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The materials pipeline for biomaterials and tissue engineering applications is under  
continuous development. Specifically, there is great interest in the use of designed 
materials in the stem cell arena as materials can be used to manipulate the cells pro-
viding control of behavior. This is important as the ability to “engineer” complexity and 
subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. 
This review will describe the nature of the materials strategies, both static and dynamic, 
and their influence specifically on mesenchymal stem cell fate.

Keywords: mesenchymal stem cells, bioengineering, materials synthesis, nanotopography, stimuli-responsive 
material

iNTRODUCTiON

The materials engineering field encompasses various techniques allowing the application of smart 
materials to tissue engineering (TE). TE can utilize these materials as either a scaffold to support cells 
in vivo or as an enabling technology to improve cell growth and differentiation in vitro (Murphy and 
Atala, 2013). TE has been applied to a range of organs, including the bladder (Atala et al., 2006) and 
trachea (Macchiarini et al., 2004), which have been used clinically. The knowledge and experience 
gained from these studies will enable the construction of organs of greater complexity and higher 
order architecture, e.g., the heart (Hoerstrup et al., 2000; Ott et al., 2008). In the future, the synthesis 
of organs in the lab potentially allows for the creation of “off the shelf ” constructs that may alleviate 
the need for donors and complex surgeries (Kode et al., 2009). However, there are some limitations to 
the progress of this field, including the ability to precisely control growth and differentiation of stem 
cells. Stem cells are well placed to underpin TE due to their unique characteristics of self-renewal 
and differentiation. This feature of stem cells can address the requirement of complexity in TE, i.e., 
multiple tissue organs from a single cell source. It would, however, require precise organization of 
directive cues throughout a scaffold and ideally these cues should be presented only when required 
(i.e., introducing space-time control). In other words, producing man-made mimics that copy key 
features of extracellular matrix (ECM) and more specifically the stem cell niche is a worthwhile, 
albeit challenging endeavor with potential clinical and socioeconomic benefits (Oreffo et al., 2005).

Stem cells are non-specialized cells with the ability to differentiate (become other cell types) or 
self-renew (replicate without differentiating). To exploit the cells in vivo, scaffolds must be made 
from materials that are ideally bioactive, biodegradable, and biocompatible in order to replicate 
key features of the ECM. Polymers, such as polyglycolic acid (PGA), polylactic acid (PLA), and 
polyethylene glycol (PEG) make ideal scaffolds as they are biocompatible and FDA (Food and Drug 
Administration) approved (Koh and Atala, 2004). The first event of key importance upon stem cell 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2016.00038&domain=pdf&date_stamp=2016-05-13
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://dx.doi.org/10.3389/fbioe.2016.00038
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:h.anderson.1@research.gla.ac.uk
http://dx.doi.org/10.3389/fbioe.2016.00038
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00038/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00038/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00038/abstract
http://loop.frontiersin.org/people/320928/overview
http://loop.frontiersin.org/people/321584/overview
http://loop.frontiersin.org/people/172226/overview


2

Anderson et al. Biomaterial Control of Mesenchymal Stem Cells

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2016 | Volume 4 | Article 38

interaction with materials is adhesion. Adhesion to the substrate 
is imperative as stem cells are anchorage-dependent meaning that 
those unable to adhere will apoptose via anoikis (“homelessness”) 
(Dalby et al., 2014). Initial control of stem cell adhesion to bio-
compatible scaffolds ensures cell survival, then a differentiation 
cue can be provided to generate a desired cell population.

Biomaterials have evolved rapidly over the last 30  years. 
Originally, first-generation materials purposed for biocompati-
bility and mechanical integrity gained popularity. This progressed 
to understanding that materials could be bioactive, eliciting 
desired cell response and could also be biodegradable with the 
aim of being replaced with native tissue after the support and 
templating role was complete; second-generation biomaterials 
included hydroxyapatite and bioglasses. There is a drive toward 
third-generation materials where reproducible molecular control 
of cells is targeted, activating the genome to regenerate the tissue 
(Hench and Polak, 2002). Such materials could be powerful tools 
for stem cell bioengineering as we start to manipulate biochemi-
cal control of stem cell fate and function (Oreffo et al., 2005). It is 
necessary to create and enhance existing technologies due to the 
limitations of existing culture methods. For example, tissue culture 
plastic, which has served well for somatic cells, is far from ideal to 
expand the stem cell population as niche cues that regulate self-
renewal are missing. Therefore, there is a need to introduce new 
technologies that provide a stimulus to direct stem cell behavior 
in a user-defined manner (Lutolf and Blau, 2009; Lutolf et  al., 
2009). Attempts to improve cell culture methods have centered 
on the manipulation of three key materials features: topography, 
stiffness, and surface chemistry (Figure  1). Each example has 
provided more information on the nature of mesenchymal stem 
cell (MSC) adherence, growth, and differentiation.

STeM CeLL CHARACTeRiSTiCS

Stem cell self-renewal can be symmetrical where two stem cells 
are produced to enrich the stem cell population or asymmetri-
cal where a stem cell and a progenitor cell is produced, hence 
responding to regenerative demand and maintaining stem cell 
number. Progenitor cells migrate from the niche expanding in 
number (transit amplification) and become more specialized 
as they progress from stem cell to progenitor cell to differenti-
ated cell (Watt and Hogan, 2000). Stem cells have an extended 
capacity for self-renewal due to constitutive telomerase activity 
whereas terminally differentiated cells are subject to senes-
cence. Furthermore, adult stem cells often use quiescence as 
a tactic to avoid DNA damage when they are not active (Watt 
and Hogan, 2000).

Adult stem cells, while able to self-renew, have a defined dif-
ferentiation potential and only form cell types within a lineage 
range – usually to replenish cells in the area local to the niche 
that controls the stem cells (Heissig et  al., 2002). For example, 
MSCs are derived from the mesenchyme layer in the developing 
embryo and form tissues derived from that layer, including bone 
and fat (Pittenger, 2008). MSCs are attractive as an autologous 
therapy source as they are ethically sourced and it is simple to 
obtain the cells from bone marrow, i.e., removal of bone marrow 
from hip replacement surgery for lab use or use of iliac crest 

aspiration or lipoaspiration. There is also evidence that MSCs are 
immune-modulatory as they lack the major histocompatibility 
complex (MHC) Class II, indicative of evasion of the immune 
system. Furthermore, they can reduce expression of inflamma-
tory dendritic cells and suppress effector T cells making MSCs a 
candidate for allogeneic as well as autologous treatments (Kode 
et al., 2009).

Currently, the exact factors that stem cells require to differenti-
ate in vivo are unknown. What is recognized is that the stem cell 
environment, the niche, is an important factor for the regulation 
of behavior. The niche is a 3D microarchitecture that incorporates 
many cell types supported by an ECM made of proteins, includ-
ing collagen and fibronectin (Ehninger and Trumpp, 2011). It is 
not only the niche microenvironment that influences the cells 
but secreted factors of other cell types also have regulatory effects 
(Hartmann, 2006).

The ECM is required not only for structural support but also 
provides substrate-specific ligands for migration, adhesion, 
proliferation, and function in addition to chemical and physical 
signals to regulate many aspects of the body’s physiology (Visse 
and Nagase, 2003). The niche is dynamic and complex and it is, 
thus, unsurprising that the cells lose control of self-renewal and 
spontaneously differentiate when plated on tissue culture plastic 
(Lutolf and Blau, 2009). It is possible that learning from nature, 
replicating an aspect of the native system that is robust enough to 
be engineered and synthesized, could help us not only to develop 
scaffolds that direct differentiation as desired but also surfaces 
that could control growth of quality stem cells.

CeLL–SURFACe iNTeRACTiON

To interact with the ECM, cells use receptors such as integrins 
that ligate to specific peptide motifs within the ECM (Geiger 
et al., 2001). Each ECM protein has characteristic motifs within 
its sequence, for fibronectin; RGD and LDV (Yamada, 1991), 
for laminin; IKLLI, IKVAV, PDSGR, and YIGSR (Weber et  al., 
2007), for collagen; DGEA (Weber et al., 2007). Each sequence 
is recognizable by different cell receptors, namely integrins. 
Integrins are the principal family of receptors that mediate cell 
adhesion. Consisting of α and β subunits, forming a dimer to 
interact with the dynamic presentation of ECM proteins. The 
differing combination of α and β subunits allows ligand specific-
ity for a particular motif (Hersel et al., 2003), for example, α5β1 
integrin binds to an RGD ligand, in addition, other integrin 
motifs that bind (although not limited to) RGD include most 
αv combinations, α8β1 and αIIbβ3 (Humphries et al., 2006). With 
the diversity of ECM motifs and the possibility of a number of 
integrin conformations to interact with, this has a direct impact 
on the type of cell–ECM interaction and subsequent cell behavior. 
Undoubtedly, the most characterized feature of the ECM is the 
sequence arginine, glycine, and aspartic acid (RGD) (sometimes 
lengthened with a serine residue to RGDS) often described as 
the cell adhesive peptide (Ruoslahti and Pierschbacher, 1987). 
This sequence is not limited to fibronectin and is incorporated 
into various ECM proteins, such as collagen, vitronectin, and 
osteopontin. We have chosen RGD as the focus of this review 
due to the preferential use in the biomaterials engineering. The 
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FiGURe 1 | The “Triangle” of material/surface interface. The “triangle” of materials refers to variations in chemistry, stiffness, and nanotopography to control 
the interactions with MSC focal adhesions. The three cartoon panels show MSC adhesion to chemical, stiffness, and topographically modified surfaces and how this 
influences stem cell tension and signaling and, hence, subsequent differentiation and phenotype (as will be discussed). The cells are shown to extend filopodia to 
“find” adhesion ligands (shown in red). Binding of the cell through focal adhesions to these ligands creates tension and activates signaling. Chemical functionality 
can be used to fabricate areas of high adhesion (red) or low adhesion (capped in green) for the cells to respond to (the cell is shown in a 3D scaffold). Stiffness will 
affect the cells ability to produce tension through focal adhesions formation (the cell is shown on a planar surface). Topography will present the adhesion ligands to 
the cells in either a favorable or unfavorable manner, again affecting adhesion and subsequent tension and signaling (the cell is shown on a 2D surface).
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aforementioned ECM motifs, while an intrinsic part of ECM 
interactions, are beyond the scope of this article.

Ligand-occupied integrins stimulate formation of focal 
adhesions (FAs) whereby integrin receptors cluster and recruit 
other proteins, including cytoskeletal elements to establish a 
connection between the cell and the ECM. It has been shown 
that FA formation is determined and limited by spacing between 
integrins driven by ECM ligand availability. Cavalcanti-Adam 
demonstrated this by tethering RGD to gold nanoparticles at 
pre-determined distances of either 58 or 108 nm, at 58 nm the 
cells spread and adhere to the particles after 3 h. In comparison, at 
108 nm cell morphology remains rounded after 24 h. The spacing 
of 108 nm was beyond the optimal spacing for integrin gather-
ing; therefore, adhesion, FA formation, and cell spreading were 
prevented (Cavalcanti-Adam et al., 2007). Structurally, the FAs 

act as an internal scaffold, their size is dependent on the number 
of actin fibers available to gather together (a direct result of  
binding ECM).

Direct mechanotransduction is the process by which cells 
turn adherent stimuli into a cellular response (creation of FA 
and maintenance of stress fibers) capable of directly manipu-
lating chromatin, altering gene expression and, therefore, cell 
behavior (Tsimbouri et  al., 2013). Indirect mechanotrans-
duction describes biochemical cascades that are the result 
of cellular adhesion via activation of focal adhesion kinase 
(FAK) and mitogen-activated protein kinase (MAPK) medi-
ated by G-proteins, such as Rac, Cdc42, and Rho (Figure  2). 
Rho belongs to the Ras superfamily and is responsible for the 
regulation of FA and stress fibers. Other G-proteins involved 
in cytoskeleton arrangement and spreading are Rac to control 
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FiGURe 2 | Schematic of MSC adhesion. (A) Binding to material surface by lamellipodia stimulates a signaling cascade. This results in transcription factor 
expression (RUNX2) that stimulates differentiation via other G-proteins and effectors. Polygonal cells adhere to a material at various positions encouraging cell 
spreading and decreasing motility. (B) Polarized cells refer to adhesion at a single point through the same mechanisms described in (A). (C) Increased magnification 
of adhesion event described in (A) whereby a favorable adhesion motif (RGD) is found in high density. (D) Magnification of adhesion event described in (B) whereby 
adhesion motif (RGD) is found in isolation. Also demonstrates non-adhesiveness of a closely related RGE (aspartic acid replaced with glutamic acid) peptide.
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lamellipodia and cdc42 to control filopodia (Burridge and 
 Chrzanowska-Wodnicka, 1996). Indirect mechanotransduction 
is also able to alter cell fate. Extracellular signal-regulated kinase 
(ERK)/MAPK signaling can be a key modulator for both osteo-
genic and adipogenic phenotypes. Osteogenic topographies 
alter expression of ERK at both the genomic (Dalby et al., 2008) 
and proteomic (Xiao et al., 2002) levels in MSCs. ERK signaling 
controls nuclear transcription factors. One such transcription 
factor that has been linked to ERK is RUNX2 (Prusty et  al., 
2002), the osteogenic master gene that is essential for osteo-
blastic differentiation (Figure 2). ERK signaling also links into 
PPARγ, important for adipogenesis (Yang et al., 2008), stat1 and 
3 implicated in induction/reduction of osteogenesis (Petersen 
et al., 2008).

For cells to adhere to a synthetic surface, the material has 
to replicate an ECM motif or absorb ECM proteins to pro-
mote cell attachment, therefore, cell survival, and subsequent 
function.

CHeMiCALLY CONTROLLiNG  
STeM CeLL FATe

Cells respond to chemical information on a surface in various 
ways. Most generally, cell adhesion depends on the hydrophobicity 

of the chemical structures on the surface. Surface hydrophobicity 
controls and directs the adhesion of serum proteins on the surface 
and, hence, the presentation of these proteins chemical groups 
can influence cell behavior. Simple surface functionality (inclu-
sion of alcohols, amines, acids, for example) has been shown to 
influence stem cell fate (Curran et al., 2005, 2006). Remarkably 
simple chemical groups incorporated into a polymer hydrogel 
have been demonstrated to influence stem cell differentiation 
(Benoit et al., 2008) as discussed in more detail below. Surface 
functionalization with single amino acids (Rawsterne et  al., 
2007) showed systematic control of adhesion and spreading of 
fibroblasts that correlated directly with the logP of the surface 
bond amino acids. Since it is still not possible to rationally design 
polymers with chemical functionalities that control stem cell 
behavior, large arrays of polymers onto glass slides have been 
used to identify polymers with differentiation inducing potential 
(Tourniaire et al., 2006; Mei et al., 2010). The most effective ways 
to control cell–surface interactions involves bioconjugation 
with bioactive elements, such as short peptides or cell adhesive 
proteins (typically fibronectin) through techniques, such as soft 
lithography.

Soft lithography includes printing, molding, and embossing. 
It is advantageous as it results in defined and controllable surface 
chemistries (Qin et al., 2010), over a range of substrates, in an 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


5

Anderson et al. Biomaterial Control of Mesenchymal Stem Cells

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2016 | Volume 4 | Article 38

inexpensive manner (Kane et al., 1999). It has been an important 
step in the miniaturization process to create novel technology 
for both health care and biotechnology, e.g., lab on a chip and 
microfluidics. Microcontact printing is particularly relevant to 
biological systems (Gates et al., 2005), where it is possible to create 
adhesive and non-adhesive areas within a substrate to study cell–
surface interaction (Kane et al., 1999). This technique achieves 
spatiotemporal control that allows creation of defined patterns 
of polymers, for example, synthetic polymers or natural proteins, 
such as fibronectin, and has not only been employed to study cell 
survival (Chen et al., 1997) but also cell differentiation. McBeath 
et  al. employed this method to pattern fibronectin of differing 
areas (1024 and 10,000 μm2) stamped onto non-adhesive back-
ground. Confining cells to these adhesive areas showed that mor-
phology and cell spreading was instrumental to differentiation. 
Specifically, MSC spreading on large areas of fibronectin aided 
osteoblastic differentiation, whereas smaller stamps facilitated a 
rounded morphology, encouraging lipid storage, and adipogenic 
phenotype (McBeath et al., 2004). Using this system, they dem-
onstrated that osteogenic phenotype is tension dependent and 
mediated by the RhoA downstream effecter ROCK (McBeath 
et al., 2004). An eloquent update of this study using similar sized 
microcontact printed fibronectin stars and flowers illustrated that 
geometrical features control cell ability to form adhesions and, 
hence, control tension. Specifically, they illustrated sharp points 
to be more osteogenic that rounded curves (Kilian et al., 2010).

Dip pen nanolithography (DPN) is a method by which surface 
chemistry can be applied to a substrate on the nanometer scale 
with precision. Essentially, it involves the use of (an array of) very 
fine atomic force microscopy (AFM) tips, which can be inked 
with a suitable biomolecule, and then brought into contact with 
a surface where the ink is transferred to a nanoscale feature on 
the surface (Ginger et al., 2004). Surface chemistry can be defined 
by the user and encompasses organic molecules (thiols, amines, 
peptides, and oligonucleotides), polymers, and metal ions. DPN 
can be used in biomaterials engineering whereby functional 
molecules are printed in such an arrangement that stem cells can 
react and respond to. It has been shown that certain functional 
molecules can illicit distinct responses in MSC behavior (Curran 
et al., 2005, 2006). Curran et al. set out to optimize the spacing and 
presentation of dots of “chemistry” to manipulate MSC behavior 
by creating patterns of –CH3, –NH2, –CO, and –CO2H of 70 nm 
width in square or hexagonal array with varying distance of pitch. 
They found that functionalized –CH3 surface maintained stem 
cell markers in comparison to tissue culture plastic and gold 
surfaces. They also showed that NH2 dots can increase adhesion 
and osteogenesis (Curran et al., 2010).

Polymer pen nanolithography (PPL) is a “direct write” technique 
that uses soft elastomeric tip arrays to deliver inks/materials to the 
surface. PPL effectively combines the feature size control of DPN 
with large area capability of contact printing. The feature size also 
can be regulated by the amount of force applied to the elastomeric 
pen arrays and tip-substrate contact time. Mirkin et  al. (Giam 
et al., 2012) aimed to define the relationship between feature size 
of a fibronectin coated area and stem cell fate. Fibronectin, pat-
terned onto the substrate via PPL, direct the MSC differentiation 
toward an osteogenic pathway. In addition, Fibronectin substrate 

with nanoscale features (300 nm) are more effective in inducing 
osteogenic behavior than microscale feature size (1 μm).

An alternative method to incorporate a chemical component 
to a material is through the use of nanofibers. Nanofibers can be 
created in a variety of methods; phase separation, electrospin-
ning, and self assembly, each with their own advantages and 
disadvantages depending on the application (Rim et al., 2013). 
The fibers can be made from a myriad of polymers or natural 
proteins and can be further modified by the addition of bioactive 
molecules. For example, Frith et al. conjugated RGD peptides to 
self-assembled poly(ethylene oxide) copolymers (PS-PEO) (Frith 
et al., 2012). Changing the ratio of the copolymer and polystyrene 
homopolymer creates defined spacing between PEO domains (34, 
44, 50, and 62 nm) to which the functional group are tethered to, 
then seeded with MSCs. They found that spacing of 34 and 44 nm 
encouraged cell spreading, the cells formed larger (super mature) 
adhesions and when cultured in osteogenic media, promoted 
increase in alkaline phosphatase (ALP) expression. In comparison 
at 50 and 62 nm, cells remained rounded and under adipogenic 
conditions, oil red O staining was observed (Frith et al., 2012). 
That cells remained rounded until spacing was reduced to 44 nm 
might be that a critical size was needed to switch from adipogenic 
to osteogenic differentiation (i.e., a certain number of integrin 
need to gather) or from differences in affinity of RGD group used 
(e.g., low affinity linear RGD compared to high affinity cyclic 
RGD) (Kilian and Mrksich, 2012).

Using the electrospinning technique, it is possible to create 
composite fibers, i.e., polymer and bioactive compounds, such as 
gelatin (Zhang et al., 2005), hydroxyapatite (Lee et al., 2010), and 
demineralized bone powder (Ko et al., 2008). Ko et al. utilized 
the material not only as an in vitro culture method but also an 
in vivo scaffold that remained in a mouse model for 12 weeks (Ko 
et al., 2008). While capable of acting as a scaffold, cell infiltration 
is a concern. Bone formation was limited to the periphery of the 
construct, while the center was subject to hypoxic conditions. 
Porosity, therefore, remains an issue which, for future applica-
tions, must be balanced with the load-bearing properties.

The discovery of using simple chemical functional groups that 
direct MSC behavior by effectively controlling their differentiation 
potentials could lead to production of simple, cheap biomaterials 
for applications in regenerative medicine. Anseth et al., reported 
in 2008, the introduction of a small set of functional groups 
(with different charges, hydrophobicity) into PEG hydrogels and 
showed that they could induce MSC differentiation to different 
lineages (Benoit et al., 2008). These functional groups included 
–NH2, t-butyl, phosphate, –F, and –COOH. Depending on their 
charge and hydrophobicity, different MSC differentiation poten-
tial was observed, i.e., hydrophobic functional group like t-butyl 
induced adipogenic phenotype, while charged functional group 
(phosphate) promote osteogenic lineage and acid functionalized 
hydrogels demonstrated chondrogenesis.

Simple chemical groups are sufficient to influence MSC dif-
ferentiation. Most likely these groups recruit and bind serum 
proteins in different ways thereby controlling presentation of 
adhesive groups. It will be of tremendous use if chemical func-
tionality could be introduced in 3D scaffolds with precise spatial 
control. Ongoing developments in nanofabrication (both top 
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FiGURe 3 | MSC response to topographical features. (A) EBL nanopatterned structures result in changes in gene expression. Those that exhibited “disorder” 
were found to stimulate osteogenesis. Reprinted (adapted) from Nature, copyright (2007) (Dalby et al., 2007). (B) i. Titanium was anodized to create a topography of 
15 nm pillars. ii. These pillars were found to be osteoinductive by immunostaining for osteopontin and osteocalcin (green). Reprinted (adapted) from Acta 
Biomaterilia, copyright (2009) (Sjöström et al., 2009). (C) Creation of twisted nanoribbons at a periodicity similar to that of collagen (ii) resulted in osteogenic 
phenotype. (iii) Reprinted (adapted) from ACS Nano, copyright (2013) (Das et al., 2013). (D) MSCs can be differentiated toward a neural lineage using nanoscale 
channels, characterized by increasing MAP2 expression. Reprinted (adapted) from Experimental Cell Research, copyright (2007) (Yim et al., 2007).
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down and bottom up) are likely to contribute significantly in the 
next decades.

CeLL ReSPONSe TO TOPOGRAPHY

Cell interactions with topography were first noted by Harrison 
in 1911. The term contact guidance was later coined in the 1950s 
when it was reported that altering the appearance of a cell’s 
surroundings, in this case, density of fibrin networks resulted 
in changes in morphology of heart fibroblasts (Harrison, 1911; 
Weiss and Garber, 1952). Research in the area was popularized 
by Curtis and Wilkinson who applied development in micro-
electronics miniaturization to cell cultures through the 1980s 
and onwards (Wilkinson, 2004; Anderson, 2015). Thus, the term 
has long been employed to describe conformation to topogra-
phy (Dalby, 2007). In vivo, the ECM topographical features are 
native to matrix infrastructure, their conformation provides the 
cells with behavioral cues. In vitro, it has been proven that the 
topographical cues influence stem cell behavior [altering gene 
expression that results in changes to adhesion, proliferation, and 
cytoskeletal conformation (Putnam et  al., 2001; Dalby, 2007)], 
and it has been the work of many scientists to manipulate this 
interaction.

It has only recently been established that cells interact with 
their nanoscale environment, i.e., features much smaller than 

the cells themselves (Curtis et  al., 2001; Dalby et  al., 2002a; 
Gallagher et al., 2002). With the evolution of top-down lithog-
raphy techniques, such as electron beam lithography (EBL) and 
aforementioned DPN (Curran et al., 2010), it is now possible to 
pattern areas large enough for cell experimentation (mm2–cm2) 
with features down to 10 nm in size (Gadegaard et al., 2003a). 
For a number of years, two separate approaches have dominated 
in topographical surface patterning: highly ordered patterns with 
sub-nm positioning error and random sub-μm roughened sub-
strates. Ordered materials, typically generated by EBL, produce 
surfaces with low cell adhesion. By contrast, random sub-μm 
roughening can modify MSC differentiation relative to planar 
controls (Leven et  al., 2004). Other topographical fabrication 
techniques include photolithography (Clark et  al., 1987, 1990) 
and polymer demixing (Dalby et al., 2002b).

Highly controlled-disorder patterns have been generated 
with EBL. In these systems, random and highly ordered cell 
environments were mimicked using 120 nm diameter (100 nm 
deep) pits with random placement of the features or fixed 300 nm 
centre–centre spacing in a square pattern. MSC growth substrates 
were also fabricated with deliberately disordered pits in a square 
arrangement (±20 and ±50  nm offset). While planar control, 
true square, and random substrates produced only negligible dif-
ferentiation, bone differentiation was observed on the disordered 
patterns (Figure 3A) (Dalby et al., 2007) with similar efficiency 
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to that obtained following soluble chemical (dexamethasone and 
ascorbate) treatment. Disordered systems can also be applied to 
other materials, such as titanium substrates that are of value clini-
cally due to load-bearing properties (Sjöström et al., 2009, 2013). 
Anodising titanium using through mask templating with Ps-b-
P4VP allows precision patterning in bulk for both 2D and 3D 
designs. Patterning pillars to a height of 15 nm is one such design 
that was found to be osteoinductive (Figure  3B) (McNamara 
et al., 2011).

Until recently, it has been considered that high precision 
manufacture (the top-down approach) is a requirement to gain 
precise control of the MSCs at the nanolevel. Nanofabrication 
engineers constantly strive to increase the complexity of designs 
that will be important for enhanced understanding of cell 
behavior at the nanoscale. Such criteria are readily met by EBL 
although the demand for scalability from current research level 
to that necessary in a clinical device (tens of square centimenter) 
may be a limitation of EBL due to the serial manner in which the 
patterns are produced.

Improving levels of order and disorder are becoming achiev-
able with bottom-up methods, such as polymer phase separation 
(Affrossman et  al., 2000), colloidal lithography (Denis et  al., 
2002), block copolymer lithography (Hur and Kim, 2002), and 
micelle lithography (Huang et al., 2009), where larger areas can 
be fabricated more simply. Block co-polymer micelles can, in fact, 
be generated with similar scale and level of order to the ±50 nm 
error EBL-fabricated pits (Krishnamoorthy et al., 2006) and have 
been shown to have osteogenic effects (Sjöström et al., 2009, 2012, 
2013; McNamara et al., 2011; Maclaine et al., 2012). Furthermore, 
control of order to reduce any offset (rigid order of pitted features) 
has been shown to provide enhanced MSC growth that could 
be important, for example, provision of large numbers of high-
quality stem cells (McMurray et al., 2011; Tsimbouri et al., 2012). 
The technology also appears to apply to other stem cell types, 
notably with ESCs where control of differentiation and growth 
have also been noted (Chen et al., 2012; Ji et al., 2012; Kingham 
et al., 2013; Kong et al., 2013).

One of the most attractive features of nanostructured surfaces 
as a tool for cell engineering is simplicity of mass production. Use 
of nickel shims (negative copies of the master structures made 
via electroplating) for embossing and injection molding allows 
high-throughput (incorporated within existing production lines) 
manufacture, with down to 5 nm fidelity, in a wide range of ther-
moplastics that could be used directly for cell culture (Gadegaard 
et al., 2003b).

Fabrication methods are ever evolving and engineering 
with complexity, creativity and replicating an aspect of nature. 
Das et  al., inspired by the natural conformation of collagen, 
synthetically created Silica nanoribbons to mimic the in vivo cell– 
surface interaction to differentiate MSCs. The nanoribbons were 
synthesized using Gemini type amphiphiles to create two chiral 
nanoribbons with differing periodicities (measured as D) with 
either helical D = 100 nm (Figure 3C i) or twisted D = 63 nm 
confirmation (Figure 3C ii). MSC osteoblastic differentiation was 
upregulated when seeded on the twisted fibrils (Figure  3C iii) 
(Das et al., 2013). Notably, 63 nm periodicity is close to the 67 nm 

repeat pattern of collagen and, thus, is more representative of the 
natural bone environment noting that bone is >90% collagen 
(Dalby et al., 2014).

There are further illustrations that topography has been 
utilized to tune MSC differentiation beyond the conventional 
lineage repertoire – toward a neural lineage. The creation of chan-
nels prevents cell spreading and provides directionality. MSC 
expression of neuronal marker microtubule-associated protein 2 
(MAP2) increased in response to nanoscale channels in compari-
son to microscale (Figure 3D) (Yim et al., 2007). Exploring the 
transition from microscale to nanoscale reveals the differential 
behavior of cells in response to scale of their environment.

ALTeRATiONS iN MATRiX STiFFNeSS

Stiffness of the cell’s environment is relevant to all stages of devel-
opment, from embryogenesis (Pouille et al., 2009) to terminal cell 
differentiation (DuFort et al., 2011). Changes in tissue stiffness 
can be indicative in certain disease states. For example, breast 
cancer tumors are more rigid than the surrounding tissue due to 
clusters of collagen fibrils, which increases matrix stiffness. As 
shown experimentally, mammary epithelial cells that have been 
cultured on compliant matrices behave normally whereas those 
cultured on stiffer materials invade the basement membrane 
disrupting tissue formation and promoting malignancy (Paszek 
et  al., 2005; Wei et  al., 2015). Therefore, alterations in stiffness 
have a direct result on phenotype (as discussed in Cell–Surface 
Interaction).

Hydrogels are the principal tool for investigating cell response 
to stiffness in  vitro. They can be synthesized from an array of 
polymers (including biological polymers and peptides) where the 
degree of crosslinking can be tailored to alter stiffness properties 
as desired by the user. Due to their properties of compliance and 
high hydration, they can be utilized to mimic natural tissues. 
Mimicking the stiffness of a particular tissue type can guide 
cellular behavior toward a particular phenotype (Discher et al., 
2005, 2009). It is further advantageous as hydrogels can be uti-
lized as a delivery system for functional molecules. For example, 
using hydrogels for delivery of dexamethasone (Nuttelman et al., 
2006), a synthetic corticosteroid that increases ALP secretion and 
bone morphogenetic protein (BMP), a signaling cytokine has 
been shown to drive osteoblast differentiation (Kim et al., 2007; 
Rahman et al., 2015). Furthermore, it is now possible to create 
hydrogel arrays that can test cell response to mechanical changes 
in a high-throughput manner (Gobaa et al., 2011).

In 2006, Engler and Discher produced a seminal study utiliz-
ing hydrogels to demonstrate that MSCs were responsive to a 
range of substrate stiffness, which in turn influenced differentia-
tion. Three different substrate stiffnesses measuring 0.1–1, 8–17, 
and 25–40 kPa that represent Ebrain, Emuscle, and Ebone, respectively 
(where E is the elastic modulus), were compared. It was noted that 
cell morphology was altered in response to these different moduli 
and cells began to take the phenotype of the native cells of those 
tissues (Figure 4A) (Engler et al., 2006).

In 2010, Gilbert showed that a pre-culture of muscle stem 
cells (MuSC) on pliant materials aided self-renewal of MuSC 
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in  vivo (Gilbert et  al., 2010); therefore, in  vitro culture condi-
tions are central to cell behavior in vivo. This has been described 
as “mechanical memory” and has recently been tested by Yang 
et al. MSCs were cultured on stiff substrates for differing times 
prior to seeding on a soft substrate (Figure 4B i), it was shown 
that there is a correlation between duration of pre-treatment and 
osteogenic phenotype. Those cells cultured the longest on stiff 
surface prior to transfer to a soft surface had a larger proportion 
of ALP positive cells and increase in Runx2 expression. With 
10  days pre-treatment, osteogenic phenotype was maintained 
without the need for constant mechanical stimulation (Figure 4B 
ii–iv). Furthermore, this can be done in situ by culturing on light 
responsive hydrogels, after irradiation at 365 nm for 360 s the 
hydrogel changes from stiff (~10  kPa) to soft (~2  kPa) (Yang 
et al., 2014).

It is known that cell spreading and morphology is important 
for differentiation (Matsuoka et al., 2013). Khetan et al. inves-
tigated this using either permissive (degradable) or  inhibitory 
 (undegradable) hydrogels. These gels are phototunable, when 
exposed to light the gels are degraded allowing cells to remodel 
and deform the matrix. Degradable hydrogels encouraged 
spreading of MSCs and, therefore, osteogenesis, whereas restric-
tion of spreading by crosslinked hydrogels maintained cellular 
circularity and, therefore, stimulated adipogenesis (Khetan et al., 
2013). But is morphology the defining factor? Huebsch et  al. 
confined murine MSC to pores in RGD modified hydrogels and, 
therefore, morphology was maintained rounded, traditionally a 
prerequisite for adipogenesis. Encapsulated cells still responded 
to matrix elasticity as 22 kPa stimulated osteogenesis even with 
rounded morphology. This was related to traction (the force 
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generated by cytoskeletal pulling on the substrate) the cells were 
able to deform the substrate to gather RGD ligands, creating trac-
tion or high intracellular adhesion. Taken together, the results 
show that the presentation of ligands to the cell is crucial for crea-
tion of adhesion and subsequent traction generated by matrix 
reorganization is central to driving the osteogenic phenotype 
(Huebsch et al., 2010).

Stiffness is assumed to define the bulk properties of a material. 
However, different materials of comparable Young’s Moduli can 
illicit differing responses in MSCs, for example, PDMS and PAAm 
gels as depicted in a study by Trappmann et al. (2012). Here, MSCs 
were seeded on PAAm at a range of elasticities similar to that 
Engler et al. demonstrated in 2006 (Engler et al., 2006). PAAm 
also followed the same trend, i.e., osteogenic phenotype at a high 
elastic moduli (stiff), adipogenic phenotype at low elastic moduli 
(soft). Conversely, PDMS at the same range of moduli showed no 
trend (Figure 4C). Further experimentation revealed that both 
materials had a comparable bulk stiffness, however, topography 
(pore size) was altered. They argue that ECM adsorption differed 
with topography as the ECM dictated the number of anchoring 
points available to the ECM. Cells, therefore, respond to the 
mechanical properties of the ECM rather than the bulk stiffness 
of the substrate. However, in a more recent study, Wen et al. argue 
that differentiation occurs regardless of protein tethering and 
that stiffness is the deciding factor. Adjusting the crosslinking 
density of their hydrogels to alter pore size for each stiffness, 
suggested that pore size had no effect on the differentiation of 
cells; as pore size varies, phenotype is maintained (Figure 4D). 
In short, it is cell deformation of the material that is driving the 
process (Wen et al., 2014).

HOw DO CeLLS PROCeSS THiS 
MATeRiALS iNFORMATiON? THe 
CeNTRAL ROLe OF ADHeSiON

In his 2005 commentary, Ingber discusses that tissue organiza-
tion must be controlled by other factors in addition to soluble 
morphogens and local tissue factors. He explains how bio-
chemical reductionism tends to overlook factors, such as ten-
sion, and instead focuses on genes and gene products (Ingber, 
2005). While we consider his ideas of tensegrity (Ingber, 1993) 
to be beyond the scope of this article, Ingber’s tensegrity 
model shows that the adhesions are the “tent-pegs” to which 
the cellular guy ropes (the cytoskeleton) are attached to give 
the cell the pre-stress required for stability, development of 
tension and possibly tensegrity. Through this mechanism, 
tension directly links to cell proliferation, functionalities, and 
differentiation.

Changing environmental factors culminate in relatively 
similar cellular detection, integrin binding, and response. 
However, there is differing cellular response to the microscale 
in comparison to the nanoscale. At the microscale, it is easy to 
envisage how cells are forced to contact guide (align) by features 
of a similar height to themselves. At the nanoscale, the cell will be 
guided one adhesion at a time. As adhesive proteins encounter 

a nanoscale cue (e.g., a nanogroove), the cells adhesions will 
remodel along the cue, reorganizing the cytoskeleton and direc-
tion of tension applied to the adhesion (Teixeira et  al., 2006). 
Adhesion to a material begins with the rearrangement of actin 
filament to form microspikes, or filopodia, that have been shown 
to interact with features as small as 10 nm (Dalby et al., 2004). 
This contracture will gather integrins forming a large adhesion 
and will group actin filaments into stress fibers, a cell activity 
important for cell survival and exquisitely modulated by force 
(Riveline et al., 2001; Jiang et al., 2003). Changes in chemistry, 
stiffness, and topography influence the size and number of cell 
adhesions. Furthermore, it seems likely that there are critical 
adhesion sizes for cells to be able to gather spatial information 
through filopodial extension (Arnold et  al., 2008). Adhesions 
can be classified by size and include focal complexes (<2  µm 
long, transient, involved in motility) FAs (>2 µm long, stable, 
formed during cell maturation and ECM production) and super 
mature adhesions (SMAs that are very large >5 µm long). The 
currently used classification of SMAs is really an evolution of 
the classical “dot” and “dash” adhesions described by Bershadsky 
et al. (1985).

The study of FAs appears to demonstrate that alterations in 
the size and number of adhesions are important for MSC dif-
ferentiation. As has been discussed, MSCs differentiate to bone 
efficiently on a disordered nanoscale pattern (Dalby et al., 2007). 
Investigation of adhesion size has demonstrated that on the 
osteogenic pattern much larger adhesions were generated by the 
MSCs (Dalby et al., 2007). It was postulated by the Spatz group 
that the disordered nature allowed adhesive points to group 
closer together [within the critical 70  nm range described by 
Cavalcanti-Adam (Albelda and Buck, 1990; Cavalcanti-Adam 
et  al., 2008)] and, thus, facilitate integrin gathering (Kingham 
et al., 2013) and the formation of SMAs (Biggs et al., 2008, 2009) 
(> 5 µm long). It is likely that these larger adhesions are stabilised 
by scaffolding proteins such as RACK1 (Buensuceso et al., 2001; 
Dalby et al., 2008), decreasing cell motility, but allowing forma-
tion of cytoskeletal tension (Balaban et al., 2001; Shemesh et al., 
2005) important to MSC fate culminating in large morphology 
and osteogenic phenotype (Curtis et  al., 2001; Putnam et  al., 
2001; Wen et al., 2014).

There is a variation in size of mature cell types generated 
from MSCs (small, round adipocyte to large orthogonal 
appearance of the osteoblast). We can postulate a role for 
the natural environment of the stem cell in defining cell 
morphology. This environmental regulation of adhesion 
size, cytoskeletal tension, and overall cell morphology will 
have important roles in the induction of cell differentiation, 
which importantly can be dictated by designing the material 
interface. The ability to control cell fate through presentation 
of chemical functionality (i.e., promoting the binding of 
transmembrane integrins to ECM proteins or peptide ligands) 
is well understood. The roles of stiffness and topographical 
interventions are less intuitive. With regard to material 
stiffness, it has been observed that FA size is increased on 
materials of higher stiffness, which enhances the ability of 
a cell to form a contractile cytoskeleton (Wen et  al., 2014; 
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Yang et al., 2014). These cytoskeletal changes determine cell 
tension, morphology, and fate.

A DYNAMiC FUTURe?

All the examples that have been discussed thus far have been 
“static” in nature, i.e., a single topography or chemical functional-
ity is used to perform a specific role (self-renewal or differentia-
tion). However, the stem cell niche is dynamic, regulating growth 
and differentiation on demand. Thus, it makes sense that next- 
generation materials should also have dynamic aspects, in  
particular to support self-renewal and differentiation with spa-
tiotemporal control. Indeed, stimuli-responsive surfaces have 
attracted significant scientific interest in recent years in this 
context. Stimuli, such as light (Ohmuro-Matsuyama and Tatsu, 
2008; Petersen et al., 2008; Liu et al., 2009; Wirkner et al., 2011a), 
enzymes (Todd et  al., 2007; Zelzer et  al., 2012), temperature 
(Yamato et al., 2002), and electric fields (Yeo et al., 2003), have 
been investigated. These external stimuli should ideally be cyto-
compatible and bioorthogonal in order for them to be utilized in 
a cellular context.

Light has been applied to control cell adhesion, typically 
by changing the chemical functionality or presentation of 
RGD molecules. In 2008, Del Campo et al. demonstrated the 
modification of RGD with a photoresponsive caging group on 
the carboxylic acid side chain of aspartic acid. Prior to irradia-
tion, the photocaging group prevents integrin recognition and 
consequent adhesion. In response to light, the caging group 
is released allowing for on-demand adhesion. They concluded 
that this system had many applications and suggested develop-
ing patterned areas of photoactivity (Petersen et al., 2008). In 
a follow-up study, they modified the photoliable element to 
include a 4,5-dialkoxy 1-(2-nitrophenyl) ethyl that was incor-
porated in between the amine terminated surfaces and RGD 
peptide. The photoliable element could be irradiated to allow 
adhesion and in addition they also patterned the substrate 
demonstrating specific area of HUVEC (human umbilical vein 
endothelial cell) attachment (Wirkner et  al., 2011b). One of 
the main advantages of using light as a method of controlling 
adhesion is that it can be applied locally, e.g., using photo-
masks. This has enabled patterning of a cell culture dish with 
spatiotemporal control permitting adhesion in defined areas on 
demand. The examples that have been discussed so far relate 
to activation/deactivation by making use of one-off breaking 
of chemical bonds. In order to produce a reversible system, 
Jiang et al. used azobenzene as a conformational switch to alter 
the presentation of RGD ligands. Irradiation at 340–380 or 
450–490  nm resulted in trans-cis or cis-trans isomerization, 
respectively, either promoting adhesion or preventing cell 
adhesion to substrate (Liu et al., 2009).

Photochemical control can also be applied in  three- 
dimensional systems. In 2009, Anseth et al. utilized copper free 
click chemistry to synthesize hydrogels with thiol-ene groups 
that could be photocoupled in order to pattern biochemical 
functionalities at user-defined locations. They showed the 
surface to maintain a population of 3T3 fibroblast cells 

(DeForest  et  al., 2009). Later, DeForest and Tirrell improved 
such a system creating reversible patterning of bioactive ECM 
protein (i.e., vitronectin) inside a three-dimensional polymeric 
hydrogel scaffold. In doing so, they succeeded in differentiating 
hMSCs to osteoblasts.

Mosiewicz et al. employed both light and enzymatic control 
of substrate. Caged FXIIIa (transglutaminase factor XIII) 
was covalently incorporated into a PEG hydrogel. FXIIIa 
enzyme catalyzes reactions between ε-amine of lysine with 
γ-carboxamide residue of glutamine. Upon exposure to light, 
the caged substrate in the hydrogel activated and FXIIIa cata-
lyzed reaction of the substrate with counter-reactive substrate 
of biomolecule in a covalent fashion within the hydrogel 
matrix. Through this photopatterning of hydrogel with desired 
biomolecules 3D manipulation of MSCs within hydrogel 
matrix can be achieved spatiotemporarily (Mosiewicz et  al., 
2013).

Electric field has been used as a stimulus by Mrksich et  al. 
Incorporating an electroactive moiety, O-silyl hydroquinone 
on the surface with RGD at a defined electric field (550 mV), 
O-silyl hydroquinone undergoes electrochemical oxidation to 
form benzoquinone, thereby hydrolyzing the silyl ether that 
causes the selective release of RGD ligand from the surface  
(Yeo et al., 2003).

Stimuli such as light and electric field are unsuitable for 
some biological applications. Enzymes, however, provide an 
alternative. Enzymes act as a benign physiological trigger with 
the potential advantage of selectivity, specificity, biocompat-
ibility, and dynamicity, and perform under physiological 
environment (Hedstrom, 2010). Enzymes are potentially an 
effective alternative to trigger a chemical change in the surface 
that can affect MSC behavior. Until now, there are very few 
examples of enzyme responsive surfaces in the literature. To 
create such a platform, Todd et al. utilized solid phase peptide 
synthesis (SPPS) to tether amino acids to a glass coverslip. The 
advantage of SPPS is that any sequence can be synthesized 
depending on the application. Todd et al. developed a sequence 
Fmoc-A↓ARGD-Glass that is cleavable by the enzyme elastase. 
The full sequence, Fmoc capped, prevents cell adhesion to 
RGD. Application of the enzyme cleaves the sequence at the 
dialanine linker allowing attachment to RGD. This system is 
biocompatible and easily controlled (Todd et al., 2007; Zelzer 
et al., 2012).

SUMMARY

At present, these materials approaches have characterized the 
nature of MSC adhesion and subsequent behavior. What is lack-
ing is an optimal system that provides the quantity of stem cells 
required for a TE construct. Furthermore, material use as in vivo 
scaffolds is still not fully exploitable due to limited invasion, 
porosity, vascularization, and load-bearing properties that are all 
challenges that have still to be optimally addressed. The key to 
delivery of regenerative therapies lies in the development of stem 
cell culture platforms where stem cells can grow and differentiate 
into different phenotypes for incorporation into TE scaffolds 
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supported by biomaterials. Materials have been used to dem-
onstrate basic niche functions. However, the current materials 
strategies, although providing new insights into stem cell biology, 
especially, MSC behavior, are static technologies and have certain 
limitations. The materials available to date that target continued 
self-renewal are useful for promoting growth but they are poor 
in differentiation and vice versa. The immediate challenge is to 
fabricate niche-mimicking biomaterials, i.e., a material system 
where MSCs will be cultured as a growing stem cell population 
and when triggered (either user induced or autonomously, by 
cell secreted factors), will switch to a phenotype of choice, on 
demand.
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