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Dysregulation in signal transduction pathways can lead to a variety of complex disorders, 
including cancer. Computational approaches such as network analysis are important tools 
to understand system dynamics as well as to identify critical components that could be 
further explored as therapeutic targets. Here, we performed perturbation analysis of a 
large-scale signal transduction model in extracellular environments that stimulate cell death, 
growth, motility, and quiescence. Each of the model’s components was perturbed under 
both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both 
types of perturbations across various extracellular conditions, we identified the most and 
least influential components based on the magnitude of their influence on the rest of the 
system. Based on the premise that the most influential components might serve as better 
drug targets, we characterized them for biological functions, housekeeping genes, essential 
genes, and druggable proteins. The most influential components under all environmental 
conditions were enriched with several biological processes. The inositol pathway was found 
as most influential under inactivating perturbations, whereas the kinase and small lung 
cancer pathways were identified as the most influential under activating perturbations. The 
most influential components were enriched with essential genes and druggable proteins. 
Moreover, known cancer drug targets were also classified in influential components based 
on the affected components in the network. Additionally, the systemic perturbation analysis 
of the model revealed a network motif of most influential components which affect each 
other. Furthermore, our analysis predicted novel combinations of cancer drug targets with 
various effects on other most influential components. We found that the combinatorial per-
turbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased 
activity levels of apoptosis-related components and tumor-suppressor genes, suggesting 
that this combinatorial perturbation may lead to a better target for decreasing cell prolifera-
tion and inducing apoptosis. Finally, our approach shows a potential to identify and prioritize 
therapeutic targets through systemic perturbation analysis of large-scale computational 
models of signal transduction. Although some components of the presented computational 
results have been validated against independent gene expression data sets, more labora-
tory experiments are warranted to more comprehensively validate the presented results.

Keywords: computational modeling, in  silico perturbation analysis, signal transduction, cancer, therapeutic 
targets
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inTrODUcTiOn

Recent advances in systems biology and computational biology 
have introduced methods for the visualization, comprehension, 
and interpretation of big data in biomedical research. These fields 
provide an array of methodologies including computer simula-
tions that can be used to generate new hypotheses and identify 
which hypotheses might be more productive to undertake experi-
mentally, and eliminate hypotheses with little chance of success 
(Kitano, 2002a,b; Ghosh et al., 2011). These methods can be effec-
tive in navigating complex network problems associated with dis-
eases. Many diseases and pathologies can be characterized by the 
dysregulation or dysfunction of multiple molecular components 
that are connected within these highly intertwined biological and 
biochemical networks (Loscalzo and Barabasi, 2011). Biological 
networks, including biochemical signal transduction networks, 
consist of a large number of highly interconnected pathways that 
give rise to complex, non-linear dynamics governing various cel-
lular functions (Helikar et al., 2008; Helikar and Rogers, 2009). 
Disruptions of these networks, such as mutations or disease states 
can have drastic effects upon the whole system. These effects are 
difficult to predict from static network diagrams.

However, understanding the hierarchy of these changes 
remains a paramount problem. Often the specific causal interac-
tions of the disease state are hidden within the massive cell-wide 
alterations, making attempts to reverse a disease state more chal-
lenging. In addition, the specific causal interactions are difficult 
to predict making the development of a potential therapeutic 
target results in unforeseen side effects (Singh and Singh, 2012). 
The unwanted effects of these drugs are often drastic as seen with 
many cancer medications (Kayl and Meyers, 2006; Lotfi-Jam 
et al., 2008; Singh and Singh, 2012). These challenges are further 
exacerbated by drug resistance that can render therapies ineffec-
tive. Therefore, it is necessary to gain a systems level understand-
ing of the components associated with the disease states.

In recent years, targeted therapy has been used for multiple 
diseases, e.g., cancer (Vanneman and Dranoff, 2012), and often 
involve the activation or inactivation of a specific component in 
a biological network by a small molecule or drug, for instance. 
Perturbation analyses allow one to interrogate the structure 
and dynamic footprint of the underlying biological system. 
Perturbation biology has been proposed as an approach to 
reduce the collateral damage caused by non-specific drugs. 
Computational network perturbations and new methods to 
evaluate the robustness of a given network can help identify more 
effective network components to target in order to obtain desired 
outcomes with minimal disruption to the rest of the network 
(Molinelli et al., 2013).

In order to fully leverage the potential of computational 
network perturbation analyses large dynamical models are 
necessary. A wide spectrum of modeling approaches exists rang-
ing from detailed (but less scalable) differential equation-based 
systems to large (but not dynamic) static networks. In the mid-
dle are approaches such as logical modeling that are relatively 
scalable while capable of capturing the dynamic nature of 
biological systems (Le Novère, 2015). Logical networks, namely 
Boolean networks, have been used to describe and simulate a 

wide spectrum of biological systems ranging in size as well as 
contextual application (Naldi et  al., 2010; Helikar et  al., 2012; 
Madrahimov et al., 2013; Rocha et al., 2013; Conroy et al., 2014). 
Thus, applying perturbation analysis to large-scale logical models 
may provide new insights into the system, which could be used to 
identify novel therapeutic targets.

Herein, we present results from a system-wide perturbation 
analysis of a large-scale Boolean model of a signal transduction 
network widely present in many types of cells. Specifically, the 
model previously described in Helikar et al. (2008) represents 
signaling events within the integrated epidermal growth fac-
tor (EGF), G protein-coupled receptor, and integrin signaling 
network. The model consists of 137 components (mostly pro-
teins) and 557 biochemical interactions. The simulation-based, 
system-wide perturbation analyses enabled us to identify the 
most and least influential components (ones with the most and 
least impact on the rest of the network). To explore the role 
and effects of these perturbations in the context of the complex 
extracellular environment, the simulations and analyses were 
conducted under four biologically relevant environmental 
conditions known to stimulate cell growth, cell death, motil-
ity, and quiescence (in addition to a set of randomly gener-
ated environmental stimuli). In order to investigate potential 
therapeutic targets, we performed functional annotation and 
analysis of the most influential signal transduction compo-
nents under both inactivating (e.g., knockout) and activating 
(e.g., overexpression) perturbations. The most influential 
components were found to be enriched with many biological 
processes and druggable targets. Also, the most influential 
components under activating perturbations were enriched 
with more essential genes than the least influential components. 
We used the most influential components and their upstream 
regulators to identify novel interactions. We also identified a 
network of the most influential components consisting of drug 
targets considered in multiple cancer types. The highest ranked 
among the most influential components were already explored 
as drug targets against cancer, including EGFR, PI3K, Raf, Ras, 
and Erk. Because some of these targets have been reported 
to be associated with drug resistance (Holohan et  al., 2013; 
Rodon et al., 2013; Wagle et al., 2014), we analyzed additional 
components of the signal transduction network that could 
potentially complement drug-resistant targets. As a result of 
the systemic analysis, we identified one novel combinatorial 
target, PI3K–IP3R1, with consistent occurrence in all simulated 
environmental conditions. This combination could be used to 
suppress cell proliferation while increasing the rate of apoptosis. 
We simulated the effect of combinatorial perturbation and the 
results were correlated with the literature, further supporting 
our predictions.

MaTerials anD MeThODs

computational Model
The computational model analyzed in this work is a Boolean 
model of signal transduction in a generic cell type. In Boolean 
models, each component can assume an active (1) or inactive 
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(0) state at any time t. The activity state of the model’s internal 
components is determined by the regulatory mechanisms 
of other directly interacting components. These regulatory 
mechanisms are described with Boolean functions (in the 
form of truth tables or Boolean expressions). To represent 
the milieu of stimuli in the extracellular environment, the 
model contains external components that represent various 
ligands. The activity level of these components is specified 
as a probability to simulate different levels of concentrations. 
This methodology was previously detailed and exemplified in 
Helikar et  al. (2008, 2012), Helikar and Rogers (2009), and 
Todd and Helikar (2012).

The signal transduction model, previously detailed in Helikar 
et  al. (2008), was constructed manually from around 500 
published papers. The model consists of several main signaling 
pathways, including the receptor tyrosine kinase (EGF receptor), 
G protein-coupled receptors (G-alpha i, G-alpha q, G-alpha s, 
and G-alpha 12/13), and the integrin signaling pathways. Each 
of the 130 components in the model corresponds to a signaling 
molecule (mainly protein). The model also contains nine external 
components that represent the extracellular environment (mostly 
composed of receptor ligands). These external components 
include the EGF, extracellular matrix (ECM), calcium pump, 
interleukin 1, and tumor necrosis factor (TNF), ligands for four 
types of G protein-coupled receptors (αi, αq, αs, and 12/13), and a 
general stress signal. The final model consists of 137 components 
(130 internal and 7 external) connected with 557 interactions. 
The model is fully annotated and freely available via the Cell 
Collective software (Helikar et  al., 2012, 2013) at www.thecell-
collective.org (under Published Models). Cell Collective, an 
interactive modeling environment, can be used to download the 
model (and other logical models published by the community) 
in several file formats (SBML qual, text file of logical functions, 
truth tables, etc.), as well as simulate directly on the platform. For 
convenience, the model SBML file is provided as File S1 (Data 
Sheet 1) in Supplementary Material.

Model simulations
The Cell Collective platform was used to perform all computa-
tional simulations of the model. Although the model is built by 
using discrete mathematics the output activity levels (AL) can 
be continuous (ranging from 0 to 100) as previously described 
in Helikar et  al. (2008) and Helikar and Rogers (2009). Each 
simulation is synchronous and consists of 800 steps, where the 
activity level of the measured output component is calculated 
as the fraction of ones (active states) over the last 300 iterations 
that describe the network’s steady behavior (Helikar et al., 2008; 
Helikar and Rogers, 2009).

Let xj(ti) denotes a node’s activity on the ith iteration and jth 
simulation where i = 1, 2, …, T and j = 1, 2, …, N, total is the 
simulation out of N total simulations. We obtain AL as below.
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The model was simulated and analyzed under four biologically 
relevant environmental conditions that stimulate cell growth, cell 

death, quiescence, motility (and randomly generated behaviors), 
as established and detailed in Helikar et al. (2008). The environ-
mental conditions that stimulate each of these cellular responses 
were obtained based on Helikar et al. (2008) where the model’s 
responses were characterized based on 10,000 combinations of 
randomly generated environmental signals. For example, cell 
growth behavior is characterized by higher AL of Erk (marker 
for proliferation) and Akt (marker for anti-apoptosis). Cell 
motility behavior was characterized by higher AL of Cdc42 and 
Rac. Quiescence response is considered when the activity level 
of Akt is medium to low, and proliferation (Erk) and motility 
(Cdc42 and Rac) are low or inactive (Helikar et al., 2008). Each 
environmental condition is defined by different combinations of 
AL of external components (ligands). The activity level ranges 
of the environmental conditions were further determined by an 
optimization method whereby 2,000 simulations were run with 
all external stimuli ranging from 0 to 100 (except for IL1_TNF 
and Stress that were limited to low AL). Subsequently, environ-
mental activity level combinations that stimulated cell growth, 
cell death, motility, and quiescence most effectively were selected 
as the corresponding environmental conditions (Table 1). This 
is directly analogous to optimization experiments in laboratory 
studies (e.g., determining the optimal medium and plating condi-
tions of a cell before performing a growth factor titration).

A wild type (WT) experiment (used as a reference) was 
conducted under each environmental condition without any per-
turbations. Subsequently, systematic perturbation experiments 
were conducted under each condition, whereby each component 
of the model was constitutively activated (activity stuck at 1; 
gain-of-function/overexpression) or inactivated (activity stuck 
at 0; loss-of-function/knockout). Each experiment consisted 
of randomly selecting 100 combinations of AL of the external 
stimuli from each condition activity range. (The only exception 
was the random environmental condition, which was simulated 
2,000 times.) Each of the 100 combinations were simulated 30 
times (i.e., 30 replicates) to ensure consistency of the dynamics 
in response to a specific combination of stimuli. These replicates 
were subjected to a Fligner Killeen test of homogeneity of 
variances, which confirmed that the measured AL of the network 
components, were homologous for identical combinations of AL 
of the environmental stimuli.

Model analysis
The Kolmogorov–Smirnov (KS) test (Wang et al., 2003) was used 
to compare the WT dynamics (under each environmental condi-
tion) with the dynamics of each perturbation experiment. If the 
KS test resulted in a p-value <0.05, then it has a difference value 
(DV) equal to the test statistic; otherwise, the DV for a compo-
nent is 0. Because we are looking at how a node’s perturbation 
affects the rest of the network, its DV when it is the perturbed 
node is set to 0.

Most and least influential components
The most influential components are defined as components that 
induce the largest changes in the network under a given perturba-
tion. The ranking of the perturbations is derived by calculating 

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.thecellcollective.org
http://www.thecellcollective.org


Table 1 | activity level ranges of environmental stimuli for cell death, growth, motility, quiescence, and random environments.

external Death growth Motility Quiescence random

Extracellular matrix (ECM) 10–72 26–82 81–99 7–30 0–100
Epidermal growth factor (EGF) 3–15 72–97 29–83 43–56 0–100
Calcium pump (ExtPump) 35–87 24–83 41–92 17–82 0–100
GPCR q ligand (alpha_qL) 13–58 18–78 17–74 4–84 0–100
GPCR i ligand (alpha_iL) 1–4 15–77 30–82 31–83 0–100
GPCR s ligand (alpha_sL) 30–87 24–80 20–77 19–46 0–100
GPCR 12/13 ligand (alpha_1213L) 14–65 18–78 12–77 18–67 0–100
IL1_TNF 4–13 8–15 4–13 2 2
Stress 2–5 2–5 2–5 2–3 2
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an influence score (IS) for the ith node, which is found by sum-
ming the DV for all M nodes in the network. The top 10% are 
considered most influential, and the bottom components with IS 
value 0 were considered the least influential. The cutoffs were set 
to 10% because only a few components had a high influence on 
the network.

 

IS DVi ij
j

M

i

=

=
=
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1 130, ,  

Most affected components to a specific 
Perturbation
For each perturbation induced, the components that are most 
sensitive to that perturbation are ranked in decreasing order to 
be able to characterize downstream effects of the perturbation 
on the network.

annotation and biological relevance of 
signal Transduction components
All model components were first annotated using the appropri-
ate NCBI gene IDs (Pruitt et al., 2007) for associated genes and 
UniProt IDs (Consortium, 2011) for protein products of the 
genes. All components were then further characterized using 
online resources such as DrugBank (Wishart et al., 2006).

The biological process enrichment analysis of the most influ-
ential components was done using DAVID (Huang et al., 2008), 
with high stringency. Gene Ontology (Ashburner et  al., 2000), 
SP_PIR keywords, and KEGG pathways (Kanehisa, 2002) were 
obtained using FDR < 5%.

Essentiality data were obtained from the Online GEne 
Essentiality (OGEE) database and mapped on the most and least 
influential components (Chen et al., 2012). DrugBank data were 
used to obtain druggability information for each component 
in the network. Data on cancer-associated genes were obtained 
from The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) 
and mapped on the most influential components to identify 
cancer-associated most influential components. The enrichment 
of essential genes and druggable proteins was computed based 
on the number of genes mapped on most or least influential 
components out of the total number of most and least influential 
components.

network Motif analysis
Network motif analysis in the directed signal transduction 
network was performed using FANMOD tool (Wernicke and 
Rasche, 2006). The default parameters were used that include 
100,000 samples to determine the sub-graphs. The significance 
of network was computed by comparison with 1,000 random 
networks. Network motifs that have occurrence more than five 
times and p-value <0.05 were considered as significant. Network 
motif analysis was previously integrated with logical modeling 
of signal transduction of epithelial–mesenchymal transition 
(Steinway et al., 2014).

gene expression analysis
To investigate the functional activity of the components of signal 
transduction model, we queried publicly available gene expression 
data in four different databases (Consortium, 2011); Bgee (gives 
activity level of genes across different species as well as different 
developmental stages) (Bastian et  al., 2008), CleanEx database 
(Providing heterogenous data from different) (Praz et al., 2004), 
Expression Atlas database (gene expression data under different 
biological conditions) (Petryszak et al., 2014), and GeneVisible 
database (Gene expression in different tissues) (Zimmermann 
et  al., 2004). Out of 109 signal transduction components i.e., 
proteins, 107 (~98%) showed expression across different species, 
developmental stages, organs, and tissues – suggesting the bio-
logical activity of signal transduction network. Gene expression 
status of signal transduction components is shown in the Table S1 
in Supplementary Material.

The gene expression dataset GSE53309 was obtained from 
the GEO database (Barrett et  al., 2005; Rosich et  al., 2014). 
We selected samples that were treated with pan-PI3K inhibi-
tor and of normal control. The log 2 RMA signal intensities of 
samples were transformed into Z-scores (Cheadle et al., 2003). 
To compare the Z-scores of treated samples with normal con-
trol, we used Z-ratio approach. Genes with Z-ratio ≥1.50 were 
considered upregulated and with ≤−1.50 were considered as 
downregulated. The Z-ratio cut-off (1.5) is previously found as 
robust (Cheadle et al., 2003). The genes of signal transduction 
components whose AL were affected as a result of PI3K inactiva-
tion were examined for Z-ratios in both the biological replicates. 
We used DAVID to perform biological process enrichment 
analysis of upregulated and downregulated genes. The high 
stringency and FDR  <  5% were used to select significantly 
enriched biological processes.
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FigUre 1 | Overview of the method used to assess influential 
components in the model.

FigUre 2 | comparison of the most influential components across simulated environmental conditions. (a) Inactivating perturbations, (b) activating 
perturbations.
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resUlTs

system-Wide Perturbation analysis 
reveals core components of the signal 
Transduction network
A critical objective of biomedical research is the identification and 
prioritization of novel therapeutic targets. In this context, we per-
formed systematic perturbation analysis in a generic signal transduc-
tion model. The workflow used in this work is illustrated in Figure 1.

The activating/inactivating perturbation experiments for each 
component in the model were carried out across four environmental 
conditions (as described in the Section “Materials and Methods”). 
Additional randomly generated extracellular conditions were used to 
check the robustness of the model and results. Perturbation analysis 
enabled us to identify and rank components of the signaling net-
work that are most and least influential (Table S2 in Supplementary 
Material). The heatmaps for all the environmental conditions 
[Figures S1–S10 (Image 1) in Supplementary Material] indicate that a 
few components had high influence on rest of the system. Therefore, 
we considered the top 10% of the components from each condition as 
the most influential. By contrast, the components that had no influ-
ence on the system were considered as the least influential (KS = 0).

Also, the most influential components correspond to network 
components that, when perturbed, affect the largest part of the 
network in terms of the number of affected components and the 
magnitude of the effect. The most influential components were 
found for both inactivating (Figure 2A) and activating (Figure 2B) 
perturbations under the different environmental conditions. It is 
interesting to note that many of the most influential components 
overlap across all environmental conditions. However, the most 
influential components do not overlap between two types of per-
turbations (inactivating or activating). We investigated whether the 
most influential components that spanned different environmental 
conditions could function as housekeeping genes. Also, the most 
influential components that are specifically found under one envi-
ronmental condition should have association with that condition.

Housekeeping Genes Are Enriched in the Most 
Influential Components Common in Different 
Environments
Housekeeping genes are defined as genes expressed at constant level 
in many cells and under many conditions (Eisenberg and Levanon, 
2013). Therefore, components that were identified as most influential 
under all of the simulated environmental conditions can be hypothe-
sized to have housekeeping function. To investigate this, we compared 
these most influential components with known housekeeping genes 
as provided in Eisenberg and Levanon (2013). Under inactivating 
perturbations, out of the seven components common among the 
different environmental conditions, PI4K, PI5K, ARF, and PI3K were 
associated with housekeeping genes (Eisenberg and Levanon, 2013). 
Under activating perturbations, Trafs, Erk, Mek, and SHP2 (out of 
nine common components), were associated with housekeeping 
genes. Housekeeping genes associated with the common components 
are displayed in Table 2. This observation suggests that the most influ-
ential components that are common among different environmental 
conditions are likely to function as housekeeping genes.

Unique Components Associated with Each 
Environmental Condition Are Found to Be Condition 
Specific
Under both types of perturbations, certain environmental con-
ditions had several uniquely associated components (Figure 2; 
Table 3). Under inactivating perturbations, components uniquely 
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Table 3 | condition-specific components and literature support.

Perturbations environmental condition associated components literature

Inactivating Death CaM, RGS, Palpha_iR CaM- and CaM-dependent signaling systems control vertebrate cell 
proliferation, programed cell death, and autophagy (Berchtold and 
Villalobo, 2014). RGS is involved in cell death (Fisher, 2009)

Activating Death Gbg_i (GNB), Alpha_iR Gbg_i has been hypothesized to be involved in mTOR-mediated anti-
apoptotic pathways. Furthermore, it has been functionally annotated with 
apoptosis, cell death (Wazir et al., 2013)

Growth PP2A Highly regulated family of Ser/Thr phosphatase implicated in cell growth 
and signaling (Janssens and Goris, 2001)

Motility KRAS, Sos Knockdown of KRAS in pancreatic cancer cell lines leads to decreased 
motility and proliferation. The Grb2–Sos1 complex may promote cell 
motility, and tumerogenesis (Qu et al., 2014)

Table 2 | housekeeping genes in the most influential components overlapped among different environmental conditions.

Perturbation components genes housekeeping genesa

Inactivating PI4K PI4KA, PI4KB, PIK4CB PI4KA, PI4KB
PI5K PIP5K1A, PIP5K1B, PIP5K1C PIP5K1A
ARF ARFGAP1, ARFGAP2, ARFGAP3 ARFGAP2, ARFGAP3
PP2A PPP2CA PPP2CA
PI3K PIK3CA, PIK3CB, PIK3CD, PIK3CG PIK3C3, PIK3CB

Activating EGFR EGFR No
IL1_TNFR IL1B, TNFRSF1A No
TRAFS TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, TRAF7 TRAF6, TRAF7
ERK MAPK1 to MAPK15 MAPK1, MAPK6, MAPK8, MAPK9
MEK MAP2K1 to MAP2K7 MAP2K1, MAP2K2, MAP2K5
PKC PRKCA, PRKCB, PRKCD, PRKCE, PRKCG, PRKCH, PRKCI, PRKCQ, PRKCZ No
GAB1 GAB1 No
SHP2 PTPN11 PTPN11

aList of housekeeping genes were obtained from Eisenberg and Levanon (2013).
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associated with the cell death stimulating condition are calmodu-
lin (CaM), RGS, and Palpha_iR. Out of these, CaM and RGS have 
been previously associated with cell death and apoptosis (Fisher, 
2009; Berchtold and Villalobo, 2014). In fact, CaM plays a central 
role in the regulation of several cellular functions, including 
programed cell death (Berchtold and Villalobo, 2014). It is also 
known that RGS protein can regulate cell death, cell cycle, and cell 
division (Fisher, 2009). Under activating perturbations, the most 
influential components associated with the cell death-inducing 
condition include Gbg_i and Alpha_iR. On the other hand, PP2A 
was found to be most influential under the growth stimulating 
condition, Ras and Sos under motility stimulating condition, 
and PAK under quiescence stimulating condition. These results 
are also further supported by published studies that reported 
Gbg_i (GNB) to be involved in mTOR-mediated anti-apoptotic 
pathways; Gbg_i was also functionally annotated with apoptosis 
and cell death (Wazir et al., 2013). PP2A was reported as a highly 
regulated Ser/Thr phosphatase involved in cell growth and signal-
ing (Janssens and Goris, 2001). In pancreatic cancer cell lines, the 
knockdown of KRAS has been found to lead to the decrease in cell 
motility and proliferation (Rachagani et al., 2011; Birkeland et al., 
2012). Furthermore, the Grb2–Sos1 complex has been found to 
most likely promote cell motility, and tumerogenesis (Qu et al., 
2014). These observations suggest that the proteins, which were 
uniquely associated with simulated environmental conditions, 
are most likely to have the association with that condition. Finally, 

the literature evidence obtained for housekeeping, or condition 
associated genes, further supports our simulation results.

Key biological Processes are enriched in 
the Most influential components
Next, we assessed the enrichment of biological processes or 
pathways in the most influential components. The most influen-
tial components across all four conditions under both types of 
perturbation showed significant enrichment with key biological 
processes. The counts and fold differences of enriched biological 
terms in all the conditions are shown in Figures 3 and 4. In the 
case of inactivating perturbations, inositol phosphate metabolism 
was enriched under all environmental conditions (Figure 3). In 
the case of activating perturbations, the significantly enriched 
biological processes include phosphate metabolic processes, 
kinase activity, apoptosis, and, interestingly, the non-small lung 
cancer pathway (Figure 4). These results illustrate that the group 
of proteins with similar biological functions appear as the influ-
ential components under each type of perturbation.

The Most influential components under 
activating Perturbations are enriched with 
essential genes
Mutations in an essential gene can be lethal. Based on the hypoth-
esis that the influential components might serve as essential for 
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FigUre 3 | enriched biological processes in the most influential components under environmental conditions, and inactivating perturbations.  
(a) Death (b) growth (c) motility and (D) quiescence.
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the survival of the cell, we performed essentiality analysis. We 
mapped essential genes on the most influential components 
and on the least influential components. The essential genes 
mapped on the most influential components were compared 
with essential genes mapped on the least influential components. 
Under activating perturbations, more essential genes were found 
within the most influential components than the least influential 
components (Figure 5A). Under the cell death stimulating con-
dition, a total of 69% of the most influential components were 
essential; this is in contrast to the least influential components 
that contained 31% essential genes. Under other environmental 
conditions stimulating growth, motility, and quiescence, the dif-
ference of essential genes between the most influential and the 
least influential components are 23, 15, and 32%, respectively.

On the other hand, under inactivating perturbations, we found 
either an equal or larger number of essential genes in the least 
influential components (Figure 5B). The most significant differ-
ences were observed under the cell death stimulating conditions: 
the least influential components have 66% of essential genes in 
contrast to the 46% essential genes in the most influential. Also, 
under the growth stimulating conditions, 68 and 53% of essential 
genes were contained within the least and the most influential 
components, respectively. Under the motility and quiescence 
stimulating conditions, there were 3 and 9% more essential genes 

within the least influential components than the most influential 
components, respectively. We found that under inactivating 
perturbations, the number of essential genes among the least 
influential components was slightly larger than the activating per-
turbation (Figures 5C,D). On the other hand, under activating 
perturbations, the more essential genes mapped within the most 
influential components than the least influential components.

Thus, the most influential components are essential under 
activating perturbations, suggesting an environmental condition-
specific essentiality.

The Most influential components are 
enriched with Druggable Proteins
To further investigate the importance of the most influential 
components, we evaluated the distribution of known druggable 
targets. We obtained druggability data from the DrugBank 
database (Wishart et  al., 2006) and mapped them on the most 
and least influential components. A total of 51 components in the 
whole network were enriched with druggable proteins. We com-
pared druggable proteins within the most influential components 
with druggable proteins within the least influential components. 
We found that under both types of perturbations and across all 
environmental conditions more druggable proteins were found 
among the most influential than the least influential components 
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FigUre 4 | enriched biological processes in the most influential components under environmental conditions, and activating perturbations.  
(a) Death (b) growth (c) motility and (D) quiescence.
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(Figure 6). Druggable proteins are experimentally characterized 
or predicted to bind to antagonist or agonist drugs with high 
affinity. Therefore, enrichment of druggable proteins within the 
most influential components has the potential to suggest impor-
tant candidates for therapeutic target discovery.

The Most influential components as Drug 
Targets
Ranked Most Influential Components Based on 
Downstream Components
We identified the most affected components of the most influen-
tial components under both types of perturbations. We combined 
all environmental conditions to construct networks of the most 
influential components with their downstream targets. We subse-
quently mapped druggable proteins and cancer-associated genes 
on these networks. Under inactivating perturbations, we obtained 
a network consisting of the most influential components: PI3K, 
EGFR, PP2A, GRK, and CaM (Figure  7A). Under activating 
perturbations, we obtained a network composed of influential 
components: EGFR, IL1_TNFR, ERK, SHP2, RKIP, Ras, Gbg_i, 
Fak, Integrins, and PP2A (Figure 7B).

The total number of downstream targets for each of the most 
influential druggable component under both inactivating and 
activating perturbations is listed in Table 4. We analyzed if these 

downstream components also affects their upstream component. 
In the case of PI3K-out of 42 downstream components, two 
(PIP3_345 and RGS) are part of a feedback system. Other feedback 
components in downstream targets include alpha_iR for GRK in 
inactivating perturbations, Gab1 for SHP2, and Palpha_iR for RKIP 
under activating perturbations. We observed that EGFR, a validated 
cancer drug target (Mendelsohn, 2001), affects the largest number 
of components under activating and inactivating perturbations.

The Most Influential Components Mainly Affect Other 
Most Influential Components
Here, we identified all components that directly affect the activity 
of each most influential component (KS = 1). Interestingly, most 
of these direct upstream components were also ranked as the most 
influential in at least one environmental condition (Figure  8). 
Under inactivating perturbations, 22 components were directly 
upstream of the most influential components. Of these, 19 were 
the most influential under at least one environmental condition. 
On the other hand, under activating perturbations, out of 45 
upstream components, 19 were also ranked as most influential. 
Additionally, under inactivating perturbations, 9 (CaM, EGFR, 
Gbg_i, GRK, IP3R1, PP2A, PI3K, Ras, and Src) out of total 22 
upstream components are druggable. Out of these 22 compo-
nents, 6 components (CaM, EGFR, Gbg_i, GRK, IP3R1, and 
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FigUre 5 | Distribution of essential genes in the most influential components. X-axis = environmental conditions, Y-axis = ratio of essential genes in total 
selected most or least influential components in (a) most influential vs. least influential components under activating perturbations, (b) most influential vs. least 
influential components under inactivating perturbations, (c) essential genes in most influential under inactivating vs. activating perturbations, (D) essential genes in 
least influential components under inactivating vs. activating perturbations.
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PP2A) were upstream to the most influential druggable compo-
nents. Under activating perturbations, 21 (CaM, Cdc42, EGFR, 
Erk, Fak, Gbg_i, Grb2, GRK, IL1_TNFR, Integrins, IP3R1, PDK1, 
PI3K, PKA, PP2A, Rac, Raf, Ras, RKIP, SHP2, and Src) out of 
45 upstream to the most influential components are associated 
with druggable proteins. Out of these 21, 10 components were 
also the most influential. Under both types of perturbations, a 
total of 18 (alpha_iR, ARF, B_Arrestin, Ca, CaM, EGFR, Gbg_i, 
GRK, IP3R1, Palpha_iR, PI5K, PIP2_45, PIP3_345, PP2A, RGS, 
PI3K, Ras, and Src) upstream components were common. Nine 
of these components (CaM, EGFR, Gbg_i, GRK, IP3R1, PP2A, 
PI3K, Ras, and Src) were druggable or these were used as the drug 
targets. The important drug targets, such as EGFR, PI3K, Ras, 
and Raf, are also appeared as influential upstream components. 
Together, these results suggest that under inactivating perturba-
tions the activity of the most influential components are likely to 
be modulated by the other most influential components.

The Most Influential Components as Drug Targets 
and Drug Resistance
The top most influential components, such as EGFR, PI3K, 
ERK, and Ras, have been previously explored as drug targets 

in multiple cancer types. However, it is also evident from 
literature that several most influential components have been 
associated with drug resistance. For example, in non-small 
cell lung cancer, mutation within the kinase domain of EGFR 
and epithelial–mesenchymal transition are responsible for the 
development of resistance to gefitinib (Holohan et al., 2013). In 
colorectal, and head and neck cancers, KRAS mutation, EGFR-
S492R mutation, and increased ErBb signaling are responsible 
for resistance against Cetuximab (Dienstmann et  al., 2012; 
Holohan et al., 2013). Furthermore, PI3K showed drug resist-
ance in breast cancer against rapamycin through the expression 
of RSK3 and RSK4 (Rodon et al., 2013). Mutations in ERK1 or 
ERK2 have shown resistance against ERK inhibitors or RAF/
MEK inhibitors (Wagle et al., 2014). Tumors with mutation in 
BRAF V600E can adapt to the RAF inhibitors (Lito et al., 2013; 
Perna et  al., 2015). As such, the identification and prediction 
of drug targets alone are not sufficient to identify completely 
useful drug targets. Investigation of the interactions and feed-
back of these most influential components could be useful to 
modulate the activity of the most influential component. Thus, 
we explored the regulatory interactions to investigate the effect 
of combinatorial perturbations on cell’s behavior.
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FigUre 6 | Distribution of druggable proteins within the most influential vs. least influential components. (a) Inactivating perturbations, (b) activating 
perturbations. X-axis = environmental conditions, Y-axis = ratio of druggable proteins in total most or least influential components.
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regulatory interactions between the Most 
influential components and Their 
Upstream components
To develop a better strategy that can account for drug resistance 
of the most important drug targets, we sought to investigate novel 
regulatory interactions. We analyzed the previously described 
interactions between the most influential components and their 
direct upstream components. We found that some interactions 
consistently occur in more than one environmental condition. For 
example, the inactivation of IP3R1 increases the activity of PI3K 
under all four environmental conditions. However, the maximal 
effect was observed under the death environmental condition. 
Additionally, the inactivation of IP3R1 leads to inactive RGS under 
three environmental conditions stimulating cell growth, motility, 

and quiescence. These finding also correlate with published studies 
that found that RGS positively regulates apoptosis (Fisher, 2009). 
Other examples of consistently occurred interactions include: the 
activation of Grb2 leads to increased AL of Ras under all four 
environmental conditions, and increased Sos activity under two 
environmental conditions stimulating death and quiescence. The 
activation of Rac increases the activation of PAK under environ-
mental conditions stimulating cell death and growth. Overall, we 
found three types of interactions: inactivation of one component 
leads to the increase of activity of another component (PI3K–IP3R1, 
IP3R1–PI3K, and RGS–IP3R1), inactivation of a component leads 
to decreased activity of another component (IP3R1–RGS), and 
activation of a component leads to increased activity of another 
component (Grb2–Ras, Grb2–Sos, and Rac–PAK).
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FigUre 7 | Visualization of the most affected components (KsT value = 1) as a result of perturbing the most influential druggable components. (a) 
Inactivating perturbations, (b) activating perturbations. Orange colored eclipeses = most influential druggable components; squares = affected components; orange 
colored squares = affected druggable components; components with blue borders = experimentally found to be associated with cancer.
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FigUre 8 | Visualization of the upstream components affecting the most influential components. (a) Inactivating perturbations, (b) activating 
perturbations. Gray colored nodes = the most influential components, and white colored nodes = not most influential components. The directions of arrows are 
from the source (upstream component) to the target (most influential components).

Table 4 | number of downstream targets of the most influential druggable components.

number of affected 
components

number of affected 
druggable components

number of cancer-associated 
components

Feedback components Perturbation

EGFR 70 25 8 Inactivating
EGFR 24 13 3 Activating
IL1_TNFR 54 14 5 Activating
Erk 54 21 8 Activating
SHP2 53 17 1 (Gab1) Activating
RKIP 43 12 4 1 (Palpha_iR) Activating
PI3K 42 17 7 2 (PIP3_345, RGS) Inactivating
PP2A 36 14 6 Inactivating
PP2A 5 3 2 Activating
Ras 30 13 5 Activating
GRK 22 5 2 1 (alpha_iR) Inactivating
Gbg_i 15 5 1 Activating
Fak 14 6 4 Activating
Integrins 11 3 3 Activating
CaM 8 5 2 Inactivating
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The fold differences of all these interactions are displayed in 
the Table  5. Under the cell death condition, the inactivation of 
IP3R1 results in PI3K activity increase by 2.38-fold. Similarly, 
PI3K inactivation leads to a 5.42-fold increase in IP3R1 activity. 
In the case of other interactions, the inactivation of IP3R1 leads 
to inactive RGS under the cell growth, motility, and quiescence 
stimulating conditions. Under the motility and quiescence stimu-
lating conditions, the inactivation of Gbg_i leads to inactive CaM. 
The activation of Grb2 increases the activity of Ras 7.40-fold 

under the cell death stimulating conditions, and 2.13-fold under 
the quiescence stimulating conditions. Grb2 activation also 
affects Sos 7.8-fold under the cell death stimulating conditions 
and 2.18-fold under the quiescence stimulating conditions. An 
activating perturbation of Rac increases the activity of PAK more 
than 18-fold under the cell death stimulating conditions, and 
5.59-fold under the growth stimulating conditions.

To investigate if these interactions are part of any network 
motifs in the signal transduction network, we performed a 
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Table 5 | Fold differences of the affected most influential component when the upstream component was perturbed.

Perturbed component affected component Fold differences (perturbed/WT)

Death growth Motility Quiescence

IP3R1 (inactivation) PI3K 2.38-Folda 1.03-Fold 1.04-Fold 1.14-Fold
PI3K (inactivation) IP3R1 5.42-Folda 1.18-Fold 1.15-Fold 1.24-Fold
IP3R1 (inactivation) RGS NSA Complete inactivation Complete inactivation Complete inactivation
RGS (inactivation) IP3R1 NSA 1.21-Fold 1.18-Fold 1.24-Fold
Gbg_i (inactivation) CaM NSA NSA Complete inactivation Complete inactivation
CaM (inactivation) Gbg_i NSA NSA 1.30-Fold 1.43-Fold
Grb2 (activation) Ras 7.40-Folda 1.32-Fold 1.39-Fold 2.13-Fold
Ras (activation) Grb2 0.99-Fold 0.97-Fold 0.99-Fold 1.01-Fold
Grb2 (activation) Sos 7.87-Folda 1.39-Fold 1.53-Fold 2.18-Fold
Sos (activation) Grb2 1-Fold 0.97-Fold 0.99-Fold 1.01-Fold
Rac (activation) PAK 18.41-Folda 5.69-Fold NSA NSA
PAK (activation) Rac 1.18-Fold 1.24-Fold NSA NSA

NSA, not significantly affected (KST value <1).
aTwofold or above change.
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network motif analysis. We found that all interactions dis-
cussed above were part of network motifs (p-value <0.05). 
IP3R1–PI3K is found in 3 significantly occurred 4-node 
network motifs and in 15 significantly occurred 5-node 
network motifs. The other interactions are also found in 
significantly occurred 4 and 5-node network motifs (Table S3 
in Supplementary Material).

These results suggest different types of regulatory effects of 
activating and inactivating perturbations of direct upstream 
components of the most influential components.

Cotargeting IP3R1 with PI3K
As discussed earlier, although PI3K was identified as one of 
the most influential components, it has been also associated 
with drug resistance. Based on the interactions of upstream 
regulators of the most influential components discussed above, 
we further investigated the interactions involving PI3K and 
IP3R1 with the objective of identifying a secondary drug target 
that could be potentially used to address the issue of PI3K-
associated drug resistance. In contrast to PI3K/Akt signaling, 
IP3R1 positively regulates apoptosis. We hypothesized that 
the rate of apoptosis will increase when IP3R1 is overactivated 
(activating perturbation) and PI3K is inactivated (inactiva-
tion perturbation). Despite the strong dynamical relationship 
between IP3R1 and PI3K, these two components are only con-
nected indirectly through a sub-network. In this sub-network, 
Gbg_i is upstream of and directly activates both components. 
IP3R1 regulates PI3K through a Ca  →  EGFR route, whereas 
PI3K regulates IP3R1 via a PTEN  →  PIP2_45  →  IP3 route 
(Figure 9).

The inactivating perturbation of PI3K resulted in the inactiva-
tion of 29 components across all four environmental conditions. 
To correlate PI3K inhibition results with laboratory experiments, 
we analyzed a gene expression dataset obtained from cells treated 
with PI3K inhibitors (Rosich et  al., 2014). In two biological 
replicates, we found that the genes of components with affected 
AL had shown differential gene expression (at least in one experi-
ment). As a result of the simulated constitutive inhibition of PI3K 

in the model, the activity level of a total of 15 components (20 
genes) increased more than twofold. Nine (60%) of these compo-
nents were also significantly upregulated in the gene expression 
dataset (Table S4 in Supplementary Material). Out of these 20 
genes, 9 genes (45%) were upregulated in biological replicate 1, 
whereas 12 (60%) genes were upregulated in biological replicate 
2. Cumulatively, 18 genes (90%) were upregulated in both bio-
logical replicates. Two of these signal transduction components, 
Rap1 and PTPPEST, showed significant upregulation in both the 
biological replicates in gene expression data. Furthermore, the 
activity of a total of 26 components (41 genes) decreased more 
than twofold in our model. Genes of eight components (30%) 
were significantly downregulated in the obtained gene expres-
sion data (Table S4 in Supplementary Material). Out of these 
41 genes, three genes (7%) were significantly downregulated 
in biological replicate 1, whereas eight genes (19.5%) were sig-
nificantly downregulated in biological replicate 2. Cumulatively, 
12 genes (29%) were upregulated in both biological replicates. 
Furthermore, we compared enriched biological processes within 
the components affected in the model with enriched biological 
processes in differentially expressed genes. We found that the 
“regulation of phosphorylation” biological process was enriched 
for the upregulated genes in both the model and the gene expres-
sion data. For downregulated components, “positive regulation 
of programed cell death” was consistent for both the model 
and the gene expression data (biological replicate 1). Together, 
these results suggest that our simulation results are moderately 
correlated with the results of available gene expression data. In 
previous integrative studies of gene expression and biochemical 
models, at best moderate correlations were observed between 
gene expression and metabolic fluxes (Blazier and Papin, 2012). 
Post-transcriptional modifications and enzyme kinetics are pos-
sible reasons behind poor correlation between gene expression 
and protein abundance (Washburn et al., 2003; Blazier and Papin, 
2012). As such, more laboratory experiments will be needed to 
further validate our results.

Under PI3K inactivation, the average activity of IP3R1 
increased from 71.9% in WT to 85.18%. This perturbation also 
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Table 6 | activity of affected components under single (Pi3K or iP3r1) and double perturbations (Pi3K and iP3r1) under the cell growth environmental 
condition.

affected 
components

Pi3K inactivation (single 
perturbation)a (fold)

iP3r1 activation (single 
perturbation)a (fold)

Double perturbationa  
(fold)

Functional annotationb

Rap1 3.25 1.07 3.90 Tumor-suppressor gene
Ca 1.17 1.41 1.43 Calcium ion, apoptosis
CaM 1.17 1.41 1.43 Cell death
CaMKK 1.17 1.41 1.43 Calcium ion binding, apoptosis
Myosin 0.30 1.004 0.36 Regulatory light chain of myosin
CaMK 1.33 2.09 2.19 May function in dendritic spine and synapse 

formation and neuronal plasticity
PLA2 0.32 1.24 0.63 Tumor-suppressor gene, apoptosis
AA 0.32 1.24 0.63 Apoptosis

aCompared to the activity of components in wild type.
bFunctional annotations for proteins were obtained from UniProt database and literature.

FigUre 9 | The regulatory circuit connecting iP3r1 and Pi3K and downstream components. Edges with arrow = activation. Edges with oval 
end = inhibition.
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led to downregulation of positive regulators of apoptosis phos-
pholipase A2 (PLA2) and arachidonic acid (AA). AA released by 
PLA2 triggers Ca2+-dependent apoptosis through mitochondrial 
pathways (Penzo et al., 2004). The elevation in Ca2+ is thought 
to be involved in apoptosis (Pinton et  al., 2008). It was shown 
that blocking calcium channels can directly lead to tumor pro-
motion (Mason, 1999). Thus, inactivation of PI3K can block cell 
proliferation; simultaneously, it can lower the rate of apoptosis. 
Interestingly, the positive regulation of the programed cell death 
biological process was enriched in downregulated genes within 
the analyzed gene expression data.

Under the cell growth stimulating condition, the activating per-
turbation of IP3R1 increased the activity of apoptosis-associated 

components: Ca, CaM, CaMK, CaMKK, and RGS in the range of 
+1.41- to +2.09-fold when compared to WT.

To simulate the cell death effect under the growth stimulating 
condition, we carried out a double perturbation of IP3R1 and 
PI3K, whereby IP3R1 was constitutively activated and PI3K was 
completely inactivated. Under this combinatorial perturbation, 
we found 27 proteins including proto-oncogenes such as Akt 
(which suppresses apoptosis) and Raf to be downregulated. 
Here, we found eight proteins with more than 19% increased 
activity than in the case of a single inactivating perturbation of 
PI3K. These proteins include Rap1 (+1.19-fold), Ca (+1.21-fold), 
CaM (+1.21-fold), CaMKK (+1.21-fold), Myosin (+1.22-fold), 
CaMK (+1.65-fold), PLA2 (+1.98-fold), and AA (+1.98-fold) 
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(Table  6; full list of all affected components is given in Table 
S5 in Supplementary Material). These components were down-
regulated when only PI3K was inactivated. Under the combi-
natorial perturbation (PI3K inactivated and IP3R1 activated), 
the increased activity of these components was achieved by 
constitutive expression of IP3R1 via the following routes: 
IP3R1 → Ca → CaM → CaMK → Rap1 and IP3R1 → Ca → Ca
M → CaMK → PLA2 → AA (Figure 9). It is noteworthy that these 
components have been found to positively regulate apoptosis or 
cell death. Therefore, under the aforementioned combinatorial 
perturbation, components involved in cell proliferation were 
downregulated through the inactivation of PI3K, and the activity 
of tumor-suppressor genes (PLA2) with arachidonic acid (AA) 
and other components, including Ca, CaM, and CaMK, was 
increased as a result of the IP3R1 overactivation.

Together, these results suggest a regulatory interaction 
between PI3K and IP3R1, and that cotargeting both of these 
components may serve as therapeutic strategy rather than target-
ing PI3K alone. Using this combination of targets, we simulated 
cell death behavior in cell proliferation inducing environmental 
condition. Thus, we predict that this novel target combination 
might increase the rate of apoptosis while blocking cell prolifera-
tion in tumor cells. However, additional experimental validation 
is needed to validate this computational result.

DiscUssiOn

We have presented a systemic perturbation analysis of a signal 
transduction network model to identify and characterize func-
tionally important components. We used these components to 
explore novel therapeutic strategies against cancer. Specifically, 
we used a logical modeling approach to analyze the dynamics 
of a large-scale signal transduction model. Logical modeling 
approaches have been used, for example, to understand the 
dynamics of signal transduction and gene regulation networks 
to identify drug synergies in gastric cancers, and to identify 
potential drug combinations (Flobak et al., 2015). In biochemical 
networks, combined effect of topology and dynamical features 
has been shown to have the most significant impact on the 
dynamics of the network (Kochi et  al., 2014). Computational 
approaches have become indispensable tools to understand 
biological pathways and disease phenotypes. Examples include 
computational methods such as molecular modeling, text min-
ing, and network modeling to identify drug targets in a vast array 
of diseases from pathogens to complex disorders (Flórez et al., 
2010; Yao et al., 2010; Folger et al., 2011; Madrahimov et al., 2013; 
Puniya et al., 2013).

In the present work, the identified most influential compo-
nents were characterized for biological functions. The relevance 
of identified influential components was established with path-
way analysis, mapping of housekeeping genes, essential proteins, 
and association with druggable proteins. Interestingly, we found 
enrichment of housekeeping genes in the most influential com-
ponents that were independent of the extracellular environments. 
A notable agreement is obtained from literature surveys for the 
most influential components, which were unique to specific 

environmental conditions. Because essential components are 
important from a disease perspective, the identified most influen-
tial components may serve as potential candidates and essential 
proteins under specific conditions. Under activating perturba-
tions, we found that essential genes were enriched more within 
the most influential components than within the least influential 
components. The high association of dysregulated signal trans-
duction proteins with different subtypes of cancers suggests 
that these components may be important candidates for drug 
targets. Notably, the most influential components are enriched 
with several already known drug targets. However, many of these 
drug targets (EGFR, ERK, Ras, PI3K, etc.) have been associated 
with drug resistance (West et al., 2002; Kobayashi et al., 2005; 
Linardou et al., 2008; Wheeler et  al., 2010; Dienstmann et al., 
2012). The mechanism of drug resistance includes mutation in 
the targeted protein or expression of other genes (altered expres-
sion) to bypass the effect caused by perturbation, deregulation in 
apoptosis, etc. (Gottesman, 2002; Holohan et al., 2013). Thus, to 
identify novel regulatory interactions, we explored components 
that are upstream to the most influential components associated 
with drug resistance. Interestingly, several upstream compo-
nents (more than 90% in the case of inactivating perturbations) 
to the most influential components were also identified as most 
influential. Thus, the most influential components form a tightly 
connected sub-network of proteins interacting with each other. 
In yeast, it has previously shown that the essential proteins are 
hubs in the network and have more interconnections than non-
essential proteins, and form a module or sub-network (Song and 
Singh, 2013).

The interaction between IP3R1 and PI3K was observed under 
all environmental conditions. This interaction was also observed 
as part of network motifs in the modeled signal transduction 
network. IP3R1 activation, when combined with PI3K inactiva-
tion, increases the activities of PLA2 and AA, which are decreased 
with a single PI3K knockdown. It was already shown that AA 
released by PLA2 helps to initiate apoptosis (Penzo et al., 2004). 
In a Dictyostelium discoideum chemotaxis experiment, it was also 
shown that cells with PI3K deficiency were more sensitive to PLA2 
inhibition (Chen et al., 2007), which supports our predicted inter-
action between PI3K and PLA2. To this end, we hypothesized that 
the PI3K inactivation could be combined with the overactivation 
of IP3R1 to increase the activity of proteins involved in apoptosis. 
IP3R1 inactivation can lead to the downregulation of RGS, and 
reversibly, the overexpression of IP3R1 can lead to increased 
activity of RGS. Similar to IP3R1, RGS subtype RGS3T has been 
found to be involved in inducing cell death (Fisher, 2009), and 
it has also been found that RGS can suppress the PI3K activity 
downstream of the receptor (Liang et  al., 2009). Therefore, the 
constitutive activation of IP3R1 might also negatively regulate the 
activity of PI3K. Systemic analysis of the most influential compo-
nents and their upstream components has led us to identify novel 
combinations of drug targets. In various studies, combinatorial 
therapies have shown a decrease in drug resistance in pathogens. 
In combinatorial therapy, a protein associated with drug resist-
ance can be targeted in combination with different protein of 
either the same or different pathway (Fischbach, 2011). Clinical 
trials have also suggested that the efficiency of cytotoxic drugs 
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increases when given in combinations (Al-Lazikani et al., 2012). If 
co-occurrence of two genetic events results in cell death, it can be 
termed as synthetic lethality (Nijman, 2011). The combinatorial 
perturbation of PI3K and IP3R1 could be considered as syntheti-
cally lethal. However, in this perturbation, the activation of IP3R1 
is synergistic with the inactivation of PI3K. Upregulation of IP3R1 
could be achieved using a targeted drug therapy, such as stress 
hormone dexamethasone, a synthetic glucocorticoid show to 
significantly upregulate the expression of IP3R1 in differentiating 
myoblasts (Chai et al., 2010).

As a validation of model’s result, we used previously published 
gene expression data. Our model’s results moderately correlate 
with this data. This agreement was based on only one dataset 
of PI3K inhibition with two biological replicates. Further addi-
tion of experimental data for other perturbations, including the 
combinatorial perturbation is required to validate the trends of 
perturbation analysis in model.

In conclusion, by combining IP3R1 (activation) and PI3K 
(inactivation), we were able to stimulate cell death under the cell 
growth stimulating condition. Based on this, one can hypothesize 
that it might be possible that the decrease in cell proliferation with 
increased apoptosis as a result of this combinatorial intervention 
could subsequently increase the rate of clearance of tumor cells, 
and serve as a novel strategy for important targets associated with 
drug resistance. However, more laboratory validations will be 
required to test this hypothesis.
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