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The implant used in spinal fusion procedures is an essential component to achieving 
successful arthrodesis. At the cellular level, the implant impacts healing and fusion 
through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and 
proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; 
third, the osteoid matrix produced by the osteoblasts needs to generate new bone 
tissue, thoroughly integrating the implant with the vertebrate above and below. Previous 
research has demonstrated that microtextured titanium is advantageous over smooth 
titanium and PEEK implants for both promoting osteogenic differentiation and integrating 
with host bone tissue; however, no investigation to date has examined the early mor-
phology and migration of MSCs on these surfaces. This study details cell spreading and 
morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, 
differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, 
on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth 
PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces 
outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface 
presented the most favorable overall results, demonstrating the random migration 
needed to efficiently cover a surface in addition to morphologies consistent with osteo-
blasts and preosteoblasts.

Keywords: cell–material interactions, titanium (alloys), PeeK, spinal implant, regenerative medicine

inTrODUcTiOn

Spinal fusion surgery combines (or fuses) two or more vertebrae together to reduce discomfort 
by immobilizing a painful vertebral motion segment and restoring spinal stability (Williams et al., 
2005; Nouh, 2012; Obrigkeit et al., 2012). Following surgery, it can take 6–12 months for the fusion 
process to occur (Obrigkeit et  al., 2012). During the fusion process, implant osseointegration is 
critical (Olivares-Navarrete et al., 2010).

Autografts and allografts are often viewed as the “gold standard” in many biomedical applica-
tions; however, bone material donations have complications. Specifically for spinal fusion cages, 
the issues include an unpredictable nature due to an inconsistency in mechanical strength, 
machining challenges, and migration issues (Rihn et al., 2009; Obrigkeit et al., 2012). Titanium and 
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polyetheretherketone (PEEK) implants are among the most com-
mon alternatives to bone (Abernathie and Pfeiffer, 2011; Cabraja 
et al., 2012; Obrigkeit et al., 2012).

Cell–material interactions are of particular interest in bio-
medical implants because the initial contact between the cells 
and the biomaterial can define the success of the device. As part 
of the tissue microenvironment presented to the cells, the surface 
morphology and chosen material are integral in this interaction 
and the cellular response  –  adhesion, spreading, migration, 
proliferation, and differentiation – ultimately contributing to the 
fate of the cells and tissue formation (Bächle and Kohal, 2004; 
Anselme and Bigerelle, 2005; Zhao et  al., 2011). The surface 
features on the fusion host environment have key roles in the 
fusion process.

Textured surface features are of specific interest because 
cells interact with the extracellular environment through 
micro- (e.g., organelles) and nanoscale (e.g., protein com-
plexes, such as focal adhesions). When a surface demonstrates 
a characteristic dimension on the same order of magnitude as 
protein complexes up to organelles, the response of the cell 
can be modulated through a myriad of intracellular signal-
ing and mechanotransduction events, leading to altered gene 
transcription and potentially regulating the differentiation of 
stem and progenitor cells (Anselme et al., 2010; Ozdemir et al., 
2013; Higgins et al., 2015). We believe that the presentation of 
textured surfaces to cells is a non-toxic, material-independent 
option to induce beneficial cellular responses for medical 
devices and serve as a tool to help design more therapeutically 
effective biomedical implants.

This research investigates the effects of spinal fusion cage 
surface morphology on initial cellular responses. Adhesion, 
spreading, migration, proliferation, and differentiation are 
important phenotypic considerations. This article directly 
addresses spreading and migration through morphology, speed of 
movement, differentiation markers, and directionality data, and 
indirectly suggests potential differentiation outcomes through 
circularity and cell spreading (via aspect ratio) measurements. 
Surface characteristics influence numerous fields, including 
proliferation, gene expression activity, phenotype commitment, 
cell adherence, protein adsorption, and cell shape (Deligianni 
et al., 2001; Olivares-Navarrete et al., 2010). These cell–material 
interactions are significant toward discerning the potential for 
bacterial growth on the implant and in turn suggest the chance 
for a biomaterial-associated infection (BAI).

The term “race for the surface” is used to describe competition 
at the implant surface between microbial adhesion and tissue inte-
gration (Gristina, 1987; Subbiahdoss et al., 2009; Caraca-Huber 
et al., 2012). The goal is to have tissue cells win the race against 
bacteria to prevent biofilm formation, which obstructs cellular 
functions and healthy tissue formation (Subbiahdoss et al., 2009). 
Additional complications caused by implant-associated infec-
tions include: BAIs are very difficult to manage and often require 
removal of the implant (Gorth et al., 2012); treatment costs are 
overwhelmingly expensive (Kurtz et al., 2008); and BAIs are very 
painful and debilitating to patients. For these reasons and as 
the number of implantations continue to rise, gaining a better 
understanding of how cells interact with biomaterial surfaces is 

critical. The sizes of the surface-fouling microorganisms are typi-
cally 1–2 μm (Graham and Cady, 2014), characteristically have 
less deformable membranes (compared to eukaryotic cells), and 
present distinctive structures (Anselme et  al., 2010); therefore, 
using textured biomaterial surfaces may be an advantageous 
method to disrupt adhesion and mobility mechanisms of bacteria 
and limit biofilm formation.

In this article, increased cell spreading and random migration 
suggest better surface coverage and movement, which could help 
reduce the potential of BAIs. The cell aspect ratio and circularity 
data provide information about projected phenotype lineage 
commitment based on published literature investigating cell 
differentiation on surfaces similar to those presented (Matsuoka 
et al., 2013), and the differentiation data presented support these 
previous findings. This information will suggest effects of surface 
features presented to the cell based on common spinal fusion cage 
materials: textured rough titanium, smooth titanium, and PEEK. 
We hypothesize that the acid-etched endoskeleton surface will 
lead to cellular responses indicative of successful spinal implants 
by demonstrating cellular responses that suggest microtopogra-
phy may be a possible key parameter in preventing biofilm forma-
tion. This research enhances the current understanding of cellular 
responses to biomaterials, detailed toward spinal fusion research, 
by giving insight into cellular responses as correlated with surface 
morphology of common biomaterials for spinal implants. In turn, 
this research could aid in improving the functional integrity and 
performance of spinal fusion devices.

MaTerials anD MeThODs

substrate Preparation
Substrates were 15-mm diameter disks machined from titanium 
alloy (Ti6Al4V ELI per ASTM F136) and PEEK (ASTM F2026) to 
create relatively smooth surfaces (Titan Spine, LLC, Mequon, WI, 
USA). To create the roughened surface texture, titanium disks 
were treated with the proprietary endoskeleton acid-etch process. 
Figure 1 presents the surface topographies of PEEK, smooth tita-
nium, and acid-etched titanium (Matteson et al., 2015). All disks 
were sterilized by immersion in 70% ethanol for 30 min (Kummer 
et al., 2013; Vidal et al., 2013; Hirano et al., 2014) and rinsed with 
1× phosphate-buffered saline (PBS) prior to use.

cell culture
Human mesenchymal stem cells (MSCs) were obtained from 
Lonza and were grown to appropriate numbers in a humidified 
incubator at 37°C and 5% CO2, and then seeded onto surfaces at 
1000 cells/cm2 for early morphology and early migration experi-
ments. A lower seeding value, compared with the typical seeding 
value of 10000 cells/cm2, was chosen in order to be able to better 
characterize the morphology, spreading, and migration events. 
At the time of seeding, the MSCs were at passage 6. The MSCs 
were maintained in a basal growth media for all early morphology 
and early migration experiments. The basal growth media con-
sisted of alpha modified MEM (Life Technologies, Carlsbad, CA, 
USA) supplemented with 10% fetal bovine serum (FBS, Atlanta 
Biologics, Atlanta, GA, USA) and 1% penicillin/streptomycin 
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FigUre 1 | surface morphology of PeeK and titanium samples. (a) PEEK, (B) smooth titanium, and (c) rough, acid-etched endoskeleton surface.
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(Life Technologies, Carlsbad, CA, USA). The media was changed 
every 2  days during the culture period. For the differentiation 
studies, samples were seeded at 10000  cells/cm2 with a culture 
period of 10  days. Alpha-modified MEM basal growth media 
was switched to osteogenic media 12 h after seeding. Osteogenic 
media consisted of alpha modified MEM (Life Technologies, 
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum 
(FBS, Atlanta Biologics, Atlanta, GA, USA), 1% penicillin/
streptomycin (Life Technologies, Carlsbad, CA, USA), 100-nM 
dexamethasone (Sigma-Aldrich, St. Louis, MO, USA), 50 μg/mL 
ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA), and 10-mM 
beta-glycerophosphate (Sigma-Aldrich, St. Louis, MO, USA).

early Morphology
Mesenchymal stem cells on surfaces used for early morphology 
were stained with the DiI derivative, DiR (Life Technologies, 
Carlsbad, CA, USA) to fluorescently label the cell membrane. 
The staining was carried out by incubating the MSCs in a 
solution of 0.5% DiR in basal media, from a stock DiR solu-
tion concentration of 1  mg/mL in ethanol, for 30  min in a 
humidified incubator at 37°C. The samples were maintained 
in the incubator and removed at 2, 6, and 24  h to acquire 
images. At each time point, a minimum of 31 cells was imaged 
for analysis for each sample. Due to the depth of the surface, 
z-stacks were acquired and processed using the extended depth 
of field plugin for ImageJ. The subsequent images were analyzed 
with MATLAB to create image masks and with CellProfiler to 
quantify cell morphology. A minimum n = 30 was used for each  
sample.

early Migration
Mesenchymal stem cells on surfaces used for early migration 
quantification were stained with a Qtracker 705 Cell Labeling kit 
(Life Technologies, Carlsbad, CA, USA) prior to being seeded. 
This allowed long-term evaluation of the cell centroid based on 
endocytosis of quantum dots. The quantum dot-loaded cells were 
imaged every 10 min for 12 h. Similar to the cell morphology, 
z-stacks were acquired at each time point and processed with the 
extended depth of field plugin for ImageJ. CellProfiler was used 
to quantify the migration velocities and directions. A minimum 
n = 6 was used for each sample.

Differentiation Markers
At 10  days, samples were lysed with 200-μL radioimmunopre-
cipitation assay buffer. The lysates were used to quantify alkaline 
phosphatase (ALP), osterix (OSX) (SP7) transcription factor 
levels, and double-stranded DNA. General protocols for the 
immunodetection ALP substrate kit (Bio-Rad, Hercules, CA, 
USA), Quant-iT™ Picogreen® dsDNA reagent kit (Invitrogen, 
Molecular Probes), and Human SP7/Osterix ELISA Kit (LifeSpan 
BioSciences, Inc., Seattle, WA, USA) were followed as written. 
Sample volumes run in the assays were 5 μL.

late nuclear Morphology 
and immunostaining
At 24 h and 7 days, samples were removed and fixed for immu-
nostaining in addition to analysis of nuclear morphology. The 
samples to be stained for imaging at the 24-h time point were 
quickly washed with cold PBS and then fixed with 3.7% para-
formaldehyde for 15 min followed by permeabilization in 0.1% 
Triton X-100 in 2% bovine serum albumin for 1 h. The cells were 
incubated with a mouse monoclonal anti-vinculin antibody 
(Sigma-Aldrich, St. Louis, MO, USA) at 1:400 in the permeabi-
lization buffer for 1  h at room temperature. The samples were 
washed with PBS three times and then incubated in phalloidin 
conjugated to Atto 490LS (Sigma-Aldrich, St. Louis, MO, USA) 
at 1:1000, DAPI at 1:1000, and Dylight 488 anti-mouse second-
ary antibody (Life Technologies, Carlsbad, CA, USA) at 1:200 
for 1 h at room temperature. Finally, the samples were washed 
three times with PBS and imaged. The samples imaged after 
7  days were prepared as above; however, the vinculin primary 
and 488 secondary were omitted since vinculin was not needed 
to determine morphology. Nuclear morphology was quantified 
with CellProfiler.

statistics
One-way ANOVAs with Tukey post hoc tests were used to deter-
mine significant differences for morphology features measured, 
migration velocity and migration directionality, and nuclear 
area and axial rotation. A χ2 was used to evaluate the align-
ment of nuclei in each sample relative to a predicted random 
distribution.
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FigUre 2 | Morphological changes of mesenchymal stem cells analyzed at 2, 6, and 24 h post-seeding. (a) Area, (B) circularity, and (c) aspect ratio 
measurements were taken. The results indicate that stem cells on the acid-etched endoskeleton surface spread the most over 24 h. The circularity of the three 
surfaces began dissimilar, but converged at 24 h. The aspect ratio of stem cells initially began close to 1, but over 24 h, the smooth surfaces, Ti and PEEK, 
increased significantly higher than the rough, acid-etched endoskeleton surface. Taken together, the aspect ratio and circularity indicate that stem cells on smooth 
surfaces move toward a spindle or fibroblastic morphology, whereas those on the rough, acid-etched endoskeleton surface moved toward a stellate or star-like 
morphology. Within a single time point, * indicates significance, p < 0.05 between acid-etched Ti and PEEK, † indicates significance between acid-etched Ti and Ti, 
and § indicates significance between PEEK and Ti. Color-coded bars demonstrate significance between time points for a single surface.
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resUlTs

early Morphology
Mesenchymal stem cell morphology was examined both quanti-
tatively from 2 to 24 h and qualitatively at 24 h. Figure 2 presents 
the quantitative cell morphology results on smooth PEEK, smooth 
Ti, and acid-etched endoskeleton surfaces. Figure 2A presents the 
areas of MSCs on each surface and shows an increasing trend for 
MSCs on the acid-etched endoskeleton surface: 6801 ± 533 μm2 at 
2 h, 7016 ± 647 μm2 at 6 h, and ending with 8795 ± 841 μm2 at 24 h. 
Similarly, the spreading area of MSCs on the smooth Ti increased 
at each time point: 5047 ± 634 μm2 at 2 h, 5971 ± 562 μm2 at 
6 h, and 6041 ±  396 μm2 at 24 h. However, the smooth PEEK 
was the only surface to demonstrate a maximal value followed 
by a decrease: 5292 ±  442 μm2 at 2 h, 7008 ±  702 μm2 at 6 h, 
and falling back to 5791 ± 565 μm2 at 24 h. Only the acid-etched 
endoskeleton surface demonstrated significance with respect to 
area, demonstrating more spreading area per cell at 24 h when 
compared to the other surfaces at 24 h in addition to the earlier 
time points on the acid-etched surface. Next, the circularity of 
MSCs on the surfaces was analyzed. Circularity was defined as

 
Circularity = 4

2

πA
P  

Mesenchymal stem cells on all three surfaces demonstrated 
a significant decrease in the circularity of the cells at each time 
point. Smooth Ti surfaces demonstrated the highest circularity 
at 2  h, whereas the acid-etched endoskeleton surfaces dem-
onstrated the lowest circularity at 2  h. The final shape factor 
analyzed was aspect ratio. All three surfaces demonstrated 
an increasing aspect ratio at each subsequent time point. 
The two smooth surfaces reached a final aspect ratio at 24  h 
of approximately 3, whereas the acid-etched endoskeleton 
surface reached a final aspect ratio of approximately 2. At 24 h, 
samples were stained to qualitatively examine morphology. 

Figure  1 illustrates the surface topography of the samples; 
reflected DIC was used to obtain the images. Figure 3 depicts 
the results from the qualitative staining, which are stained for 
phalloidin (red), the adhesion protein vinculin (green), and 
nuclear DNA (blue). In each image, a reflected DIC image of 
the surface is overlaid with the fluorescence channels in gray. In 
Figures 3A,B, it is evident that MSCs on the smooth surfaces 
demonstrate an elongated spindle-like morphology. In contrast 
to Figures 3A–C, demonstrates MSCs with cuboidal and stellate 
(star-shaped) morphologies on the acid-etched endoskeleton  
surface.

early Migration
In addition to the morphology shift on each of the three surfaces, 
the rate and direction of migration were assayed beginning at 
6 h post-seeding and continuing for 12 h. Figure 4 depicts the 
quantitative migration data. In Figure 4A, rose plots (circular his-
tograms) are provided to demonstrate the direction of travel. The 
MSCs on both smooth surfaces (e.g., PEEK and Ti) demonstrate 
migration along predominantly one axis. In contrast, the MSCs 
on the acid-etched endoskeleton surface demonstrate migration 
in multiple directions. The velocity on the samples is depicted in 
Figure 4B. The highest average velocity was found in MSCs on 
the smooth Ti, 28.24 ± 1.62 μm/h, followed by the acid-etched 
endoskeleton, 21.39 ± 1.38 μm/h, and the lowest average velocity 
was observed on smooth PEEK, 16.16 ± 1.46 μm/h. Velocities on 
each surface were significantly different than all other surfaces. 
Finally, the directionality of the cells on each surface was meas-
ured. Directionality was defined as

 
Directionality end-to-end distance

total distance
=

 

The directionality was again highest on the smooth Ti, 
0.57 ± 0.06, followed by the acid-etched endoskeleton, 0.23 ± 0.03, 
and the lowest directionality was observed on smooth PEEK, 
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FigUre 3 | representative morphologies of Mscs. (a) PEEK, (B) smooth titanium, and (c) rough, acid-etched endoskeleton surface, at 24 h. 
Immunofluorescence was carried out to examine the focal adhesion protein vinculin (green), the actin cytoskeleton (red), and the cell nuclei (blue). Additionally, a gray 
scale depiction of the surface was obtained with reflected DIC. The results demonstrated the trends observed in Figure 2 with cells on the smooth surfaces moving 
toward an elongated spindle-shaped morphology, whereas the cells on the rough surface demonstrated a range of morphologies from spindle-shaped cells to 
cuboidal and stellate-shaped cells. In particular, the cuboidal and stellate cells in C. are representative of morphologies expected of osteoblastic differentiation. Scale 
bar indicating 50 μm applies to (a–c).

FigUre 4 | stem cell migration on each surface was assessed from 6 
to 18 h post-seeding. The results demonstrate random migration on the 
PEEK and acid-etched endoskeleton surfaces indicated by the rose plots in 
(a), a histogram of the angle of migration for each cell monitored in (B), and 
the graph of directionality in (c), which demonstrates significance between 
PEEK and acid-etched endoskeleton surfaces when compared to the 
smooth titanium surface. Furthermore, the non-random migration on smooth 
titanium followed the grooves created by milling the surface, and this 
non-random migration resulted in an expected velocity increase, which was 
significantly higher than both the PEEK and acid-etched endoskeleton 
surfaces. Between the two surfaces demonstrating random migration, the 
MSCs on the acid-etched endoskeleton surface demonstrated a significantly 
higher velocity than those on PEEK. Significance, p < 0.05, is demonstrated 
by bars between groups in (B,c).
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0.17 ± 0.03. The smooth Ti was significantly higher as compared 
to both the smooth PEEK and the acid-etched endoskeleton 
surface.

Differentiation Markers
The early osteogenic differentiation marker ALP and 
 mid-differentiation marker OSX were investigated after 10 days 
on the three surfaces. dsDNA was quantified to normalize the 
ALP and OSX values. Figure 5A demonstrates that early maker, 
ALP, increased on the smooth Ti surface relative to PEEK, while 
the mid-marker OSX increased on the acid-etched endoskeleton 
surface. There was a significant difference between the ALP 
values for smooth Ti, 12.16  ±  1.37  U/μg, compared to PEEK, 
8.19 ± 0.28 U/μg. The OSX value for the acid-etched endoskel-
eton surface was significantly higher than PEEK, 12.28  ±  1.59 
and 7.31 ± 1.79 ng/μg, respectively. PEEK had decreased values 
for both ALP and OSX. Figure 5B shows a general increase of 
dsDNA from smooth Ti to PEEK to the acid-etched endoskeleton 
surface, 310.28 ± 131.90 to 342.41 ± 21.14 to 441.63 ± 60.45 ng/
mL, with the acid-etched endoskeleton surface exhibiting the 
highest dsDNA value.

late nuclear Morphology
After 7  days, the nuclei morphologies were analyzed as a 
predictor of cell morphology. The cell morphology could not 
be assessed directly at 7  days due to the cells being confluent; 
however, nuclear morphology has previously demonstrated a 
correlation over the general cell morphology (Maniotis et  al., 
1997; Li et al., 2014; Ramdas and Shivashankar, 2015). First, we 
examined the axial ratio and nuclear area on all three surfaces, 
shown in Figure 6A. The axial ratios were similar on the PEEK 
and smooth Ti, 1.88  ±  0.03 and 1.89  ±  0.03, respectively. The 
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FigUre 5 | early differentiation marker alkaline phosphatase (alP) and osterix (OsX), a transcription factor significant for osteoblast differentiation, 
were normalized to dsDna. (a) Early differentiation marker, ALP, is increased on the smooth Ti surface, while the mid-differentiation marker OSX increased on the 
acid-etched endoskeleton surface. The PEEK surface fell short for both ALP and OSX. This suggests that hMSC differentiation is moving toward bone formation for 
the Ti surfaces. (B) Seeding densities for all samples were equal. The dsDNA value for the acid-etched endoskeleton surface is the highest amongst the surfaces, 
which suggests that there is improved cell attachment and/or proliferation for the acid-etched endoskeleton surface compared to the smooth Ti and PEEK substrates.
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FigUre 6 | nuclear morphology was examined to assess the general cell morphology after 7 days when the populations were confluent and cell 
borders were difficult to identify. The nuclear morphology on PEEK and Ti surfaces were very similar in regards to axial ratio (a), whereas the nuclei on the rough 
acid-etched endoskeleton surface had a significantly lower axial ratio than either the PEEK or smooth Ti surface indicating more circular nuclei on the acid-etched 
endoskeleton surface. The nuclear area (B) followed a similar trend to axial ratio with the smooth surfaces demonstrating significantly more nuclear area than the 
rough acid-etched endoskeleton surface. Finally, the orientation of nuclei (c) was assessed establishing 0° as the average orientation direction. The inset provides a 
plot of the cumulative distribution and clearly demonstrates that PEEK and smooth Ti surfaces were different than the rough, acid-etched endoskeleton surface. 
Nuclei on PEEK and smooth Ti were grouped very close to 0° indicating that most cells presented an elongated nucleus in the same direction; however, on the 
acid-etched endoskeleton surface, the nuclei were randomly oriented with only one range, 70–90°, demonstrating a slight increase. The black dotted line in the inset 
of (c) provides the expected cumulative distribution for random orientation; p values were calculated for each of the three samples with a χ2 test and yielded p 
values of 10−10, 10−19, and 1.0 for PEEK, Ti, and acid-etched endoskeleton, respectively. Taken together, these results indicated that the aligned spindle morphology 
observed early on the PEEK and smooth Ti surfaces persists when the stem cells are confluent, and likewise, the random cuboidal/stellate morphology on the 
acid-etched endoskeleton surface also persists to the confluent cell layer observed after 7 days.
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axial ratio for nuclei on the acid-etched endoskeleton surface, 
1.60 ± 0.02, was significantly lower than both of the smooth sur-
faces. The acid-etched endoskeleton surface also demonstrated 
the lowest nuclear area, 340.5 ± 9.3 μm2, as compared to the PEEK 
and smooth Ti surfaces, 1406.4 ± 31.4 and 2037.6 ± 70.8 μm2. 
All nuclear areas were significantly different from all others, 
illustrated in Figure 6B. Finally, the alignment of the nuclei was 
quantified by examining the angle of the long axis of each nucleus. 
This data is presented in a histogram in Figure 6C. Additionally, 
the inset of Figure 6C provides a cumulative distribution plot of 
the histogram data with a dotted line corresponding to a random 
distribution. A X2 (chi-squared) test demonstrated that both the 
PEEK and smooth Ti had nuclei aligned in a single direction, 
which was significantly different than an expected random dis-
tribution. In contrast, the nuclei on the acid-etched endoskeleton 
surface were not significantly different from an expected random 
distribution.

The quantitative data above are represented by the immuno-
fluorescence images presented in Figures 7A–C. Figures 7A,B 
show confluent layers of MSCs on the PEEK and smooth Ti 
surfaces. In each, it is clear that the nuclei are elongated and are 
primarily organized along a single axis. In contrast, the acid-
etched endoskeleton surface presents a more random distribution 
of MSC morphologies.

DiscUssiOn

The advantages of the acid-etched endoskeleton surface in 
promoting osteoblast differentiation are well established in the 
literature (Gittens et  al., 2012; Olivares-Navarrete et  al., 2012, 
2013). The goals of the present study were to examine the early 
responses of MSCs to each of the surfaces, and identify if the early 
response was predictive of the known long-term osteoblastic dif-
ferentiation and establishment of MSC migration and morphol-
ogy. The project objective was to demonstrate data characterizing 
the events preceding phenotype development on rough titanium 
since material and surface characterization and cell  differentiation 
data with respect to rough versus smooth surfaces have been well 
studied. A key feature of successful implants is winning the “race 
for the surface” (Gristina et  al., 1989). This can be defined by 

examining key features: rate of initial cell adhesion and spreading 
and the rate of random cell migration. Random cell migration 
is significant in generating the uniform population distribution 
that will lead to uniform coverage of the surface by the MSCs 
(Gail and Boone, 1970). Examination of the data from the cell 
area measurements clearly reveals that MSCs on the acid-etched 
endoskeleton surface spread at a higher rate than on either of 
the smooth surfaces. This was demonstrated by a 40% increase 
in spreading area per cell by 2  h for MSCs on the acid-etched 
endoskeleton surface, which increased to nearly 50% more 
spreading area per cell by 24 h. A 50% increase in the cell spread-
ing area dramatically reduces the time required for the surface to 
be covered by MSCs. Furthermore, the shape of these spreading 
cells revealed interesting trends. Initially, all MSCs were circular, 
or nearly circular, as demonstrated by high circularity values 
and low aspect ratios. As time progressed, MSCs on the smooth 
surfaces moved toward spindle-shaped morphologies. These 
elongated and aligned spindle-shaped cells are typical morphol-
ogy of fibroblastic tissue (Dalby et al., 2007). This is evident from 
the combination of a high aspect ratio, 3:1 at 24 h, coupled with 
low circularity. Together, these two characteristics suggest long 
slender cells that are further supported by the immunostaining 
images at 24 h presented in Figure 3. In contrast, MSCs on the 
acid-etched endoskeleton surface demonstrated more stellate 
or cuboidal morphologies at 24  h, indicated by lower aspect 
ratios and similar circularities. The similar circularity indicates 
that MSCs on the acid-etched endoskeleton surface have a high 
perimeter:area ratio, but the lower circularity indicates that the 
long axis and short axis of the cell are not dramatically differ-
ent. Together, these two properties lead to the conclusion that 
MSCs on the acid-etched endoskeleton surface have multiple 
processes and are stellate in morphology. Figure 3 demonstrates 
MSCs on the acid-etched endoskeleton surface showing varied 
morphologies from stellate to spindle-shaped. The cuboidal and 
stellate morphologies observed on the acid-etched endoskeleton 
surface are expected for cells undergoing osteogenic differen-
tiation (Dalby et al., 2007; Hong et al., 2010). Furthermore, the 
differentiation data illustrated in Figure 5A support that the cells 
were indeed moving toward the osteogenic lineage as indicated 
by increased levels of ALP and OSX compared to PEEK (Pinzone 

FigUre 7 | representative images of confluent cells stained for actin (red) and the cell nuclei (blue). (a) PEEK, (B) smooth titanium, and (c) rough, 
acid-etched endoskeleton surface, after 7-day culture. The cells on PEEK and smooth titanium demonstrate an elongated morphology in a uniform direction, 
whereas cells on the acid-etched endoskeleton surface demonstrate a branched random morphology. Scale bar indicating 200 μm applies to (a–c).
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