibility of 

testing more than 10,000 unique genotypes per day while over-
coming bottlenecks associated with colony picking and culturing 
limitations. Coupling microfluidic strain construction with FACS 
and single cell RNA-seq analysis (Abate et al., 2013; Saliba et al., 
2014) holds great promise for ultra-high-throughput metabolic 
engineering. The strengths of these systems revolve around time 
and reagent cost savings associated with nanoliter and picoliter 
scale experiments coupled with sensitive spectroscopic assays. 
Expansion of the spectroscopic toolbox beyond UV/vis and 
fluorescence assays will depend heavily on adaptation of near-IR, 
mid-IR, and Raman-based methods that have been successfully 
implemented in other research fields (i.e., food science, health, 
materials science), but need further development to be robust for 
this scale.

There is also great interest in coupling microfluidic and 
droplet-based systems with mass spectrometric detection to 
broaden the type of information that can be produced in this 
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manner (Figure  5). The prospective understanding that this 
level of strain characterization provides could be transforma-
tive. Attempts to couple direct infusion or desorption-based MS 
are underway and show promise (Kelly et  al., 2009; Liu et  al., 
2010; Gao et al., 2013). For instance, a new ionization method, 
electrostatic spray ionization (ESTASI), that is compatible with 
droplet-based methods without dilution or an oil removal step 
demonstrated high sensitivity at 10 Hz sampling rate (Gasilova 
et al., 2014). However, issues associated with sample complexity, 
sensitivity, and acquisition time need to be overcome to enable 
broad application. The nanostructure initiator mass spectrometry 
(NIMS) assay combines the versatility of rapid MS analysis with 
specificity associated with initiators that can be synthesized for a 
given target (Northen et al., 2008) or are compatible with com-
mon chemical biology tools.

Complementing microfluidic and droplet-based systems 
are innovative assays based on cell-free systems and electrical 
current that yield very high-throughput advantages. Cell-free 
systems (Jewett et al., 2008; Hodgman and Jewett, 2012) simplify 
analysis due to lower complexity matrices, increase engineering 
flexibility, and enable rapid tuning of parameters, such as proteins 
or substrate levels (Wang et al., 2012). Similarly, engineering of 
the electron transfer pathway in E. coli provides the foundation 
for biosensor assays that produce electrical readouts (Jensen 
et  al., 2010) to simplify and generalize detection. Likewise, 
new detection methods for biosensors based on carbon nano-
tubes and elemental-tag based antibodies have the potential to 
significantly broaden biosensor dynamic range and sensitivity 
(Selvaraju et al., 2008; Yang, 2012). Characterizing these methods 
for complex backgrounds, such as engineered microbes across 
a large target molecule concentration range, is necessary to 
establish robustness of the method and minimize false positives 
and false negatives.

Ribosomal profiling is an emerging method to quantify the 
fraction of mRNA transcripts that are being actively translated by 
ribosomes (Ingolia et al., 2009). This method offers the compre-
hensiveness of RNA-seq measurements with greater correlation 
to protein levels. Broad applicability is somewhat hindered by 
variable translation rates, variability in tRNA abundance, and 

technical challenges associated with polysome fractionation. 
Yet, all of these concerns are surmountable and with the wide-
spread availability of NGS tools the potential to quantify actively 
translated protein is on verge of becoming a standard workflow 
in metabolic engineering research. Reverse phase protein arrays 
(RPPA) (Tibes et al., 2006) are an alternate protein quantification 
method that has the potential to greatly increase the throughput of 
proteomic data acquisition. Initial studies, focused on biomedical 
applications, indicate that it is very sensitive and reproducible but 
the biotechnology application landscape is unexplored. The time 
and resources required to develop antibodies for many protein 
targets and the subsequent experiments needed to validate the 
method result in slow progress. A large-scale investment for 
select industrial host proteins could establish a useful quantitative 
tool for many metabolic engineering applications.

An integrated omics platform has long been the goal of systems 
biology research across the health and biotechnology fields, yet 
challenges associated with low data quality, difficulty comparing 
different types of omics data, and a general lack of datasets for 
multiple omics methods have kept it from becoming reality. The 
recent advances to omics techniques described above relating to 
increased sample throughput, higher data quality, greater method 
robustness, along with their broader adoption, are encouraging 
from the data acquisition standpoint. Comprehensive datasets 
inform statistical analyses and rule-based approaches for 
subsequent designs that increase the success rate for achieving 
production of a target molecule. Computational tools, such as 
correlation analysis, PCA, and machine-learning methods, are 
just emerging and rely on accurate information to make quality 
predictions (George et al., 2014; Alonso-Gutierrez et al., 2015). 
And, development of tools to relate information regarding the 
genetic background as well as factors associated with cell cultur-
ing, sample preparation, acquisition, and analysis will be needed 
to extract the greatest benefit.

Conclusion

The on-going cost and efficiency improvements occurring to 
the Design and Build components of the metabolic engineering 
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cycle are placing significant strain on the Test component because 
many constructs are needed to find the optimal parameters. 
This presents a classic “chicken-or-the-egg” dilemma, whereby 
many test samples are needed to refine parameters for designs 
while well-defined parameters are needed to reduce the number 
of samples to test. Currently, a massive amount of resources 
must be directed to the development of analytical technologies 
to match the capabilities further upstream in the cycle with the 
intent to comprehensively cover the design space. Standardized 
procedures and data-type reporting for metabolic engineering 
test measurements will enable greater applicability of data across 
the field. Efforts focused on a combination of these analyses 
will yield detailed understanding of dynamic processes between 
multiple parts or systems. Efficient metabolic engineering will 
be possible with design-of-experiments methods to intelligently 

sample strains from large libraries of engineered strains. Large 
datasets, statistical analyses, and rule-based approaches for sub-
sequent designs will inform models to increase the success rate 
for achieving production and optimization of a target molecule. 
In the end, with a rapidly turning DBTL cycle significant steps 
toward realizing the promise of metabolic engineering will be 
achievable.
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