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The design and generation of molecules capable of mimicking the binding and/or func-
tional sites of proteins represents a promising strategy for the exploration and modulation 
of protein function through controlled interference with the underlying molecular interac-
tions. Synthetic peptides have proven an excellent type of molecule for the mimicry 
of protein sites because such peptides can be generated as exact copies of protein 
fragments, as well as in diverse chemical modifications, which includes the incorporation 
of a large range of non-proteinogenic amino acids as well as the modification of the 
peptide backbone. Apart from extending the chemical and structural diversity presented 
by peptides, such modifications also increase the proteolytic stability of the molecules, 
enhancing their utility for biological applications. This article reviews recent advances by 
this and other laboratories in the use of synthetic protein mimics to modulate protein 
function, as well as to provide building blocks for synthetic biology.
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iNTRODUCTiON

The detailed insight into the human genome does not in itself enable a comprehensive understanding 
of human protein function, health, and disease. In the post-genome era, an important challenge is 
the structural and functional analysis of the gene products, i.e., proteins. Proteins play a major role 
in almost all biological processes, including enzymatic reactions, structural integrity of cells, organs 
and tissues, cell motility, immune responses, signal transduction, and sensing. All protein-mediated 
biological processes are based on specific interactions between proteins and their ligands. Therefore, 
exploring disease-associated protein–ligand and protein–protein interactions is essential to gain 
insight into the molecular mechanisms underlying diseases and other phenomena, as well as for the 
development of novel therapeutic strategies.

Molecules that present the binding sites of proteins, which are involved in a disease-associated 
protein–protein interaction, are promising candidates for therapeutic intervention. Such binding site 
mimetic molecules can be generated either through recombinant protein synthesis or by means of 
chemical peptide synthesis. A specific advantage of synthetic peptides is that they can be generated 
as exact copies of protein fragments as well as in diverse chemical modifications, which include the 
incorporation of a large range of non-proteinogenic amino acids, as well as the modification of the 
peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, 
such modifications also increase the proteolytic stability of the molecules, enhancing their potential 
as drug candidates.

Three conceptually different approaches are available for the design of protein-binding site 
mimetic peptides. These approaches are based on one or more of the following information about 
the proteins of interest: structure, sequence, and function. In random combinatorial methods that 
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FiGURe 1 | Types of protein-binding sites illustrated by the Hiv-1 envelope protein gp120. (A) Continuous epitope of gp120 for an antibody [pdb 4TVP 
(Pancera et al., 2014)]. The epitope (V3-loop tip, pink) is located in a single sequence stretch and can be reproduced in a single peptide. (B) Discontinuous 
protein-binding site of gp120 for its receptor CD4 [pdb 4TVP (Pancera et al., 2014)]. The binding site is located in three sequentially discontinuous segments of the 
protein sequence (yellow, green, and red). In a mimetic peptides, these three fragments are presented through a molecular scaffold.
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are based solely on protein function, such as phage display (Li 
and Caberoy, 2010) and synthetic peptide combinatorial librar-
ies (Houghten et  al., 1999), respectively, large populations of 
peptides are screened for binders to the respective partner 
protein, or for inhibitors of the protein–protein interaction 
of interest. A strategy termed peptide scanning is based on 
the synthesis of the entire protein sequence  –  or large parts 
of it –  in the shape of short, overlapping peptides, which are 
then individually tested for binding to the respective partner 
protein (Frank, 2002), enabling the identification of protein-
binding sites. The utility of this method, however, is largely 
limited to the identification of sequentially continuous bind-
ing sites, which are located in a protein sequence stretch of 
consecutive amino acids (Figure 1A). Structure-based design, 
finally, involves the design and generation of protein-binding 
site mimics based on the 3D structure of the protein–protein 
complexes (Eichler, 2008). This structural information enables 
the design and generation of mimics of continuous, as well as 
of sequentially discontinuous protein-binding sites, which are 
composed of two or more protein segments that are distant in 
protein sequence, but brought into spatial proximity through 
protein folding (Figure  1B). Mimicking such discontinuous 
protein-binding sites by synthetic peptides typically involves 
presentation of the respective protein fragments through a 
molecular scaffold (Figure 1B).

Here, we review strategies for the use of synthetic peptides as 
protein mimics. Focusing on structure-based design, the poten-
tial of such peptides as drugs against diseases, such as viral and 
bacterial infections, cancer, as well as autoimmune diseases, are 
discussed.

TOOLBOX FOR PePTiDe SYNTHeSiS: 
NON-PROTeiNOGeNiC AMiNO ACiDS 
AND SiTe-SeLeCTive LiGATiON

Most current methods for the chemical synthesis of peptides 
utilize Merrifield’s concept of solid-phase synthesis (Merrifield, 
1963), which enables the synthesis of peptides and small proteins 
of up to 100 amino acids. A major advantage of chemical peptide 
synthesis, as compared to recombinant protein synthesis, is the 
extended set of amino acids and other building blocks that can 
be incorporated, which includes d-amino acids, as well as a wide 
range of non-proteinogenic amino acids (Figure 2). While the 
recombinant synthesis of proteins containing non-proteinogenic 
amino acids is possible only through alternative codon usage 
(Mehl et al., 2003), hundreds of such building blocks are com-
mercially available for the use in chemical peptide synthesis. 
This opens the door to improved biological activity and peptide 
stability, as well as structural modifications. One possibility is 
the use of β- and γ-amino acids (Seebach et  al., 2004), which 
differ from α-amino acids in having one or two additional meth-
ylene groups between the carboxy and the amino function of 
the amino acid (Figure 2A). Peptides composed of these amino 
acids are stable against proteolysis in vitro and in vivo, as well 
as metabolism and degradation by microbial colonies (Seebach 
et al., 2004; Seebach and Gardiner, 2008). On the functional side, 
they can act similar to the natural α-peptides, as examplified 
by β- and γ-peptide agonists of naturally occurring α-peptide 
hormones such as somatostatin (Seebach et al., 2004; Seebach 
and Gardiner, 2008).
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FiGURe 2 | Building blocks for chemical peptide synthesis. (A) Amino acid derivatives with modified backbone length and side-chain orientation. (B) Amino 
acid derivatives with modified aromatic side chains. (C) Scaffolds for multivalent or discontinuous peptide presentation.
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Another possibility is the use of d-amino acids. Due to the 
chirality of the Cα-atom, amino acids exist in two different ste-
reoisomers (l and d). While recombinantly synthesized peptides 
and proteins are typically composed entirely of l-amino acids, 
chemical peptide synthesis can also use d-amino acids, which has 
been shown to increase the proteolytic stability while maintaining 
biolocical activity when d-amino acids are introduced at defined 
positions of an antimicrobial peptide (Hong et  al., 1999b). At 
other positions, on the other hand, using d-amino acids instead 
of l-amino acids had the opposite effect due to structural damage 
to the peptide (Hong et al., 1999b).

Furthermore, oligomers of N-alkyl glycine monomers, 
termed peptoids, have been introduced as proteolytically stable 
peptide derivatives (Simon et al., 1992) (Figure 2A). As the amide 
hydrogen is missing in peptoids, the typical backbone hydrogen 
bonds present in proteins and peptides cannot be formed, alter-
ing the conformational preferences of these molecules. Peptoids 
have been used as mimics of antimicrobial peptides (termed as 
ampetoids) (Chongsiriwatana et al., 2008; Mojsoska et al., 2015) 
as well as novel therapeutics (Zuckermann and Kodadek, 2009).

In addition to alteration of the peptide backbone, the use 
of non-proteinogenic amino acids enables the introduction of 
chemical moieties that are not presented by the proteinogenic 
amino acids, and which can be used to dissect the binding 
mode of peptides. A prominent example is the substitution of 
aromatic side chains of phenylalanine or tryptophan with larger 
aromatic groups such as naphthyl or biphenyl (Figure 2B), which 

increases the size and hydrophobicity of the side chain and affects 
π-stacking with the respective protein ligand (Muraki et  al., 
2000; Bachmann et al., 2011). Functionalized and orthogonally 
protected amino acids are often used for chemo selective ligation 
strategies (Tornoe et al., 2002; Kimmerlin and Seebach, 2005). In 
addition, lysine, among other amino acids, can be used for the 
synthesis of branched peptides (Franke et al., 2007). Furthermore, 
a range of scaffold molecules, such as trimesic acid derivatives 
(Berthelmann et al., 2014), triazacyclophane derivatives (Opatz 
and Liskamp, 2001; Chamorro et al., 2009), bis-, tris-, and tetra-
kis(bromomethyl)-benzene (CLIPS technology) (Timmerman 
et al., 2005) (Figure 2C), as well as cyclic β-tripeptide derivatives 
(Seebach and Gardiner, 2008) have been introduced for the 
generation of multivalent peptides.

PROTeiN SeCONDARY STRUCTURe 
MiMiCS

The three-dimensional (3D) arrangement of proteins contains 
unstructured, as well as structured regions, in which peptide 
chains are organized into secondary structures, such as α-helices 
and β-sheets. As α-helices and β-sheets mediate protein folding 
and protein–protein interactions, they are related to various 
biochemical phenomena and diseases (Fairlie et al., 1998). These 
secondary structures are stabilized by hydrogen bonds between 
amide nitrogen and carbonyl oxygen atoms. Bullock et al. have 
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analyzed the full set of helical protein interfaces in the Protein 
Data Bank (Berman et  al., 2000) and found that about 62% of 
the helical interfaces contribute to protein–protein interactions 
(Bullock et  al., 2011). Although natural proteins contain less 
β-sheet structure than α-helical structure, β-sheets contribute to 
protein aggregation, as well as to protein–protein interactions. 
Thus, peptides that mimic α-helices and β-sheets of proteins are 
attractive targets for drug development and tools to explore pro-
tein binding mechanism. A range of α-helix and β-sheet mimics 
have been developed, which will be discussed below. The various 
strategies of mimicking protein-binding sites through secondary 
structure mimics have also been extensively reviewed recently 
(Pelay-Gimeno et al., 2015).

α-Helix Mimics
The α-helical conformation of a peptide can be stabilized, and even 
induced, by introducing covalent links between amino acid side 
chains at selected positions. These links can be formed by lactam 
(Ösapay and Taylor, 1992; Yu and Taylor, 1999; Sia et al., 2002; 
Yang et al., 2004; Mills et al., 2006) and disulfide bridges (Jackson 
et al., 1991; Leduc et al., 2003), triazole-based linkages (Scrima 
et  al., 2010; Kawamoto et  al., 2011; Madden et  al., 2011), and 
hydrocarbon staples (Blackwell and Grubbs, 1998; Schafmeister 
et al., 2000; LaBelle et al., 2012; Verdine and Hilinski, 2012; Brown 
et al., 2013; Chang et al., 2013; Nomura et al., 2013; Walensky and 
Bird, 2014; Chu et al., 2015). Replacing hydrogen bonds by salt 
bridges has been reported by Otaka et al. as an alternative means 
of stabilizing α-helices (Otaka et al., 2002). Further examples for 
hydrogen bond surrogates include cation–π interaction (Olson 
et al., 2001; Shi et al., 2002; Tsou et al., 2002) and π–π interaction 
(Albert and Hamilton, 1995).

Foldamers are a very prominent class of α-helix mimetic 
peptides. They are composed of β-amino acid (Seebach and 
Matthews, 1997; Gellman, 1998; Cheng et  al., 2001; Martinek 
and Fulop, 2003), α/β-amino acid oligomers (Johnson and 
Gellman, 2013), or N-substituted glycine residues (peptoids) 
(Sun and Zuckermann, 2013). Such foldamers have been shown 
to inhibit the proteolytic activity of γ-secretase (Imamura et al., 
2009), an enzyme that is involved in the processing of amyloid-β 
(Aβ) in Alzheimer’s disease, by blocking the initial substrate 
binding site of γ-secretase (Lichtenthaler et al., 1999). For these 
foldamers, the conformationally constrained β-amino acid 
trans-2-aminocyclopentanecarboxylic acid (ACPC) was used as 
a building block. As such α-helix mimics can increase α-helicity, 
stability, and cell-permeability, they are increasingly attracting 
the attention both in academia and the pharmaceutical industry 
as candidates for novel therapeutics. Apart from biomedical use, 
α-helical peptide mimics are also of interest as biomaterials, such 
as self-assembling nanotubes (Burgess et al., 2015) and hydrogels 
(Mehrban et al., 2015).

β-Sheet Mimics
In β-sheets, two or more β-strands are connected via loops or 
turns, and the parallel or antiparallel orientation of β-strands is 
stabilized by hydrogen bonds between carbonyl oxygen atoms 
in one strand and amide nitrogen atoms of the opposite strand. 
Methods to mimic turn structures include macrocyclization 

as well as the use of turn-inducing building blocks, such as 
a dipeptide of d-proline and l-proline (Robinson, 2008), or 
α-aminoisobutyric acid in combination with either a d-α-amino 
acid or an achiral α-amino acid (Aravinda et al., 2002; Masterson 
et al., 2007). One noteworthy example for macrocyclization used 
cyclic cysteine ladders of θ-defensin as a scaffold to stabilize a 
turn structure (Conibear et al., 2014). The cyclic cysteine ladder 
of θ-defensin comprises two antiparallel β-strands connected via 
two β-turns, and has a high thermal and serum stability. Grafting 
of the integrin-binding peptide Arg–Gly–Asp (RGD) onto this 
molecule resulted in 10-fold increase in affinity to integrin, illus-
trating the utility of θ-defensin as a molecular scaffold.

It has been difficult to develop robust chemical models of 
β-sheets, which tolerate a wide range of amino acid sequences 
because amyloidogenic sequences vary enormously and folding 
of β-sheet mimics depends on their amino acid sequences. Woods 
et al. overcame this problem by using 42-membered rings, which 
contain two strands connected via two δ-linked ornithine turns 
(Woods et  al., 2007). Forty-two-membered ring macrocyclic 
β-sheets present a pentapeptide β-strand on one side (recognition 
strand), while the other β-strand contains the unnatural amino 
acid Hao (5-hydrazino-2-methoxybenzoic acid) and two α-amino 
acids. The relatively rigid structure of Hao-containing peptides 
preserves the structure of the recognition strand, and at the time 
serves as a template for the recognition strand. Furthermore, Hao 
is useful for the intermolecular β-sheet interaction to form fibril-
like assembled oligomers (Pham et al., 2014). Similar to α-helical 
peptides, β-sheet mimics have also been used for biomaterials, 
such as nanotubes (Hamley, 2014).

STiMULi ReSPONSive PePTiDeS iN 
BiOMATeRiAL eNGiNeeRiNG

Some peptides are able to be structurally rearranged in response 
to external stimuli, such as temperature, pH, ionic strength, and 
presence of special ions and light. In 2006, Mart et  al. (2006) 
reviewed different responsive systems based on peptides and 
their applications, including switchable surfaces, nanoparticle 
(dis)-assembly, hydrogel-formation, metal ion sensing, and elec-
tron transfer. In addition, special applications in medicine, such 
as drug delivery, tissue engineering, tissue regeneration, wound 
healing, and nerve cell regrowth rely upon stimuli-responsive 
peptides. Several conformational transitions of peptides have 
been reported, ranging from α-helix to random coil and vice versa 
or β-sheet to random coil and vice versa, among others. In this 
review, two selected examples are presented.

One example is the use of an azobenzene moiety as light-
sensitive switch (Woolley, 2005; Renner and Moroder, 2006). As 
a photoswitchable device, azobenzene, which is more stable in 
the trans-conformation, can switch into cis-conformation upon 
irradiation with light at 340 nm, leading to a 3.5 Å shortening of 
the C–C-distance of azobenzene (Fliegl et al., 2003; Beharry and 
Woolley, 2011). Incorporation of the reactive azobenzene deriva-
tive 3,3′-bis(sulfonate)-4,4′-bis(chloroacetamido)azobenzene at 
defined positions of the sequence can result either in a loss of 
helical conformation (positions i, i + 11, Figure 3A) or in helix 
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FiGURe 3 | Stimuli responsive peptides. (A) Transition of azobenzene (trans/cis)-derivatized helical peptides upon to light stimulus (Beharry and Woolley, 2011). 
(B) Transition of a random coil peptide upon temperature stimulus (Pochan et al., 2003).
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stabilization (positions i, i  +  7), upon light stimulus (Woolley, 
2005). To make this approach more feasible for in vivo applica-
tion, longer wavelengths should be used for azobenzene isomeri-
zation, considering UV-light scattering through cells and tissues. 
Samanta et al. (2013) recently reported an azobenzene derivative 
that can be switched using red light (630–660 nm), enabling the 
development of photo-switchable compounds for in vivo use.

Another example of stimuli-responsive peptides is the tem-
perature-dependent formation of hydrogels by β-sheet peptides. 
Pochan et  al. (2003) designed a β-hairpin mimic called Max3 
(Figure 3B) that undergoes gelation upon heating (Tgel = 60°C), 
which was completely reversible while cooling. This peptide is 
composed of alternating non-polar and polar amino acids bridged 
via a type II’ β-turn. Other peptides undergo non-reversible 
hydrogelation when heated (Max1, Max2) (Pochan et al., 2003). 
These β-hairpin peptides were the starting point for the design 
of peptides whose folding can be triggered by UV light (Haines 
et al., 2005), changes in pH (Rajagopal et al., 2009), or recognition 
of electronegative cancer cell membranes (Sinthuvanich et  al., 
2012). Because of their biocompatibility, biodegradability, weak 
immunogenicity and selectivity, peptidic hydrogels can serve as 
potential cancer drugs and antimicrobials, as well as for wound 
healing (Mart et al., 2006; Branco et al., 2011).

PROTeiN MiMiCS iN BiOMeDiCAL 
ReSeARCH

Current drug discovery and development approaches are 
focused on three different types of molecules (Craik et al., 2013; 
Fosgerau and Hoffmann, 2015). The traditional approach of 
using small molecules as drugs is still widely used. While small 
molecules have been shown to be excellent tools to block the 
catalytic site of enzymes, as well as the ligand binding sites of 
numerous receptors, they are less promising for the inhibition 
of protein–protein interactions, which often involve larger 
interfaces, which typically cannot be adequately addressed 
by small molecules. Therefore, protein-based drugs, so-called 
Biologics, are increasingly used as inhibitors of protein–protein 
interactions. Many proteins, however, have additional effector 
functions or binding sites for other ligands, causing problems in 

in vivo applications. Furthermore, proteins can be immunogenic, 
resulting in immunological clearance before reaching their target 
site. As an alternative to both small molecule and protein-based 
drugs, peptides are becoming more relevant as drug candidates, 
as documented by an increasing number of peptide drugs 
approved for clinical use (Fosgerau and Hoffmann, 2015). Due 
to their potential for highly specific binding, combined with low 
immunogenicity, peptides are promising candidates as inhibitors 
of protein–protein interactions.

Specific protein–protein interactions are involved in the 
pathogenesis of numerous diseases. The design and generation 
of peptides that mimic the respective protein-binding site, as 
potential inhibitors of the interactions, is therefore a promis-
ing therapeutic strategy. Such mimetic molecules are typically 
designed based on the 3D structure of the protein–protein com-
plex, which yields information on the location of the binding sites 
within the proteins, as well as the hot spot amino acids directly 
involved in the intermolecular interaction (Eichler, 2008). This 
general strategy will be illustrated here using examples of the 
various protein–protein interactions, which are involved in the 
entry of the human immunodeficiency virus type 1 (HIV-1) into 
cells. Furthermore, a range of protein-mimicking peptides used 
in the treatment of cancer and as antibiotics or anti-inflammatory 
compounds, will be reviewed.

Peptides as Mimics of the viral Spike of 
Hiv-1
The highly active antiretroviral therapy (HAART) has been a 
breakthrough in the treatment of HIV-1 infection, leading to an 
effective reduction of morbidity and mortality through drastic 
suppression of viral replication and, hence, reduction of plasma 
HIV-1 viral load. HAART consists of a mixture of at least three 
different drugs with at least two different molecular targets [for 
details see Arts and Hazuda (2012)]. Almost all of these drugs are 
small molecules that address intracellular targets. Due to the high 
genetic variability of HIV-1, the virus is able to rapidly become 
resistant against drugs. Therefore, there is an ongoing need for 
new therapeutic strategies against HIV-1. One of these strategies 
is the prevention of HIV-1 entry into its host cell by blocking the 
interactions between viral and host proteins that are involved in 
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FiGURe 4 | Peptide mimics of the CD4-binding site of gp120. (A) X-ray structure of gp120 in the CD4-bound conformation [1GC1 (Kwong et al., 1998)]. 
Highlighted in orange, blue, and green are the fragments forming the discontinuous CD4 binding site. (B) CD4bs-M (Franke et al., 2007). (C) CD4-binding site mimic 
with triazacyclophane scaffold (Chamorro et al., 2009).
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the entry process. This can be achieved by using peptides, which 
mimic the binding sites of the involved proteins.

Entry of HIV-1 into its host cells is initiated by a cascade 
of protein–protein interactions between the viral and host cell 
proteins. These interactions involve the trimeric viral spike, com-
posed of glycoproteins gp120 and gp41, as well as the primary 
receptor CD4 and corecptors CCR5 and CXCR4 on the host cell 
(Wilen et al., 2012).

The initial event of HIV-1 entry is an interaction of viral 
gp120 with the host receptor CD4. In contrast to the generally 
high genetic variability of HIV-1, the CD4-binding site of gp120 
is highly conserved. Peptides mimicking the CD4-binding site 
are therefore promising candidates as HIV-1 entry inhibitors. 
Furthermore, as the epitopes of various broadly neutralizing 
anti-HIV-1 antibodies have been shown to overlap the CD4-
binding site, this part of gp120 is an immunogen candidate for the 
generation of HIV-1 neutralizing antibodies. Based on the X-ray 
structure of gp120 in complex with CD4 (Kwong et  al., 1998) 
(Figure  4A), novel peptides that mimic the CD4-binding site 
have been developed (Figure 4) (Franke et al., 2007; Chamorro 
et al., 2009). A special characteristic of these peptides is the fact 
that they present three sequentially discontinuous fragments of 
the gp120 sequence, either in linear form, or as cyclic loops, on 
molecular scaffolds, such as a branched peptide composed of 
spacer amino acids, CD4bs-M (Figure  4A), and a triazacyclo-
phane scaffold (Figure 4B). While the triazacyclophane scaffold 
peptide did not affect HIV-1 infection (Chamorro et al., 2009), 

CD4bs-M was surprisingly found to strongly enhance HIV-1 
infection of both CD4 positive and CD4 negative cells, and this 
effect could be linked to a strong tendency of the peptide to 
assemble into amyloid fibrils (Groß et al., 2015b).

Understanding the molecular and structural details of the 
interaction of antibodies with their viral antigens is an important 
step in the quest for a still elusive HIV-1 vaccine (Burton et al., 
2012). A prominent class of anti HIV-1 antibodies recognizes the 
V3-loop of the gp120 protein (Zolla-Pazner and Cardozo, 2010), 
which forms a β-hairpin structure when in the antibody-bound 
state (Figures 5A,B). Robinson et al. were able to stabilize this 
β-hairpin structure in V3-loop peptides by grafting them on 
to a d-Pro-l-Pro scaffold (Riedel et  al., 2011; Robinson, 2013) 
(Figure 5C). Coupling of such a stabilized V3-loop mimic to a 
lipopeptide carrier, which self-assembles into virus-like particles 
(Ghasparian et al., 2011), resulted in increased immunogenicity, 
enabling an alternative, carrier-independent immunization. 
Phage display peptide libraries (Smith, 1985) have often been 
used to identify peptides that bind to antibodies and thus mimic 
their epitopes (mimotopes). Mimotopes of the broadly neutral-
izing HIV-1 antibody b12 have been found (Boots et al., 1997) 
this way. As the viral spike proteins gp120 and gp41 are presented 
as trimers, Schellinger et al. (2011) generated a potential immu-
nogen based on a trimer of the b12 mimotope in conjunction 
with a T-helper cell epitope peptide (Figure  6). This trimeric 
peptide bound to b12 substantially better than the monomeric 
mimotope, illustrating the importance of trimeric presentation, 
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FiGURe 6 | Trimeric presentation of a b12 mimotope in conjunction with a T-helper cell epitope (Schellinger et al., 2011).

FiGURe 5 | Peptide mimics of turn structures. (A) X-ray structure of gp120 [pdb 4TVP (Pancera et al., 2014)] with highlighted V3-loop (green). (B) NMR 
structure of protegrin 1 from porcine leukocytes [pdb 1PG1 (Fahrner et al., 1996)]. (C) V3-loop mimic, stabilized via d-Proline and l-Proline (Riedel et al., 2011). 
(D) Protegrin 1 mimic (L27-11), stabilized via d-Proline and l-Proline (Srinivas et al., 2010).
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which was achieved using the so-called click reaction (Rostovtsev 
et al., 2002) as a chemoselective ligation reaction.

In addition to gp120 mimetic peptides, peptides that present 
parts of gp41 are also intensively researched (Cai et al., 2011). In 
particular this applies to peptides that mimic a six-helix bundle, 
consisting of a three-stranded coiled-coil structures formed by 
an N-terminal (NHR) and a C-terminal (CHR) heptad repeat of 
gp41 (Chan et al., 1997). This region of gp41 plays a key role in the 
process of fusion of the viral and cellular membranes (Figure 7). 
Peptides presenting parts of the six-helical bundle are thought to 
be able to interfere with its correct formation and, consequently, 
inhibit virus-cell fusion. Already in 1992, Wild et  al. (1992) 
described an approach to mimic the secondary structure of NHR, 
which was predicted to be α-helical. Using CD spectroscopy, it 
could be shown that the NHR-mimetic peptide forms a stable 
α-helix under physiological conditions. Furthermore, the peptide 

exhibited a strong anti-HIV-1 activity, which could be further 
enhanced through dimerization. Trimers of the NHR-mimetic 
peptide were later found to be better HIV-1 entry inhibitors 
than the respective monomeric peptide (Nakahara et al., 2010). 
Covalent stabilization of such peptide trimers through inter-chain 
disulfide bridges dramatically increased the antiviral potency 
(Bianchi et al., 2005), as well as the HIV-1 neutralizing capacity 
of anti-peptide antisera (Bianchi et al., 2010).

Similar to the NHR mimics, peptides mimicking the CHR 
region of gp41 were developed to inhibit the formation of the six-
helical bundle. In 1994, Wild et al. (1994) demonstrated a strong 
anti-HIV-1 activity of a peptide that overlaps the CHR. Later on, 
the first and so far only HIV-1 fusion inhibitor approved for clinical 
use (Enfuvirtide) was developed based on this peptide (Kilby and 
Eron, 2003; Lalezari et al., 2003). Another fusion inhibitor, called 
Sifuvirtide, was developed based on the 3D structure of HIV-1 
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FiGURe 7 | Peptide mimics of Hiv-1 gp41. Structural rearrangements in the gp41 NHR and CHR core region during transition of the pre-hairpin intermediate to 
the six-helix bundle [pdb 1SZT (Tan et al., 1997)], which can be inhibited through peptides.
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gp41 and computer modeling (He et al., 2008; Wang et al., 2009). 
Sifuvirtide could effectively block six-helical bundle formation 
and was active even against Enfuvirtide-resistant HIV-1 strains. 
Otaka et al. increased the α-helicity of a CHR mimetic peptide by 
introducing Glu–Lys pairs at the i and i + 4 positions of the helix 
(Otaka et  al., 2002), which greatly enhanced the solubility and 
stability of the peptide. Trimeric presentation of a CHR mimetic 
peptide on a C3-symmetric scaffold dramatically increased the 
antiviral activity of the peptide (Nomura et al., 2012).

Peptides as Mimics of Cellular Receptors
Cellular receptors play important roles in signal transduction 
pathways, as well as in viral entry. As discussed in the previous 
chapter, HIV-1 contacts two receptors on the host cell surface 
prior to fusion with the cell membrane. Peptides that mimic 
these receptors are useful tools to explore the details of virus 
infection mechanism, as well as to develop new drugs against 
HIV-1. In 1998, Drakopoulou et al. (1998) developed a peptidic 
CD4 mimic, called CD4M, based on the analysis of site-directed 
mutagenesis studies, antibody-blocking experiments and the 
structure of the extracellular fragment of CD4, which identified 
the CDR H2-like loop of CD4 as the binding site for gp120 of 
HIV-1. To retain the native structure of the CDR H2-like loop, the 
peptide was transferred onto a scorpion toxin, which served as a 
structural scaffold. Optimizing CD4M led to a variant with100-
fold increased affinity to gp120, as well as infection-inhibitory 
activity (Vita et al., 1999). Based on the X-ray structure of CD4 
in complex with gp120 (Kwong et al., 1998), Martin et al. (2003) 
further optimized the CD4 mimic, resulting in a 27-mer peptide 
mimicking the CD4 binding site for gp120. This peptide was 

able to bind to gp120 at low nanomolar concentrations, inhibit 
binding of CD4 to gp120, as well as to induce conformational 
changes in gp120 similar to those triggered by CD4, from which 
it was derived. The importance of conformational stability of 
CD4 mimetic peptides could be further confirmed by Meier et al. 
(2012). Peptides that present the binding site of CD4 for gp120 
were covalently stabilized in their loop structure by cyclization 
through a disulfide bond between the N- and C-terminus. Using 
alanine and d-phenylalanine substitution analogs, the importance 
of the hot spot amino acid phenylalanine 43 could be confirmed 
at the peptide level. These results were further confirmed by 
molecular dynamics simulations.

The concept of mimicking protein-binding sites through com-
plex synthetic peptides has recently been extended to peptides 
that mimic the extracellular domains of seven transmembrane 
G protein-coupled receptors (GPCRs), which is composed of 
the N-terminus (NT) and the three extracellular loops (ECLs). 
GPCRs make up the largest class of drug targets, in fact, 27% of 
all clinically used drugs target a GPCR.

In the context of HIV-1 infection, two GPCRs are important, 
i.e., the chemokine coreceptors CCR5 and CXCR4. Although 
the 3D structures of both receptors are available (Wu et  al., 
2010; Tan et al., 2013), our knowledge of the structural details of 
their interaction with HIV-1 gp120 remains limited. Therefore, 
peptides that mimic the binding site of these receptors for gp120 
could be useful tools for the exploration of HIV-1-coreceptor 
interaction at the molecular level. We have generated a peptide 
that mimics the three ECLs of CXCR4 (Möbius et  al., 2012) 
(Figure 8A). This peptide, named CX4-M1, is able to discrimi-
nate between CXCR4- and CCR5-recognizing gp120 (Möbius 
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FiGURe 8 | Peptide mimics of cellular receptors. (A) CXCR4 [pdb 3ODU (Wu et al., 2010)]. The extracellular loops (highlighted in green, red, and purple) are 
presented by the mimetic peptide CX4-M1 (Möbius et al., 2012). (B) GPCR CRF1 [pdb 4K5Y (Hollenstein et al., 2013)] and NMR structure of its N-terminus [pdb 
2L27 (Grace et al., 2010)]. The extracellular loops are highlighted in orange, red, and green. The N-terminus is depicted in blue. These sequence stretches are 
presented in the CRF1 mimetic peptide (Pritz et al., 2008).
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et al., 2012) and V3-loop peptides mimicking the corresponding 
binding site on gp120 (Groß et al., 2013), and also inhibits HIV-1 
infection of susceptible target cells in a CXCR4-specific manner 
(Möbius et al., 2012; Groß et al., 2015a). Furthermore, CX4-M1 
is recognized by the natural CXCR4-ligand, i.e., the chemokine 
CXCL12 (also called SDF-1α), as well as anti-CXCR4-antibodies 
(Groß et al., 2015a).

In a similar approach, Pritz et  al. (2008) generated, via a 
combination of recombinant, enzymatic and chemical synthesis, 
a molecule that mimics the extracellular domain of the corti-
cotropin-releasing factor receptor type 1 (CRF1) (Figure  8B). 
Improving the scaffold for the presentation of the ECLs and 
N-terminus, as well as increasing the overall yields through syn-
thesis optimization, enabled structural analysis of the receptor 
mimic  –  ligand interaction through NMR spectroscopy (Abel 
et al., 2014).

The epidermal growth factor receptor (EGFR), which is a 
key protein of cell proliferation and differentiation (Yarden and 
Sliwkowski, 2001), has also been subject to structure-based design 
of receptor mimetic peptides. As the receptor forms dimers or 
even oligomers, Hanold et al. (2015) generated a peptide mimic 
of the EGFR dimerization arm, which forms a β-hairpin in the 
native conformation. This peptide was stabilized via a triazole 

crosslink to increase proteolytic stability, while retaining the 
native structure, resulting in inhibition of EGFR dimerization 
and, consequently, a reduction of cell viability. Sequence and 
functional optimization of EGFR mimetic peptides may be use-
ful for the development of novel cancer drugs addressing EGFR 
overexpression in tumors.

Peptides in Cancer Research
The uncontrolled growth and spread of cells into tumor tissue 
(Vogelstein and Kinzler, 2004) defines cancer as one of the main 
fatal diseases worldwide. Therefore, a major focus in peptide drug 
development is on oncology (Kaspar and Reichert, 2013; Fosgerau 
and Hoffmann, 2015). Apart from using peptides directly as 
anticancer drugs (Thundimadathil, 2012), they can also serve as 
targeting agents to direct highly toxic chemotherapeutics to their 
respective targets, reducing the systemic toxicity of these drugs 
[for details see Kaspar and Reichert (2013)].

Structure-based approaches are often used in the design of 
anticancer peptides, such as the inhibitor of cell migration and 
invasion published by Bifulco et al. (2008). The urokinase-type 
plasminogen activator receptor (uPAR), which plays a critical 
role in cancer cell growth, survival, invasion and metastasis, 
contains a five amino acid sequence (SRSRY) between two of its 
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three domains, which is exposed through ligand binding, and 
mediates chemotactic properties of uPAR. Using the pentapep-
tide SRSRY as a template, glutamine scanning and insertion of a 
pyroglutamine (pE) resulted in the identification of the peptide 
pERERY-NH2 as a highly active uPAR inhibitor. Further optimi-
zation through structure-based design leads to the tetrapeptide 
Ac-RERF-NH2, which is 500- to 1000-fold more active than 
pERERY-NH2 (Carriero et  al., 2009). Ac-RERF-NH2, which 
has a high propensity to adopt an α-turn structure, represents a 
promising drug candidate against cancer.

An important target for the therapy of pancreatic, gastritic, 
and colorectal tumors is gastrin, a peptide hormone, whose activ-
ity can be blocked by antibodies that recognize gastrin as their 
epitope, delaying tumor growth (Watson et  al., 1996; Barderas 
et al., 2008b). Detailed analysis of the antibody epitopes through 
alanine scanning of gastrin (Barderas et al., 2008b) and docking 
of the epitope into the antibody binding site, followed by affinity 
maturation through phage display and in silico methods (Barderas 
et al., 2008a) resulted in the development of antibody fragments 
with enhanced potency to inhibit gastrin-induced tumor growth. 
With the aim to shrink these antibodies to the size of peptidomi-
metics, Timmerman et al. (2005, 2009) used a strategy, in which up 
to three peptides derived from the complementary-determining 
regions (CDRs) of an antibody are presented in one molecule 
using the CLIPS strategy (see Toolbox for peptide synthesis: 
non-proteinogenic amino acids and site-selective ligation). In 
most cases, the activity of the obtained peptides was much lower 
compared to the parent antibodies. Nevertheless, neutralization 
of gastrin in cell-based assays by the mimetic peptides could be 
demonstrated (Timmerman et al., 2009). The mode of action of 
the peptides, however, may be different from that of the parent 
antibodies (Timmerman et al., 2010), leading to the conclusion 
that further efforts in peptide design have to be made.

Small GTPases, such as Ras, Rab, and Rho, are key proteins 
in many cancers, as malfunction of these proteins results in 
abnormal cell growth and differentiation, prolonged cell survival, 
membrane trafficking, and vesicular transport (Bourne et  al., 
1990; Cherfils and Zeghouf, 2013). Inhibiting the activity of 
these small GTPases could lead to new chemotherapeutic drugs 
for cancer treatment. One strategy to achieve this is to address 
the GDP–GTP exchange of Ras, which is the rate-limiting step 
and requires interaction with the Ras-specific guanine nucleotide 
exchange factor Sos (Konstantinopoulos et  al., 2007). In 2011, 
Patgiri et al. (2011) published the structure-based design of an 
α-helical peptide derived from the Sos-Protein, which is able 
to inhibit Sos-mediated Ras activation through interference 
with the Sos–Ras interaction, providing a promising lead com-
pound for anti-cancer drugs. Likewise, peptide mimics of the 
Rab ligands R6IP, LidA, REP1, and Rabin8 have been reported 
(Spiegel et  al., 2014). Using the hydrocarbon-peptide stapling 
approach, α-helical peptides were stabilized at positions i and 
i + 4, resulting in up to 200-fold increased affinity of the peptide 
to Rab proteins. In addition, one of the peptides, being a pioneer 
inhibitory compound for Rab GTPase–protein interactions, was 
found to inhibit the Rab8a–effector interaction.

A challenge in cancer drug delivery is the discrimination between 
self and non-self, i.e., clearance of drug-loaded nanoparticles 

before they reach their target. To overcome this problem, synthetic 
polymers such as polyethylene glycol are used, but these can ham-
per uptake by cancer cells (Hong et al., 1999a). As an alternative 
strategy, Rodriguez et al. (2013) generated, based on the crystal 
structure of the hCD47–hSIRPα complex, and in combination 
with computational simulations, a minimal “self ” 21-mer peptide. 
This peptide, which originates from CD47, an established marker 
of “self ” (Rodriguez et al., 2013), was able to prolong the circulation 
of nanobeads in mice by preventing phagocytosis, providing a new 
opportunity for enhanced delivery of drugs or imaging agents. As 
an example for its utility as a marker of “self,” the anti-cancer drug 
paclitaxel was loaded onto nanoparticles, which also presented the 
marker-peptide on their surface. Due to delayed clearance, treat-
ment with peptide-coated nanoparticles induced a more efficient 
size-reduction of lung adenocarcinoma epithelial tumors in mice 
than beads without the peptide. Although this peptide is not the 
bio-active compound, it provides an excellent tool for the delivery 
of drugs to tumor tissues.

Peptides are also promising candidates for cancer 
 immunotherapy, where they are used as vaccines that present 
tumor- associated antigens, which trigger an immune response 
against the tumor in the patient. It can be expected that peptides 
presenting tumor-associated antigens will increasingly gain signifi-
cance for cancer immunotherapy in the future (Miller et al., 2013).

Peptides as Antibiotics and Anti-
inflammatory Compounds
The growing multi-resistance of bacteria to clinically used anti-
biotics is one of the current challenges in biomedical research 
(Dennesen et  al., 1998). The development of new antibacterial 
drugs is therefore an urgent necessity, and peptides have proven 
beneficial in this area of drug development as well. Robinson 
et al. (2005) could demonstrate improved antimicrobial activity, 
as well as plasma half-life of β-hairpin mimics of the naturally 
occurring membranolytic host-defense peptide protegrin 1 
(Shankaramma et  al., 2002; Srinivas et  al., 2010) (Figure  5D). 
These peptides were cyclized via a d-proline–l-proline template, 
reducing flexibility and stabilizing the conformation of the pep-
tide (Shankaramma et al., 2002; Robinson et al., 2005; Srinivas 
et al., 2010). Furthermore, these peptides were shown to directly 
interact with the bacterial β-barrel protein LptD, which sets them 
apart from other antimicrobial peptides, whose effect is mainly 
based on a membranolytic activity.

An anti-inflammatory peptide, named CHOPS (Bunschoten 
et  al., 2011) (Figure  9), was designed based on the structure 
of the chemotaxis inhibitory protein of Staphylococcus aureus 
(CHIPS) (Veldkamp et  al., 2000; Haas et  al., 2005; Ippel et  al., 
2009). CHIPS is known to bind to the C5a-receptor and to inhibit 
the C5a–C5a-receptor interaction (Postma et  al., 2004), thus 
addressing an important element in the complement cascade of 
the innate immunity. As full-length CHIPS is highly immuno-
genic (Gustafsson et al., 2009), its peptide mimic CHOPS, whose 
conformation is similar to the respective CHIPS fragment, and 
which binds to the N-terminus of the C5a-receptor (Bunschoten 
et al., 2011), may become a promising alternative for the treat-
ment of inflammatory and autoimmune diseases.
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FiGURe 9 | Peptide mimics of an anti-inflammatory protein. Left: NMR structure of the chemotaxis inhibitory protein of S. aureus [CHIPS31-121 pdb 1XEE 
(Haas et al., 2005)] with highlighted discontinuous binding site for the C5a receptor, which was mimicked through the peptide CHOPS (Bunschoten et al., 2011) 
(right).
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Proteins in the outer membrane of Gram-negative bacteria 
often have β-barrel structures. The proper assembly of these 
proteins is provided for by the β-barrel assembly machine (Bam) 
(Hagan et  al., 2011). One important component of the Bam 
multiprotein complex is BamD, which interacts with unfolded 
protein substrates, like BamA, and facilitates their assembly in the 
outer membrane (Hagan et al., 2013). Using a peptide scanning 
approach of the C-terminal region of BamA, a 15-mer peptide 
was identified as an inhibitor of outer membrane protein assem-
bly (Hagan et al., 2015). In vivo expression of this peptide resulted 
in bacterial growth defects, and sensitized resistant Escherichia 
coli to antibiotics, marking a starting point for the development 
of new antibiotic compounds for gram-negative bacteria (Hagan 
et al., 2015).

It should also be noted that a plethora of antimicrobial 
peptides are found in numerous organisms, including insects, 
mammals, plants, and bacteria (Mojsoska et al., 2015), which are 
not subject of this review. Furthermore, computer-based design 
strategies are aimed at the design of antimicrobial peptides with 
improved activity and reduced mammalian cell toxicity (Fjell 
et al., 2012).

CHALLeNGeS AND FUTURe DiReCTiONS

Due to their intrinsic properties, such as their potential for 
highly specific interactions with target molecules, generally low 
toxicity and immunogenicity, and rapid clearance, peptides are 
increasingly appreciated as candidates for novel drugs. This is 
particularly true for the development of protein–protein interac-
tion inhibitors, where peptides are often better able than small 
molecules to cover large protein interface areas.

On the other hand, peptides also present severe bottlenecks that 
need to be considered and, if necessary, addressed in the develop-
ment of peptide drugs. The biggest challenge clearly is the limited 

metabolic stability of peptides, since they are rapidly degraded by 
proteolytic enzymes, precluding oral administration of peptide 
drugs. This challenge can be addressed by different means. First, 
unlike recombinant protein synthesis, chemical peptide synthesis 
is not limited to the proteinogenic amino acids as building blocks. 
A plethora of additional amino acids are currently available for 
chemical peptide synthesis. Apart from dramatically increasing 
the metabolic stability of peptides, incorporation of these amino 
acids also increases the chemical diversity presented by synthetic 
peptides, as these additional amino acids introduce chemical 
moieties that are not presented by the proteinogenic amino acids. 
Furthermore, conformational stabilization through cyclization, 
or through introduction of defined secondary structures, has 
been shown to shield peptides from proteolytic enzymes. Such 
shielding effects can also be achieved by coupling the peptide to 
larger inert molecules, such as polyethylene glycol (Swierczewska 
et al., 2015).

Due to their molecular size, peptides are rarely able to passively 
pass cell membranes, limiting their utility to address intracellular 
target molecules. This drawback, however can be counteracted 
by attaching the drug peptide to one of a large group of available 
cell-penetrating peptides (Kurrikof et al., 2015), which are able to 
transport a variety of molecular cargo into cells.

In general, the chemical synthesis of peptides through solid-
phase synthesis is fairly straightforward and has been optimized 
over the past decades, so that virtually all peptide sequences are 
accessible synthetically today. In our experience, however, the syn-
thesis of specific peptides may require the use of specific protected 
amino acids and other building blocks, solid supports, linkers and 
other reagents, which significantly increases the cost of synthesis. 
These considerations may become relevant for the large-scale 
synthesis of peptide drugs, as well as peptide biomaterials.

The design of peptides as protein–protein interaction inhibitors 
is typically based on the resolved 3D structure of the respective 
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protein–protein complex. While such structures are increasingly 
becoming available through powerful x-ray crystallography 
technology, their generation is not trivial and contingent on the 
availability of suitable crystals of the protein complexes.

Overall, taking into account the tremendous technical and 
scientific progress in the field of using peptides as protein mimics, 
we strongly believe that the significance of synthetic peptides in 
biomedical research, as well as in biomaterial engineering, will 
continue to grow in the future.

CONCLUSiON

The design of peptides as protein mimics has evolved as a prom-
ising strategy for the exploration of, as well as the controlled 
interference with, protein–protein interactions. Due to their 
chemical nature, peptides are an appropriate type of molecules 
for the mimicry of protein-binding sites, including those involv-
ing large protein–protein interfaces. The possibility to use 
non-proteinogenic amino acids, as well as various methods of 
chemical modification, greatly enhances the scope of chemical 
and structural versatility, as well as stability, of synthetic pep-
tides. Apart from their significance as molecular tools to explore 

protein–protein interactions, such protein mimetic peptides are 
also candidates for the inhibition of protein–protein interactions 
involved in disease processes. Furthermore, peptides play an 
important role in biomaterial engineering, as they are biocompat-
ible, biodegradable, and functionally selective. Photo-switchable 
peptides can be used to temporally and/or spatially control 
processes in organisms, such as drug release at specific organs or 
tissues. These applications illustrate the utility and versatility of 
synthetic peptides as molecular tools in biomedical research, as 
well as in synthetic biology.
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