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In this study, we created four network topologies composed of living cortical neurons 
and compared resultant structural-functional dynamics including the nature and quality 
of information transmission. Each living network was composed of living cortical neurons 
and were created using microstamping of adhesion promoting molecules and each 
was “designed” with different levels of convergence embedded within each structure. 
Networks were cultured over a grid of electrodes that permitted detailed measure-
ments of neural activity at each node in the network. Of the topologies we tested, the 
“Random” networks in which neurons connect based on their own intrinsic properties 
transmitted information embedded within their spike trains with higher fidelity relative 
to any other topology we tested. Within our patterned topologies in which we explicitly 
manipulated structure, the effect of convergence on fidelity was dependent on both 
topology and time-scale (rate vs. temporal coding). A more detailed examination using 
tools from network analysis revealed that these changes in fidelity were also associated 
with a number of other structural properties including a node’s degree, degree–degree 
correlations, path length, and clustering coefficients. Whereas information transmission 
was apparent among nodes with few connections, the greatest transmission fidelity was 
achieved among the few nodes possessing the highest number of connections (high 
degree nodes or putative hubs). These results provide a unique view into the relationship 
between structure and its affect on transmission fidelity, at least within these small neural 
populations with defined network topology. They also highlight the potential role of tools 
such as microstamp printing and microelectrode array recordings to construct and 
record from arbitrary network topologies to provide a new direction in which to advance 
the study of structure–function relationships.
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inTrODUcTiOn

A connectome represents a map of the identity, the location of 
elements, and their mutual connectivity within a brain network. 
It is perhaps one of the first and fundamental steps toward 
understanding the relationship between brain structures and 
their functional dynamics (Sporns et al., 2005). Partial connec-
tomes now exist for a variety of organisms including C. elegans 
(e.g., Towlson et al., 2013), zebrafish (Stobb et al., 2012), primate 
cerebral cortex of the macaque monkey (e.g., Goulas et al., 2014), 
cat (e.g., de Reus and van den Heuvel, 2013), and mouse (e.g., 
Mechling et al., 2014). Basic knowledge of the connectome can be 
used to guide development of computational models (e.g., Honey 
et al., 2009) or to gain insights into various neuropathologies (e.g., 
Alexander-Bloch et  al., 2013a) including schizophrenia (e.g., 
Alexander-Bloch et al., 2013b), Alzheimer’s (e.g., He et al., 2008), 
and epilepsy (e.g., Morgan and Soltesz, 2008). Since a myriad 
number of dynamical states may be expressed by seemingly 
identical structures, any information derived from a particular 
instance of a connectome is alone insufficient to truly under-
stand the relationship between the structure of that network and 
its functional dynamics (Honey et  al., 2009, 2010; Deco et  al., 
2011). Unfortunately, a more precise relationship between the 
structural connectivity providing the skeleton over which these 
highly dynamic activity patterns are produced, and the flexible 
computational regimes that occur within that structure remain 
elusive (Sporns et al., 2005).

Recent advances within the in  vitro neural-patterning tech-
nologies could provide a new way with which to conduct detailed 
studies of the relationship between a network’s structure and 
resultant functional dynamics. A wide variety of methods have 
been developed to direct the growth of neurons and connectivity 
including methods based on soft lithography (e.g., Corey et al., 
1991), microstamping or micro-contact printing (e.g., Branch 
et al., 1998), microfluidics (Morin et al., 2006; Huh et al., 2011), 
and construction of structural-topologies to guide growth (e.g., 
Pan et al., 2011, 2015; Kanagasabapathi et al., 2012). For example, 
microstamp printing of adhesion molecules to promote connec-
tivity in the form of 2D line (e.g., Feinerman et al., 2007, 2008) 
and grid patterns (Kam et al., 2001), such as 4D (Corey et al., 1996; 
Branch et al., 1998; Vogt et al., 2004, 2005; Marconi et al., 2012), 
6D, and 8D (Boehler et al., 2012), have been used to investigate 
cell morphogenesis (Théry, 2010), the study of spinal injury and 
repair (e.g., Taylor et al., 2009), and transmission of information in 
1D networks (Feinerman et al., 2005, 2007; Feinerman and Moses, 
2006). An alternative method capitalizes on the natural tendency 
of neurons to follow structural features including ridges (Curtis 
and Wilkinson, 1997), pillars (Dowell-Mesfin et  al., 2004), or 
application of microfluidics to guide axonal growth (Morin et al., 
2006). Coupling these living but engineered neuronal structures 
with large-scale measurements of neural activity using multielec-
trode electrophysiology or advanced optical methods provides a 
unique platform with which specific structural topologies such as 
those representing brain structures can be reconstructed in vitro 
and structure–function studied in detail. Such a platform could 
generate important insights into the relationship between specific 
structural topologies, the myriad patterns of activity representing 

the neural dynamics that are overlaid upon that structure, and 
functional properties embodied by those networks (Maccione 
et al., 2012).

In this study, we describe the creation of neural structures 
roughly based on one of the guiding principles of cortical- 
functional organization: the integration and segregation of infor-
mation (Zeki and Shipp, 1988; Tononi et al., 1998). Specifically, 
a key structural property crucial for integration and segregation 
is that of the convergence of connections into (in-degree) or 
divergence of connections emanating out of each area (out-
degree) (Sporns et al., 2004; Négyessy et al., 2008). Since recurrent 
networks represent a substantial part of connectivity, it has been 
proposed that correlations between firing in spike trains originate 
to a large degree in the convergence and divergence of direct con-
nectivity and presence of common inputs (Shadlen and Newsome, 
1998) and must therefore strongly depend on connectivity pat-
terns (Kriener et al., 2009). Moreover, correlated inputs through 
convergent or divergent connections may also play a prominent 
role in neural and population coding (e.g., Shamir, 2014). Recent 
theoretical work has reinforced recurrent connectivity as an 
important factor in correlation dynamics (e.g., Ostojic, 2014). In 
fact, there are now a number of experimental studies that support 
this idea (Kazama and Wilson, 2009; Cohen and Segal, 2011; 
Smith and Sommer, 2013). Yet others have shown relatively small 
correlations with weak common input effects and even suggested 
a mechanism of active decorrelation (Ecker and Tolias, 2014).

To study the effect convergence on network functional dynam-
ics, we assess the functional connectivity and fidelity of informa-
tion transmission (e.g., Germano and de Moura, 2006; Czaplicka 
et al., 2013) in these networks. Functional connectivity refers to 
the extent to which activity measured at different locations within 
a network is correlated (Friston, 1994), and a variety of methods 
are now available to estimate the functional connectivity includ-
ing cross-correlation (Perkel et  al., 1967; Aertsen et  al., 1989; 
Poli et  al., 2015), partial directed coherence (Sameshima and 
Baccalá, 1999; Baccala and Sameshima, 2001), directed transfer 
function (Kaminski et al., 2001; Eichler, 2006), Granger causality 
(Chen et al., 2006; Cadotte et al., 2008; Kispersky et al., 2011), 
and mutual information (Bettencourt et al., 2007). We use scaled 
cross-correlation developed by Nikolić et al. (2012) to compute 
functional connectivity. The nature, meaning, or how informa-
tion spreads across networks varies across many disciplines 
physics (Karnani et al., 2009), biology (e.g., Mino and Durand, 
2010; Voelkl and Noë, 2010), social science (e.g., Burt et al., 2013), 
and computer science (e.g., Sloot and Quax, 2012). In our study, 
we are interested in the fidelity of information contained within 
trains of action potentials as they are transmitted and reproduced 
from neuron to neuron in these living networks.

We first created three network topologies (Figure 1A) com-
prised living cortical neurons using microstamping described 
earlier and depicted in Figures 1B,C, each with an increasing 
degree of convergence. These three topologies are compared 
with a “random” topology in which neurons were free to connect 
based on their own internal properties. We then assessed the 
impact differing topologies have upon basic network dynamics 
including firing rates and network oscillations in the form of 
spontaneous network bursting that occurred in each network 
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FigUre 1 | Two-degree (linear), four-degree (city-block), eight-degree, engineered neuronal topologies measured on microelectrode arrays. In this 
study, structure–function was manipulated across three distinct neuronal architectures illustrated in (a) that varied the number of connections from each node (node 
degree). Modern microstamping of cell-adhesion molecules onto microelectrode array (MEA) substrate (B) to create simple linear two-degree (2D) networks (c) (top 
panel), Four-Degree (city-block, 4D) grid (middle-left panel), and eight-degree networks (middle-right, 8D) seeded with rat cortical neurons. Extracellular MEA 
electrodes [small black circles in (B,c)] located under each intersection were used to measure the transmission of spike train information during spontaneous 
network wide bursts that originated within a surrounding pool of randomly seeded neurons [shaded red in (B)] and spread into each of the three architectures from 
the edges (red).
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we studied. We then examined how these topologies affect 
information embedded within their spike trains as they are 
transmitted between nodes (neurons). Our primary hypothesis 
is that convergence modulates the effectiveness of connectivity 
and this effectiveness reflected in the fidelity with which spike 
train information is relayed during transmission from node to 
node across each network. We predicted that by increasing the 
convergence of pathways embedded within a neural structure 
this increase will result in more accurate transmissions at each 
node and hence, a more accurate reproduction of spike patterns 
among neurons and across the network. After estimating the 
underlying functional connectivity within each the four net-
work topologies, we then assessed and compared the fidelity of 
information in the form of spike trains as it is transmitted from 
neuron to neuron across each network by measuring the simi-
larity of spike trains reproduced by neurons embedded within 
each network. These dynamics produced by these structures are 
then compared and contrasted with results from metrics based 
on principles of graph theory that are now commonly used in 
the network analysis literature to quantify the effect of network 
topology upon its functional properties, and the nature and 
flow information as it propagates across each network of living 
cortical neurons.

MaTerials anD MeThODs

Development of Patterned networks on 
Multi-electrode array
Preparation of the Multi-electrode Substrate and 
Microstamps
In this paper, we used the microcontact printing method devel-
oped earlier by our group to create the three patterned topolo-
gies shown in Figure 1A. A description and illustration of the 
procedure for the construction of molds with which to cast the 
microstamps, and the process of microcontact printing is shown 
in Figure 2. A more detailed description can be found in Boehler 
et al. (2012) and Branch et al. (1998).

Planar multi-electrode arrays (MEAs) were purchased from 
Multi-Channel Systems GmbH (Reutlingen, Germany) and 
consisted of 59 TiN3 surface electrodes and 1 ground electrode 
embedded within a glass substrate arranged in 10 rows of 6 elec-
trodes shown in Figure 1C. Each electrode measures extracellular 
changes in the membrane voltage during the production of action 
potentials (spiking) of nearby neurons. Electrodes were equally 
spaced at a distance of 500 μm and were 30 μm in diameter. Each 
MEA was soaked overnight in tergazyme the day before micro-
stamp printing (described in the following section) to remove any 
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FigUre 2 | PDMs microstamp fabrication process and procedure for microcontact printing. Mechanical electrical machining (MEMS) technologies are 
used to construct a negative of a 3D structure containing micro-scale features. Photolithography is used to transfer micro-scale patterns to photosensitive materials 
by selective exposure to ultraviolet (UV) radiation. (a) A silicon wafer is spin coated with a thin film of a photosensitive material (photoresist), which is then aligned 
and brought in close contact with a photomask that consists of a transparent sheet with the desired pattern printed on its surface. Any desired microscale pattern 
can be generated by the investigator with computer-assisted design software. This is followed by exposure of the photoresist to high-intensity UV light through the 
photomask that protects some regions of the photoresist from UV and exposes others based on the design pattern. UV-exposed areas become soluble in a 
developer solution and dissolve away during the following step, termed development, thus leaving the desired microscale pattern etched into the photoresist. (B) 
Soft lithography involves fabrication of elastomeric stamps using a replica-molding technique in which liquid prepolymer of PDMS is cast against the bas-relief 
pattern of photoresist produced in (a) to generate a PDMS substrate that replicates the 3D topography of the original master. In microcontact printing, the PDMS 
stamp is wetted with a solution containing an adhesion promoting molecule (in our case Poly-d-Lysine), dried, aligned with the 6 × 10 grid of electrodes on the 
surface of the MEA, and brought in contact with the MEA surface for 30 s. Upon removal of the stamp, a pattern composed of Poly-d-Lysine is generated on the 
surface that is defined by the raised bas-relief structure of the stamp, and hence precisely recreates the microscale pattern of the original master. Neurons cultured 
over this surface will preferentially attach and extend neurites within this pattern to create a living neural network whose topology recapitulates the desired pattern. In 
each topology line widths were 20 μm and a pad of 50 μm in diameter was placed at each intersection [concept for figure’s design adapted from Huh et al. (2011)].
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cellular residue from previous experiments followed by a thor-
ough rinsing with deionized water. MEAs were then dried and 
treated with oxygen plasma for 5 min. MEAs were then silanized 
with 3-glycidoxypropyl-trimethoxysilane (3-GPS) by soaking in 
a solution of 3-GPS in toluene for 20 min and baked in an oven 
at 110°C for 40 min. 3-GPS acts as a background fill that inhibits 
adhesion or growth of neurons. A microstamp containing the 
desired pattern was then soaked in the adhesion-promoting 
molecule Poly-d-Lysine (PDL) and microstamped onto the 
surface. Unlike patterned topologies, no 3-GPS was applied for 
the random networks to permit growth anywhere on the surface 
of the MEA. MEAs were simply cleaned with oxygen plasma and 
coated with PDL overnight at 37°C.

Construction of Microstamps and Microcontact 
Printing
To create an SU-8 mold to fabricate each microstamp, a 10-μm 
layer of the negative photoresist SU-8 2010 (Microchem, Inc.) 
was spin-coated on silicon wafers, aligned to a mask containing 
the desired patterns and exposed to UV light (Figure 2A). The 
pattern was then developed in SU-8 developer and silanized with 
tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorsilane to assist 
the release of stamps from the mold in the subsequent steps. A 
single mold contained multiple replicates of the same pattern so 
that multiple stamps can be created from a single mold.

During the casting procedure, Polydimethylsiloxane (PDMS) 
stamps were created by mixing the elastomer with a curing agent 
at 10:1 ratio by weight, degassed, poured onto the SU-8 molds 

and allowed to cure overnight. Once the stamps were cured, the 
PDMS was peeled away from the molds and cut into smaller sec-
tions containing a single pattern and affixed to circular cover slips, 
which served as a base holding the stamp in place for positioning 
before printing. Stamps were soaked in 10% sodium dodecyl 
sulfate (SDS) solution for 15 min, rinsed with water, dried and 
then soaked in a 1:1 mixture of PDL and FITC-conjugated Poly-
l-Lysine (PLL) for 1 h before use.

Silanization with 3-GPS causes the MEA’s surface to be hydro-
phobic (hence cytophobic). However, 3-GPS was cross-linked 
with PDL and hence enables strong adhesion of PDL to the sur-
face creating a cytophilic pattern embedded upon a cytophobic 
background. The line junctions contained in each pattern within 
the stamp were aligned with the electrodes in the MEA using a 
custom built mechanical aligner and pressed against the MEA 
surface to enable the transfer of PDL–PLL. The transfer of the 
pattern was then confirmed under a fluorescence microscope. 
This alignment promotes the migration of cell soma toward these 
junctions that are conveniently colocated with electrodes for 
electrophysiological recording of neural activity.

Cortical Cell Culture
Dissociated cortical cultures were prepared from cortical hemi-
spheres of E18 Sprague-Dawley rats (BrainBits LLC, Springfield, 
USA). First, the cortical tissue is suspended in 2 mg/ml Papain 
(Invitrogen) in Hibernate E solution (Brainbits LLC) for 20 min 
to digest the connective tissue. The cortical hemisphere is then 
transferred to a solution of Hibernate E followed by mechanical 
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trituration in a 20-ml tube resulting in a cell suspension. The 
suspension is then placed in a centrifuge and spun at 1000 rpm 
for 2 min. This results in the deposition of neural tissue along the 
edges of the 20-ml tube. The supernate is removed and the tissue 
is re-suspended in culture medium (NBActiv4 and Penstrep, 
Invitrogen, Inc.). During plating, the cell suspension is dropped 
gently over the prepared substrate at a plating density of 700 cells/
mm2. Cultures were stored at 37°C in a humidified incubator with 
5% CO2 and atmosphere. Media was exchanged once every 3 days.

Two-Degree, Four-Degree, Eight-Degree, and 
Random Topologies
We investigated the effects of four network topologies depicted in 
Figure 1A. Each topology varies by the degree of convergence-
divergence beginning with a two-degree network (Group 2D, 
N  =  5 MEA cultures) composed of a simple serial chain of 
neurons connected by a 30-μm line of adhesion molecules. This 
topology, engineered with an in-degree (and out-degree) of 2, 
consists of a minimum of two pathways that converge upon each 
junction. The next topology consisted of a four-degree network 
(Group 4D, N  =  5 cultures) patterned after the four corners 
of a city block. A junction in the 4D topology was designed to 
have a minimum of four pathways that converge onto it from 
its immediate neighbors. An eight-degree network (Group 8D, 
N = 4) included diagonal shortcuts for a total of eight potential 
connections. Finally, we included the more common so-called 
“random” network topology (Group random, N =  4) in which 
neurons are randomly seeded across the surface of the MEA and 
whose connectivity was self-determined. In this group, adhesion-
promoting PDL was flooded across the entire surface allowing 
the neurons to attach anywhere and intrinsic properties of the 
neurons that now govern network topology (Goldberg, 2004; 
Rossi et  al., 2007). Each of our engineered network topologies 
(as opposed to random) consisted of circular junctions (pads of 
adhesion molecules 50 μm in diameter) located over electrodes 
spaced 500 μm in a 6 × 10 grid shown in Figures 1B,C. Neurons 
in the 4D and 8D topologies were cocultured with the upper three 
rows of electrodes containing the 4D topology and the lower three 
rows containing the 8D as illustrated in Figure 1C. The 2D topol-
ogy was cultured separately across along the 10 rows of electrodes 
using the 6 × 10 array (it is only included in Figure 1C for the sake 
of presentation). In the random topology, the network covered 
the entire 6 × 10 electrode array.

In our initial design of engineered networks, each of the pat-
terned architectures was surrounded by, but not attached to, a 
pool of randomly seeded cortical neurons. The original rationale 
for this was that the additional neurons in the surrounding 
pool conditions the media with factors that promote the health 
and survival of nearby neurons within the patterned structure. 
However, we found that activity and structural connectivity 
within each patterned topology under these conditions was often 
inconsistent and frequently not sustainable as the culture matures 
and sometimes reported by others (Boehler et  al., 2012). Our 
solution was to surround each topology on all sides with a much 
larger pool of spontaneously active neurons as before, but now 
each of the engineered architectures (i.e., 2D, 4D, and 8D) were 

anchored along the edges to the surrounding pool. The edge of 
the pool of neurons is highlighted in Figure 1C with a red border. 
By attaching this dense pool of neurons in the surrounding area 
to each topology at anchor points along the left and right hand 
edge, activity emanating from the larger outside pool could enter 
into and be transmitted across each of the patterned topologies.

Data acquisition and analysis
Statistical Analysis
Our analysis of the spike trains was conducted using custom 
Python (Enthought 64-bit v1.2), C, C++ code, and the R statisti-
cal package (v2.15.1). All statistical tests were conducted using 
t-tests but whose results were also compared with those produced 
by the non-parametric Mann Whitney U. The family wise false 
discovery rate during multiple t-test comparisons was corrected 
(Benjamini and Hochberg, 1995). Probabilities below 0.05 were 
considered significant. All error values including error bars in the 
figures represent the mean ± SEM.

Spike Detection and Spike Sorting
Extracellular signals from the neurons were recorded for 5 min 
beginning on day 14 after plating using a Multichannel Systems 
1060BC (Sampling rate 25  kHz, bandwidth 8–10  kHz). Raw 
signals from each electrode were stored to disk using MC Rack 
software for later offline analysis. Spikes (action potentials) were 
detected by the crossing of a threshold set at five times the SD 
(5σ) of noise level. Electrodes with firing rates less than 0.1 Hz 
were discarded. Spikes were then sorted into single units for each 
electrode using the surrounding ±1 ms of each spike’s waveform 
using the first three components from principle components 
analysis (PCA) followed by unsupervised k-means based on the 
KlustaKwik algorithm (Kadir et al., 2014). The average number of 
sorted units (putative neurons) detected per electrode following 
spike sorting was similar in the 2D (1.5 ± 0.1), 4D (1.8 ± 0.4), 
8D (1.9 ± 0.5), and random topologies (1.6 ± 0.04) (p > 0.38). 
Throughout this paper, we will refer to each sorted neuron as a 
node for convenience.

Burst Detection
Neurons that are cultured in vitro spontaneously begin producing 
action potentials as neurites extend and connectivity expands. As 
these networks mature, this early activity will gradually coalesce 
into and form short spontaneous network wide bursts of action 
potentials. Spontaneous bursts were detected on individual 
electrodes using the method described by Wagenaar et al. (2005). 
Briefly, each spike train produced by each channel was spike 
sorted and searched individually for burstlets (sequences of at 
least four spikes with inter-spike intervals less than a threshold set 
to 25% of that neuron’s inverse average spike rate). Burst duration 
was estimated as three times the SD of ISI values from qualifying 
spikes. Bursts with durations less than 10  ms were discarded. 
Peak firing rates during bursts and the times at which firing 
rates reached their peak were estimated from the location of this 
peak within a smoothed (5 ms Gaussian blur) histogram of spike 
counts (1 ms bins).
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Measures of Functional Connectivity
We computed the scaled cross-correlation analysis (SCA) 
(Nikolić et al., 2012) to estimate function connections among the 
sorted neurons measured at each electrode. Traditional cross-
correlations are susceptible to distortions due to non-stationarities 
produced by bursts of neuronal activity that is typical of these 
cultures. Like traditional cross-correlation, SCA also computes 
a cross-correlation among binned spike times. However unlike 
traditional cross-correlation, SCA computes a Pearson correla-
tion coefficient over a moving but short temporal window during 
which the two spike trains can be considered quasi-stationary. 
In this study, the temporal window for SCA was 20 ms with bins 
of 1 ms and computed over a 100 ms temporal window to detect 
short- and long-distance connections. The criterion for signifi-
cance of any peak in the cross-correlation was three consecutive 
bins containing significant Pearson correlations as described in 
Nikolić et al. (2012). Any peaks whose time lag represented con-
duction velocities outside the range of 0.1–0.8 m/s (Patolsky et al., 
2006) were discarded (Garofalo et  al., 2009). Network analysis 
was generated using the Network X python package freely avail-
able from the Los Alamos National Laboratory.

The Fidelity of Transmission of Information across 
Each Topology
To measure fidelity with which spike trains are transmitted 
among neurons, we applied a classic cost based measure by 
Victor and Purpura (e.g., Victor, 2005) suitable for the analysis 
of spontaneous activity produced by these living networks. The 
Victor–Purpura metric is a metric that calculates the distance or 
dissimilarity, Dv, between two spike trains as the cost of trans-
forming one spike train into the other following a series edit 
operations (insertion, deletion, or temporal shifting). While the 
operations of insertion and deletion have a fixed cost of 1, the 
cost of shifting a spike in time, Δt, is q|Δt| where q is a parameter 
that adjusts the cost per unit time for that shift. This parameter 
essentially varies the relative temporal scale at which the metric 
assesses similarity at a temporally coarse scale corresponding to 
a rate-based modulatory code in which the cost of temporally 
shifting a spike is low (80 < q−1 < 200 ms), to an analysis focused 
on any fine grained temporal information contained with more 
precise spike timing where the cost of shifting any spike is 
high (2 < 1/q < 20 ms). Unlike other measures such as mutual 
information (Cover and Thomas, 2006) that sometimes require 
spikes to be placed into temporal bins prior to calculation (e.g., 
Ross, 2014), Victor–Purpura’s metric does not require binning, 
can accommodate propagation delays inherent in living neural 
networks due to the flexibility edit/cost operations, and can be 
normalized by the intrinsic firing rates of neurons during each 
pairwise comparison between neurons for comparison across 
experimental groups [D D n nv v= +/ ( )1 2 , where 0.0  <  Dv  <  1.0] 
(Kreiman et al., 2000).

The normalized dissimilarity estimate, Dv, ranges from 1.0, 
indicating highly dissimilar spike trains, to 0.0, in which spike 
trains are nearly identical. For the purpose of clarity during the 
presentation of our results, Dv is expressed in terms of its converse, 
similarity (λ), where λ =  (1.0 − Dv) which refer to as “fidelity” 
for ease of discussion. Fidelity (λ) ranges from 1.0 (similar spike 

trains reflecting high fidelity in the reproduction of spike timing 
during transmission from neuron to neuron) to 0.0 (dissimilar 
or low fidelity).

Characterization of Functional Network Topology
The results from our functional connectivity metric based on 
SCA and subsequent spike sorting were first used to construct a 
weighted multigraph for each MEA (a graph permitting weighted 
and potentially bi-directional connections between node pairs). 
Connections were weighted according to the peak Pearson cor-
relation coefficient, r, from SCA (0  ≤  r  ≤  1.0). Many network 
measures remain unavailable for directed multi-edge graphs. In 
those cases where a directed version of a metric was not avail-
able an equivalent undirected graph that maintained the same 
number of nodes and presence of a connection between nodes 
was created. In the event of reciprocal connection between a node 
pair, the connection in the undirected graph was represented by 
a single link weighted according to the average weight of the two 
reciprocal edges.

The four metrics commonly used to characterize networks 
are the node degree, the characteristic path length, the clustering 
coefficient, and mixing characteristics of connectivity known as 
Assortativity. For review of these measures, see Boccaletti et al. 
(2006). In this study, each of these metrics are applied in order to 
assess the properties of each network’s actual topology elucidated 
by our functional connectivity metric and quantify how these 
properties affect the fidelity of spiking during transmission from 
neuron to neuron. We adopted the naming convention within 
the graph theoretic literature and referred to each sorted unit 
(putative neuron) as a “node” in the network, which is different 
than the nodes or junctions created within the patterns by the 
microstamping procedure. Node degree (k) represents the total 
number of connections for each node (neuron) computed over 
the original directed or undirected graphs in which the pres-
ence or absence of a connection was binary (e.g., the network 
illustrations provided earlier in Figure 1A are undirected). Node 
degree can be further subdivided into the number of arriving 
connections (in-degree), analogous to the concept of conver-
gence, and out-degree, analogous to the concept of divergence. 
However, the overall pattern of those edges (i.e., who connects to 
whom) may also play a role in the fidelity of transmission. Our 
second metric measures the characteristic shortest path length 
(L) between nodes. Path length represents the average number 
of nodes among the shortest paths between all possible pairs 
and is one measure of a network’s efficiency. The path length Lij 
between two neurons is defined as a minimum number of con-
nections (and hence nodes) through which the action potential 
must travel to get from one neuron to another. Like the children’s 
game of telephone, a message transmitted through multiple layers 
will likely become degraded. According to this analogy, as the 
number of nodes that must be traversed to reach a distant node 
increases, the fidelity during the reproduction of that spike train 
on that distant node may be degraded. In this experiment, we 
compare information across topologies that vary in convergence, 
that may affects the rate of that decay. Our second prediction 
is that the fidelity of information contained within spike trains 
should decay more with increasing propagation distance (i.e., 
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FigUre 3 | comparison of the firing dynamics during spontaneous 
neural activity across the four topologies. (a) The degree of 
convergence within the 2D, 4D, 8D, and Random network topologies 
produced significant changes in the dynamics of spontaneous activity 
including higher firing rates in the 4D and 8D networks, relative to 2D and 
Random networks. (B) The rate at which spontaneous bursting occurred was 
also higher in the pattern topologies relative to Random networks. Increase 
burst rates paralleled a decrease in the average duration of each burst (c) in 
2D, 4D, and 8D topologies relative to Random networks in which neurons 
were free to connect based on their own intrinsic properties (*p < 0.05, 
**p < 0.01, ***p < 0.001).
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number of neurons traversed) in network topologies with 
higher  convergence– divergence compared to those with lower 
 convergence–divergence. The clustering coefficient (C), intro-
duced by Watts and Strogatz (1998), and average-weighted 
clustering coefficient (Saramäki et al., 2007) are a measure of the 
local network topology surrounding each node.

resUlTs

structural characteristics and Basic 
Functional Dynamics
Increasing the convergence of pathways in the 2D, 4D, and 8D 
topologies resulted in significant changes to the highly dynamic 
activity patterns of neurons occurring within those structures. 
Mean firing rates among neurons in the 4D and 8D networks 
were higher relative to 2D network topologies while the lowest 
rates were observed in the Random topology, and no significant 
difference between 4D and 8D (Figure  3A) was observed. 
Network oscillatory behavior consisting of spontaneous recur-
ring network wide bursts of activity occurred more often in the 
4D and 8D topologies (Figure 3B) relative to 2D networks that 
burst more often than Random cultures where we observed the 
lowest burst rates overall. The lower average rate of bursting in the 
Random topology paralleled a much longer average duration of 
those bursts within that topology compared to others, which did 
not significantly differ from each other (Figure 3C). The average 
firing rate of neurons during those bursts were higher in the 2D, 
4D, and 8D topologies relative to Random (19.3 ± 3.2, 26.5 ± 7.8, 
16.5 ± 2.3, and 7.5 ± 0.6 Hz, respectively, p’s < 0.001), but did not 
differ among the patterned network topologies (i.e., 2D, 4D, 8D). 
Changes in topology also did not influence peak firing rates of 
neurons achieved during each burst event (85.2 ± 3.2, 80.7 ± 3.3, 
83.0 ± 5.3, 89.2 ± 2.7 Hz, in 2D, 4D, 8D, and Random topologies, 
respectively, p > 0.05). There were no significant differences in 
the percentage of active vs. inactive electrodes containing neural 
activity (i.e., electrodes with spike rates > 0.1 Hz before sorting) 
among cultures in the 2D (43.4  ±  9.7%), 4D (67.7  ±  9.4%), 
8D (65.3  ±  8.3%), and Random (67.37  ±  11.2%) topologies 
(p’s > 0.29).

comparison of the Fidelity of information 
during the reproduction and Transmission 
across each network Topology
Figure 4A plots the average fidelity relative to the cost parameter 
q (expressed in milliseconds), the average for each topology 
across all values of q in Figure  4B, and by time-scales of q 
associated with rate (q−1 ≥80 ms, Figures 4C,D) and temporal 
coding (q−1 ≤ 20 ms, Figures 4E,F). Manipulating the degree of 
convergence–divergence among topologies resulted in significant 
changes in the fidelity with which spike-trains were transmitted 
between nodes. One major effect was the enhanced fidelity at 
scales associated with a rate based modulatory code compared 
with finer temporal scales (compare fidelity scores between right 
and left half of each plot in Figure 4A). A second major effect was 
the high performance (high fidelity of information transmission) 
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FigUre 4 | effect of network topology on transmission fidelity. To assess the nature and fidelity of information embedded within spike trains during 
transmission between layers, we calculated a common spike train similarity metric by Victor–Purpura’s cost based metric. (a) Mean fidelity scores at each value of 
cost parameter, q, and (B) overall. Fidelity scores associated with rate based (c,D) and rate-based coding (e,F). In each group, fidelity was higher overall at more 
coarse rate based scales (top right of each plot) rather than more precise temporally based scales (clusters of points at the bottom left of each plot).
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of Random topologies. Of all the network topologies we tested, 
the Random topology in which neurons are free to connect based 
on their own intrinsic properties that produced the highest aver-
age fidelity estimates compared to any other topology or time 
scale (q) we assessed (Figures 4B,D,F). At rate based scales of q, 
the group with the least convergence (i.e., Group 2D) produced 
the highest estimates of fidelity relative to the 4D followed by the 
8D patterned topologies (Figure  4D). However, the superior 
fidelity estimates in the 2D, 4D, and 8D topologies were entirely 
dependent on the time-scale (q) at which fidelity was assessed. At 
scales of q associated with a rate-based coding (Figures 4C,D), 
the fidelity for 2D networks was superior to 4D networks. In fact, 
the fidelity at rate-based scales in the 4D networks was also higher 
than 8D networks. However, at finer time scales associated with 
temporal coding of information in spike trains (q−1  <  20  ms) 
(Figures  4E,F), the 8D networks were superior to 2D and 4D 
networks. Interestingly, this reversal of fidelity scores in the pat-
terned topologies appeared to occur at time-scales reminiscent of 
those associated with the duration of burst events reported earlier 
in Figure 3C (indicated by arrows in Figure 4A).

structure–Function relationships in 
engineered networks
Connection Probabilities and Distance
Figure 5 displays the results of two fundamental characteristics of 
the structural morphology estimated from information derived 
from our functional connectivity estimates. These were connection 

probability and connection weights and each are shown relative to 
the Euclidean distance between the electrode locations associated 
with functionally connected node pairs. There was a decrease 
in connection probabilities with increasing distance in each 
of the topologies we tested (Figure 5A, line plots). In addition, 
manipulation of the network topology had a significant impact 
on the likelihood of forming connections over those distances. 
Of all patterned topologies nodes within the 2D topologies were 
least likely to form a functional connection when connectivity was 
constrained to a single pathway (c.f. mean connection probability 
Figure 5A, inset upper panel and blue line) compared to the 4D, 
8D, and Random topologies which did not differ from each other. 
As expected, the likelihood of observing a functional connection 
fell off rapidly with increasing distance in the 2D, 8D, and Random 
topologies (Figure 5A line plots). Interestingly, nodes in the 4D 
topology were almost equality likely to form a connection among 
their immediate neighbors (up to approximately 1000 μm or two 
nodes distant at 500 μm electrode spacing) before probabilities fell 
off rapidly to levels similar to 8D networks.

There were also significant differences between topologies in 
terms of the mean length of all functional connections (Euclidean 
distance in micrometer, Figure 5A bar graph lower panel). The 
mean length was significantly shorter in 2D relative to 4D and 8D 
topologies, and slightly shorter in 8D topologies compared to 4D. 
The longest average functional connection lengths were observed 
in the Random topology in a neuron’s growth was unconstrained 
and could cover the entire 6 × 10 electrode array.
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FigUre 5 | structural connectivity relative to physical distance and connection weights between nodes. In both human and animals, connectivity is often 
constrained by biology to be distributed across finite distances where the probability of forming connections decreases the more distant the postsynaptic target is. 
(a) As expected, we found significantly fewer connections were formed with increasing physical distance for each network topology. In the 2D topology, mean 
connection probabilities were significantly lower than other topologies. Unlike other groups, in the 2D topology, connectivity was forced to travel along a straight line. 
Typical connection distances of those connections (for connections less than 2500 μm for comparison among groups) were significantly higher in Random, 4D and 
8D, relative to 2D. (B) Connection weights were also weaker for connections at increasing distance. The largest weights were found in 2D networks followed by 4D, 
8D, and finally Random topologies (inset upper right) while the distribution of weights (lower left) appear exponential irrespective of topology.
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An increase in the physical distance between nodes was also 
associated with a decrease in the connection weight between 
those nodes (In our functional connectivity metric connection 
weight is estimated as the peak Pearson correlation coefficient, 
r, where 0 ≤  r ≤  1.0). Figure  5B plots the average connection 
weights between functionally connected nodes as a function of 
the physical distance between those nodes and average weights 
(bar graph inset). Like connection probabilities in Figure  5A, 
connection weights in Figure  5B generally appear to decrease 
with distance with the exception of the 2D and 4D topologies. 
In 4D topologies connection weights actually increased over 
short distances up to approximately 1000–1500  μm (distances 
that parallel the increased connection probabilities observed in 
Figure 5A) before declining. In the 2D topology, the average con-
nection weight increased throughout the entire length of the line 
pattern to which connectivity was confined. Connection weights 
were also significantly higher overall (Figure  5B, inset upper 
right) in 2D and 4D networks compared to 8D and Random 
topologies.

Reciprocal connections (nodes with a two-way bi-directional 
communication path) are a feature of connectivity often reported 
in cortex (Holmgren et  al., 2003; Song et  al., 2005), between 
brain areas (Song et  al., 2011), occur significantly more often 
than statistical comparisons to random network equivalents 
(Sporns, 2000), and observed by others within the 4D network 
topology used in this study (Vogt et al., 2005). More importantly, 
there are reports suggesting that the presence of reciprocal con-
nections may be highly influential on the process of network 
communication in biological networks (e.g., Tononi and Sporns, 
2003). In our study, reciprocal connections were observed among 
nodes in each of the topologies we created. They were however, 
relatively uncommon appearing among less than 10% of all 
connections. Manipulation of the network topology did have 

a significant effect on their likelihood. There were significantly 
fewer reciprocal connections as a percentage of all connectivity in 
2D networks (0.6 ± 0.2%) compared to 4D (7.8 ± 1.2%), followed 
by 8D (3.5  ±  0.8%) and Random (3.4  ±  0.7%), which did not 
differ from each other (p > 0.90). These reciprocal connections 
also tended to occur more often at relatively short distances 
(623.1 ± 40.7, 842.5 ± 22.1, 829.9 ± 22.1, 934.1 ± 15.1 μm in 2D, 
4D, 8D, and Random topologies, respectively) with over 80% of 
all reciprocal connections occurring within a span of 1000.0 μm 
(2D), 1414.2 μm (4D), 1118.0 μm (8D), and 2061.5 μm (Random) 
of each neuron (i.e., approximately within a space spanning 
approximately two electrodes on the MEA) (results not shown). 
Interestingly, the likelihood of observing a reciprocal connection 
was almost linear with distance. In each topology, the probability 
of observing a reciprocal connection changed very little within 
the span of two electrodes (i.e., approximately the first 1000 μm) 
at which point the likelihood of observing a reciprocal connec-
tion fell precipitously (data not shown) irrespective of network 
topology. This limited extent suggests that whatever effect these 
connections have upon the network, that effect is local to a node’s 
immediate neighbors. Finally, over 43% of nodes in 4D and 8D 
and 90% of nodes in Random topologies that were within a 
reciprocal connection were also among the high degree nodes 
possessing greater than 10 connections. In fact, the average node 
degree of reciprocal nodes was 29.26 ± 4.51 in 4D, 28.06 ± 4.77 
in 8D, and 36.83 ± 5.27 in Random topologies and as mentioned 
in the following section, these high degree nodes were also 
associated with some of the highest fidelity estimates, which are 
observed in this study.

There were clear differences between topologies in the likeli-
hood of forming functional connections, the weight of those con-
nections, and the distance between functional connections. We 
next asked whether any of these differences influence the fidelity 
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FigUre 6 | The fidelity during neural transmission decreases with increasing number of nodes that must be crossed to reach other nodes. We 
hypothesized that longer path lengths and hence, more intermediary nodes, may degrade the fidelity at which spike trains are transmitted between nodes. (a) 
displays the probability (main panel) and cumulative distribution (inset) of path lengths for each topology. We computed the similarity overall (B), and at rate based 
scales (c), and temporal scales (D), between nodes relative to the shortest path length connecting the two. In general the fidelity did decrease with increasing 
number of nodes that must be crossed. Once again Random topologies transmitted spike trains with the highest fidelity overall and at both rate and temporal 
scales. While 2D networks were superior at rate-based scales (B) relative to 4D and 8D, this apparent advantage disappeared at temporal scales. We also 
hypothesized that increasing network convergence may lead to reduced rate of decay in fidelity with distance (i.e., a more shallow slope compared to Random 
Topologies). The idea being that convergence may produce fidelities that are more robust over longer distances. However, our results based on the slopes of path 
length relative to fidelity did not support this.
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of transmission. For example, longer physical distances might 
be associated with greater decay in transmission fidelity within 
these cultures. Similarly, stronger connection weights might be 
associated with greater fidelity compared with weaker functional 
connectivity. However, there was little evidence of any correlation 
among physical distance and average fidelity between node pairs 
in Group 4D (r = −0.027, p =  0.4), 8D (r = −0.005, p =  0.9), 
Random (r = −0.026, p = 0.108) and only marginal correlation in 
2D (r = −0.147, p = 0.03). Conversely, connection weights were 
weakly correlated with fidelity estimates in the 2D (r = −0.288, 
p = 0.001), 4D (r = −0.194 p = 0.001), 8D (r = −0.201, p = 0.001), 
and Random topologies (r = −0.212, p = 0.001).

Path Length and Fidelity
In a network analysis, the distance between nodes is often 
measured in terms of the shortest path, which measures the 
minimum number of nodes required to reach a destination rather 
than physical distance. Path length is one of the most common 
measures used to characterize a network’s internal structure. 
Unlike physical distance, path length incorporates the sometimes 
torturous route information must take to reach a destination 
(e.g., passing through multiple nodes). In fact, the characteristic 

shortest path length between nodes in a network may play a 
critical role in the transmission of information within a network 
by providing shortcuts with which information can travel long 
distances without interference or distortion from other nodes. 
We hypothesized that longer path lengths, and hence more inter-
mediary nodes, should degrade the fidelity at which spike trains 
are transmitted between nodes. Figure 6A displays distribution 
of the shortest path lengths for each of the topologies. The cumu-
lative probability distributions (inset) are also provided. Overall, 
the average shortest path length between nodes was smaller in 
the 2D networks at 1.87  ±  0.04 nodes compared to Random 
(2.34 ± 0.005, p < 0.001), 4D (2.28 ± 0.01, p < 0.001), and 8D 
(2.26 ± 0.01, p < 0.001) topologies that did not significantly differ 
from each other (p > 0.25).

Increasing network convergence may also lead to a reduced rate 
of decay of information as measured by fidelity over increasingly 
longer distances. If true, the slope of line representing the decay 
in fidelity over distance should be shallower in the 8D followed by 
4D, and finally the 2D network topologies. We plotted the aver-
age fidelity scores by the shortest path length (L) between nodes 
(Figure 6B), for those values of q associated with rate (Figure 6C) 
and temporal coding (Figure 6D). Unlike physical distance path 
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FigUre 7 | node degree and fidelity. Many common network measures were affected by the structural constraints imposed by microprinting. (a) Node degree 
distribution for the 2D, 4D, 8D, and Random topologies (inset: cumulative degree distribution plotted within a log-log scale). Node degree represents the number of 
edges/connections per node in an undirected graph (distributions from values drawn from directed graphs were very similar in shape and magnitude). The overall 
average node degree was near values of 2 for the 2D, 8 for the 8D and 4D, and over 15 connections in the Random topologies. Remarkably similar distributions 
were obtained for the in-degree (B) and out-degree (c) suggesting the number of incoming connections were balanced with the number outgoing connections. (D) 
There were significant differences in density of node connectivity (a measure of how many connections have been established vs. the theoretical maximum) with the 
highest densities observed in the 4D and 8D followed 2D topologies and the lowest in Random. (e) plots the average fidelity associated with a rate-based neural 
code and (F) temporal-based code associated with increasing node degrees. In each topology, the fidelity associated with each node improved with increasing 
node degree (i.e., number of connections possessed by that node). At lower node degrees, the 4D and 8D networks produced an initial peak in fidelity that occurred 
at node degrees of 6 and 8, respectively, which were near original design values 4 and 8. Increases in node degree beyond those values resulted in a momentary 
decrease in fidelity (local minima) before once again increasing for the few nodes highest node degrees. In 2D and Random networks fidelity continued to increase 
up to the maximum node degree observed within these topologies.
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length was strongly related to fidelity and decreased with increas-
ing number of nodes in all topologies. Once again Random 
topologies transmitted spike trains with the highest fidelity 
overall (Figure  6B) compared to the other topologies and did 
so at both the rate (Figure 6C) and temporal scales (Figure 6D). 
While 2D networks were superior at rate-based scales relative to 
4D and 8D, at temporal scales this advantage was not apparent 
(Figure 6D). There was however no evidence that increasing the 
convergence was able to enhance or maintain fidelity over longer 
distances when comparing each topologies or scales we tested as 
slopes were similar across all topologies.

Node Degree
Our first goal was to simply compute the characteristic degree of 
each node to determine if our microprinting method we used to 
guide connectivity produced the desired differences in the mag-
nitude of convergence–divergence (i.e., number of connections as 
illustrated in Figure 1A). If our efforts with microprinting were 
successful, there should be approximately 2, 4, and 8 connections 
(i.e., “degrees”) for the 2D, 4D, and 8D topologies, respectfully. 

Figure 7A plots the degree distribution and cumulative probability 
distribution (inset) for each topology. Node degree distributions 
for each topology appeared to peak at values near those predicted 
by our methodology. The average degree for neurons within the 
2D topology was 1.32  ±  0.05 edges per node, a value close to 
the desired two connections per node (i.e., neuron). The average 
degree for nodes in the 4D and 8D topologies were similar at 
8.86 ± 0.36 and 8.06 ± 0.39 connections, respectively. Each was 
significantly higher than 2D networks (p’s < 0.001) while Random 
cultures resulted in the highest average node degree per neuron 
at 15.75  ±  0.32 (p’s  <  0.001). Long-tailed degree distributions 
were observed in the 4D, 8D, and Random topologies, however, 
particularly among nodes with that possessed a higher number 
of connections. This paralleled similar distributions for in-degree 
(number of incoming connections per neuron, Figure 7B) and 
out-degree (number outgoing) connections (Figure 7C) suggest-
ing a fairly balanced input-output relationship for each node.

The high-degree nodes (k  >  10) were also associated with 
high betweenness centrality compared to low-degree (k  <  10) 
members (0.04 ± 0.005 vs. 0.02 ± 0.005 in 4D, 0.04 ± 0.001 vs. 
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0.03 ± 0.001 in 8D, 0.02 ± 0.001 vs. 0.003 ± 0.0005 in Random 
topologies, respectively). This was also true of closeness centrality 
(0.56 ± 0.01 vs. 0.36 ± 0.03 in 4D, 0.57 ± 0.001 vs. 0.29 ± 0.02 in 
8D, 0.53 ± 0.003 vs. 0.39 ± 0.02 in Random topologies, respec-
tively), and high local efficiency (Latora and Marchiori, 2001) 
(0.31 ± 0.003 vs. 0.007 ± 0.006 in 4D, 0.33 ± 0.003 vs. 0.003 ± 0.009 
in 8D, with the exception of Random at 0.0004  ±  0.001 vs. 
0.02 ± 0.001, respectively).

Figures  7E,F plot the relationship between a node’s degree 
relative to its average fidelity at the rate (Figure  7E) and tem-
poral scales (Figure 7F) from our fidelity metric. In each of the 
topologies we tested, an increase in a node’s degree did gener-
ally correspond to an increased transmission fidelity. 2D and 
Random networks nodes with larger degrees were associated with 
higher average fidelity at Rate (Figure 7E) and temporal scales 
(Figure 7F). This was also true of the 4D and 8D networks, at least 
up to node degrees of approximately eight connections. However, 
at eight connections, this local peak in fidelity was followed by a 
rapid decline to minimal fidelity that occurred at nodes degrees of 
approximately 15–20 connections before increasing once again. 
Interestingly, comparison of rate vs. temporal coding estimates 
among 4D and 8D topologies in Figure 7E vs. Figure 7F suggest 
that the apparent dominance of 4D for rate based coding was only 
at node degrees within this initial peak. Those neurons in within 
each network topology that were strongly connected with node 
degrees above 15 connections resulted in higher transmission 
fidelity overall. However, it was the 8D topologies that appear to 
dominate in terms of both rate and temporal information meas-
ured by our fidelity metric for those highly connected neurons. 
Comparable effects to those presented in Figures 7E,F were also 
observed for in-degree and out-degree (results not shown).

We also computed the node density for each network from 
each topology and plotted the distribution of those values in 
Figure  7D. Node density is measure of how completely con-
nectivity had “filled-in” each network’s structure and ranges 
from 0 (unconnected) to 1.0 (fully connected or complete) and 
this factor alone can have profound effects on the properties of 
propagation within a network. For example, when a network’s 
densities becomes to low any activity within that network may fail 
to effectively propagate to every node (e.g., Kuiper, 2010), and as 
a result, fidelity may be compromised. We found that the density 
of connections in networks cultured under the 2D topology were 
significantly lower (mean 0.14 ± 0.03) than those in the 8D (mean 
0.26 ± 0.02, p < 0.001) whose densities were lower than 4D (mean 
0.36 ± 0.04, p < 0.001). Cultures in the Random condition who 
had the highest fidelity estimates also had the lowest average node 
density relative to 4D and 8D topologies (0.21 ± 0.02, p’s < 0.040).

Clustering Coefficient
Figures  8B–E display the results for the clustering coefficient 
computed for each node and each network topology. Figure 8A 
plots the probability distributions for clustering coefficients 
across nodes for each group and conditional probability distribu-
tion dependent on node degree, P(C|k), in Figure 8B. Changing 
the topology of the network resulted in significant changes in the 
distribution of clustering coefficients with the highest average 
clustering coefficients observed in the 4D and 8D topologies 

(mean: 0.43 ± 0.02 and 0.53 ± 0.02, p > 0.08) followed by the 
Random (0.43 ± 0.005, p’s < 0.001) and 2D network topologies 
(0.24 ± 0.025, p’s < 0.001). The clustering coefficient of a node 
is often correlated with its degree (high node degree’s are often 
associated with higher clustering coefficients) and this was appar-
ent in Figure 8B where an increased nodes degree was associated 
with an increased clustering coefficient. Like node degree, a 
node’s clustering coefficient was also associated with its trans-
mission fidelity appearing with a peak in fidelity for nodes with 
coefficients near 0.3 followed by a local minima and subsequent 
increase for higher coefficients reminiscent of Figures 7E,F.

Degree–Degree Correlations among Neurons and 
Resultant Communication Fidelity
Communication among members of each network occurs 
between nodes with often heterogeneous properties. Real-world 
networks are correlated (Albert and Barabási, 2002; Newman, 
2003a; Boccaletti et  al., 2006) including biological networks 
(Newman, 2003b). In Figure  7, node degrees were distributed 
across a wide range of values and any correlations between a com-
municating pair of nodes with similar node degrees may have 
a profound influence on the quality or efficiency of that com-
munication. Correlations between nodes properties, particularly 
degree-degree correlations, are perhaps one of the most studied 
correlations in network analysis. For example, nodes with similar 
degrees (e.g., high–high, low–low, etc.) may communicate more 
efficiently with each other than between nodes with dissimilar 
degrees. Conversely, the magnitude of the node’s degree may 
instead be the primary determinant of any efficiency during 
transmission of information. According to this idea, high degree 
nodes should then communicate more effectively than low-degree 
nodes irrespective of any correlation among their properties.

To quantify the effect of degree–degree correlations on fidel-
ity, Figure 9 plots the average fidelity at rate (left column) and 
temporal scales (right column) by respective node degrees dur-
ing communication between nodes. In the 4D, 8D, and Random 
topologies, the highest fidelities were measured when nodes com-
municated with other nodes with similar node degrees. This effect 
appears as a bright red appearing along a 45° line representing 
an interaction among nodes with similar degrees. However, the 
range of that correlation and associated fidelity was affected by the 
nature of the network topology being measured. In the Random 
topology, the highest fidelity estimates occurred throughout 
most of the range of values for node degree that we observed but 
were highest during communication between node pairs with 
similar degrees. Fidelity estimates appears highest and perhaps 
cluster when degree-degree values were near their peak (bulge 
near upper right the left and right panels). In the 2D networks, 
communication fidelity at temporal scales was highest between 
nodes with some of the highest node degrees we measured. At 
rate-based scales, nodes in the 2D topology produced the highest 
fidelity when any communication occurred with high degree 
nodes. Like the Random topology, in the 4D and 8D networks, the 
fidelity of communication was highest when node degree was cor-
related. However, in these topologies this relationship appeared to 
be somewhat non-linear with up to three peaks (indicated with 
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FigUre 8 | clustering coefficients influence transmission fidelity. Clustering coefficient was computed from undirected graphs and is a measure of the 
cliquishness of a nodes surrounding connectivity and is a property known to affect the efficiency of communication. (a) Example of clustering coefficient calculation 
for the red shaded node i. Gray edges are connections from node i to three other neighboring nodes in gray, and dotted red edges are for unused possible 
connections. The clustering coefficient is a probability represented by the number of edges connecting neighbors of node i shown in red, divided by the total 
number of possible edges between neighbors of node i, shown in gray, of neighbors fully connected among themselves. (B) Distribution of clustering coefficients 
among nodes for each topology and (c) association between clustering coefficients and node degree (node degree among undirected graphs). (D,e) represent the 
association between a node’s clustering coefficient and transmission fidelity at rate and temporal scales with nodes it shares a functional connection with.
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arrows) appearing in 8D, and one or perhaps two peaks in the 4D 
topologies (right panel and left panel, respectively).

DiscUssiOn

In any neural system, the delineation of anatomical connections 
is only the first step toward understanding how those connec-
tions, or their overall structure, may shape the neural activity 
orchestrated upon it. In this study, we employed microstamping 
technology to create three living network structural topologies 
each composed of cortical neurons. We then compare these 
topologies with a living “random” network analog in order to 
directly study the relationship between differences in a network’s 
structure and the changes in functional dynamics and quality of 
communication that results. Each of our networks were composed 
of living rat cortical neurons that were cultured upon a pattern of 
adhesion and growth promoting molecules that differed in the 
degree of convergence/divergence into and out of each junction. 

Both the structure and dynamics of among neurons that grew 
and developed along these patterns were indeed affected by the 
network topology we microstamped onto each surface. We found 
significant differences in structural morphology based on our 
functional connectivity estimates including differences in the 
likelihood of forming a connection, connection weights, likeli-
hood and weights by physical distance, and by path length, node 
degree, and clustering coefficients. Of these, it was path length, 
clustering coefficients, node degree, and degree–degree correla-
tions among communicating neuronal pairs varied by network 
topology and associated with a strong and sometimes non-linear 
effect upon the dynamics and fidelity during transmission of 
spike trains among each node.

effects on structure on Functional 
connectivity
Our first goal was to verify that the actual number of connec-
tions, measured as node degree and analogous to convergence 
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FigUre 9 | Degree–degree correlations effect transmission fidelity. 
Transmission fidelity is plotted relative to the values of the node’s degree 
between each communicating pair (i.e., the fidelity from nodes with degree 
ksource to ktarget) in the 2D, 4D, 8D, and Random network topologies. Fidelity is 
separated into rate (left column) and temporal-based scales (right column). 
The color scale represents fidelity from low: blue, to high: red. In the 4D, 8D, 
and Random networks transmission fidelity was highest during 
communication between nodes with similar node degrees as evidenced by 
the enhanced values along the diagonal. There were also non-linearities 
visible in the 8D and less so in 4D networks that appear as peaks (indicated 
with arrows) along the diagonal that occur in regions associated with node 
degree and fidelity observed earlier in Figures 7e,F. (Color scales are 
normalized within each panel from 0 to 1.0).

February 2016 | Volume 4 | Article 1514

Alagapan et al. Structure–Function Dynamics in In Vitro Topologies

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

and or divergence, were consistent with values we attempted to 
engineer into each patterned topology via microstamping. Node 
degrees among the patterned topologies did in general agreed 
with desired values. The exception was the 4D topology whose 
number of connections was closer to 8D networks rather than 
four connections on average. Of course, the growth of neurites 
is notoriously difficult to constrain in vitro and while not perfect, 
the numbers we obtained were near those we desired for each 
patterned topology. Why the average node degree in the 4D 
networks did not differ from 8D is not clear. However, one pos-
sibility is that at these small spatial scales (500 μm junction to 

junction spacing), the physical extent of dendrite and axon may 
“overrun” these patterns. For example, other laboratories have 
reported significant branching of neurites from single neurons 
using patch clamp recording methods embedded within a 4D 
topology nearly identical to that used here (Vogt et  al., 2005). 
Vogt also reported that up to 45% of the time, a single neurite 
extending from a soma would split into multiple branches. Of 
those that split, 90% would branch into two neurites and 10% 
into three (N = 19 neurons). Perhaps with this much branching, it 
may not be surprising that the average node degree would high in 
both 4D and 8D topologies given the close proximity (≤500 μm) 
of nodes (electrode) or additional contribution of reciprocal con-
nections (36% in the Vogt study). They also reported a threefold 
increase in the number of connections when comparing 4D to 
Random topologies which is consistent with values observed in 
our study in which for example, the highest average node degree 
was approximately 15 connections. Though node degrees were 
similar in 4D and 8D, there were other differences. For example, 
while 2D networks were least likely to form a functional connec-
tion, 4D networks seemed to preferentially attach (Figure  5A) 
with relatively high connection weights (Figure 5B) to neighbors 
with equal likelihood if they were within two nodes distant. In 
all topologies, however, the likelihood of forming a connection 
decreased distance which is consistent with in vivo reports (c.f. 
Figures 5A,B). However, neither of these measures appeared to 
be strongly correlated with fidelity estimates.

structure-Functional Dynamics
Increasing the number of inputs and therefore amount of conver-
gence into a node should change the dynamics of neural activity at 
each node within the patterned topologies relative to the Random 
control. In fact, increasing the convergence did result in increased 
firing rates in 4D and 8D topologies relative to 2D and Random, 
and firing rates on nodes within the 2D networks were higher than 
Random, but there was no difference between the 4D and 8D (c.f. 
Figure 3A). These higher firing rates were similar to reports from 
other laboratories using 2D (line culture) (Chang et al., 2001), 4D 
(Branch et al., 2000; Vogt et al., 2005; Jun et al., 2007; Marconi et al., 
2012), and 8D topologies (Boehler et  al., 2012). The structural 
differences we implemented via microstamping were also associ-
ated with significant changes in each network’s burst dynamics. 
Bursting occurred more often in each of the patterned cultures 
compared to the Random topology and is a known effect that has 
been reported by our group and others in the past (Boehler et al., 
2012; Marconi et  al., 2012). We observed increased burst rates 
associated with the increasing node degrees in the 2D, 4D, and 
8D topologies and reported by others (Jia et al., 2004). This is in 
contrast to burst durations that were longer in the Random rela-
tive to patterned topologies [and in Boehler et al. (2012)] but were 
not significant among the 2D, 4D, and 8D topologies or between 
peak firing rates during each burst (Boehler et al., 2012).

node Degree, clustering, and 
Transmission Fidelity
According to our hypothesis, increasing the convergence of con-
nections into and out of each junction in each topology should 
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also increase the fidelity with which spike trains are transmitted 
between nodes. Our hypothesis was validated in our 2D, 4D, 
and 8D networks. Surprisingly of all the topologies we tested 
it was the Random topology that clearly produced the highest 
transmission fidelity among nodes (neurons) irrespective of the 
time scale at which this fidelity was assessed. The mean fidel-
ity estimates in Random networks were also similar to results 
measured within this topology by other laboratories based on 
mutual information rather than Victor–Purpura we used here 
[0.26 ± 0.000, c.f. Figure 5B vs. 0.29 ± 0.02 in Bettencourt et al. 
(2007)]. One obvious difference between Random and pattern 
topologies was the reduced amount of constraint placed on 
growth patterns. Unlike the patterned topologies, connectivity in 
the Random networks was entirely self determined rather than 
only partially self determined in patterned networks. Hence, in 
so-called “random” topologies network structure is based on 
each neurons own internal properties that at least in vivo, have 
been reported to mediate the formation of structural information 
(Sporns et al., 2004; Stam and de Bruin, 2004; Achard et al., 2006; 
van den Heuvel and Pasterkamp, 2008; Massobrio et al., 2015). 
Known as neural economics, reports from in  vivo and ex vivo 
assays implicate connectivity may develop to maximize topologi-
cal efficiency, robustness, modularity, and rich club-like networks 
composed of network hubs (Bullmore and Sporns, 2012) that 
may offer advantages in terms of computational performance 
(Crossley et al., 2013; Senden et al., 2014; Baggio et al., 2015). In 
fact, recent studies have verified that functional connections of 
the brain network may be organized in a highly efficient small-
world manner in vivo (Sporns et al., 2004; Stam and de Bruin, 
2004; Achard et al., 2006; van den Heuvel and Pasterkamp, 2008; 
Vértes et al., 2012) and mirrored among structural information 
in dissociated neural culture used here (Bettencourt et al., 2007; 
Downes et al., 2012; Gritsun et al., 2012; Pu et al., 2013; Vincent 
et al., 2013; de Santos-Sierra et al., 2014; Schroeter et al., 2015).

At higher node degrees, we found an almost universal enhance-
ment in transmission fidelity whether networks were cultured 
in a Random or a 2D, 4D, or 8D topologies (c.f. Figures 7E,F). 
Nodes with higher node degrees were also associated with higher 
clustering coefficients (Figure 8C), and these higher clustering 
coefficients were in turn, associated with higher estimates of 
fidelity. This suggests that nodes associated with highly clustered 
connectivity among its immediate neighbors tend to communi-
cate with higher fidelity than less clustered network structures. 
However, at the highest clustering coefficients it was the 4D but not 
8D network topologies whose transmission fidelity approached 
that of Random networks (Figures 8D,E, where C > 0.4). While 
higher clustering coefficients (relative to path length) are associ-
ated with small-world network topologies, high clustering has 
also been associated with greater variability in firing dynamics 
(Litwin-Kumar and Doiron, 2012) and abnormal values associ-
ated with neurological disorders such as schizophrenia (Bassett 
et  al., 2008; Liu et  al., 2008) and epilepsy (Baccalá et  al., 2004; 
Bernhardt et al., 2011; Varotto et al., 2012). The advantage of 4D 
over 8D networks in terms of clustering coefficients and its relation 
to fidelity is also directly opposite to that found for node degree. 
For node degree (Figures 7E,F) fidelity in 8D networks was now 
enhanced relative to 4D at both rate and temporal scales among 

the few nodes with highest node degrees (k > 10). It is well known 
that network’s node degree distribution can have profound effects 
on network function and efficiency. In a mathematically random 
network such as those studied by Erdos and Rényi (1960), each 
connection is present or absent with equal probability. Hence 
the degree distribution is typically binomial or Poisson for very 
large graph sizes. In most real-world networks, however, degree 
distributions are highly skewed, meaning that their distribution 
appears with a long tail of values that are far above the mean, and 
denote the presence of a set of highly connected nodes (Hagmann 
et al., 2008). In our topologies, long-tailed distributions can easily 
be observed in the 4D, 8D, and Random networks for node degree 
(Figure 7A), in-degree (Figure 7B), and out-degree (Figure 7C). 
In fact long-tailed distributions of node degree in networks with 
power-law degree distributions have been the focus of a great deal 
of attention in literature and are sometimes referred to as scale-
free networks (Barabási and Albert, 1999). Recent years have 
witnessed a surge in interest in these high degree nodes which 
are sometimes identified as “hub” neurons due their exceptionally 
high number of connections and enhanced control over network 
dynamics in both hippocampal brain slice (Bonifazi et al., 2009; 
Cossart, 2014) and random topologies we used in this study 
(Kudoh et al., 2009; Luccioli et al., 2014; Schroeter et al., 2015).

These putative hubs are often identified by their high-node 
degree, motif participation, betweenness centrality, and local 
efficiency (Sporns et al., 2007). These neural hubs are thought to 
play a central role in network communication and information 
transfer (Sporns et al., 2007; de Reus and van den Heuvel, 2013; 
van den Heuvel and Sporns, 2013) and may be a part of a more 
highly interconnected networks (i.e., “rich club”) that have been 
hypothesized to serve as a network backbone for transmission and 
integration of information in the brain (van den Heuvel et al., 2012; 
Towlson et  al., 2013; de Reus and van den Heuvel, 2014; Mišić 
et al., 2014) and reported recently in vitro (Yu et al., 2008; Shimono 
and Beggs, 2014; Timme et al., 2014; Schroeter et al., 2015). These 
rich club networks may also modulate the dynamical interactions 
among other lower-degree nodes (Crossley et  al., 2013; Senden 
et al., 2014). The fidelity during communication among nodes was 
also dependent on the similarity between nodes in terms of node 
degrees. In other words, degree–degree correlations in which 
nodes with similar degrees communicated with higher fidelity 
than those with dissimilar degrees with highest degree nodes com-
municating at the highest fidelity with other high degree nodes 
(c.f. Figure 9), at least in the 4D, 8D, and Random topologies.

cOnclUsiOn

In this study, we created four network topologies composed of 
living cortical neurons that differed in the amount of conver-
gence embedded within the structure of each network. Each 
network was cultured of a grid of electrodes that permitted 
high-resolution real-time measurement of neural activity that 
we used to investigate the relationship between the structure 
of each network and its functional dynamics. Of topologies we 
tested, so-called Random networks in which neurons connect 
based on their own intrinsic properties transmitted informa-
tion in the form of spike trains with higher fidelity at both rate 
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and temporal coding scales than any other topology we tested. 
Within the topologies in which we explicitly manipulated struc-
ture, the effect of convergence (i.e., node degree) on fidelity was 
dependent on time-scale with which fidelity was assessed, actual 
node degree and clustering coefficients, and degree–degree cor-
relations. The effect of node degree depended upon whether that 
node was highly connected or possessed fewer connections and 
the degree of the node with which it communicates (i.e., nodes 
with similar node degrees communicate with higher fidelity 
across all degree values).

The functional interpretation of the connectome could be 
a potentially powerful tool toward our understanding of the 
relationship between structure, function, and brain dynamics in 
general. While it is possible that structural connectivity may one 
day enable us to predict function based on structural information 
alone it is still not clear how those relationships will be estab-
lished. In this paper, we highlight the role this patterning technol-
ogy might provide to unravel the complex interaction between 
network architecture, functional dynamics, and transmission of 
information.
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