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The aim of tissue engineering is to promote the repair of functional tissues. For decades, 
the combined use of biomaterials, growth factors (GFs), and stem cells has been the 
base of several regeneration strategies. Among these, biomimicry emerged as a robust 
strategy to efficiently address this clinical challenge. Biomimetic materials, able to reca-
pitulate the composition and architecture of the extracellular matrix, are the materials of 
choice, for their biocompatibility and higher rate of efficacy. In addition, it has become 
increasingly clear that restoring the complex biochemical environment of the target 
tissue is crucial for its regeneration. Toward this aim, the combination of scaffolds and 
GFs is required. The advent of nanotechnology significantly impacted the field of tissue 
engineering by providing new ways to reproduce the complex spatial and temporal 
biochemical patterns of tissues. This review will present the most recent approaches 
to finely control the spatiotemporal release of bioactive molecules for various tissue 
engineering applications.

Keywords: biomaterials, patterning, tissue engineering, growth factors, drug delivery

inTRODUCTiOn

The use of autologous or heterologous cells in clinical practice has always been considered the most 
advantageous strategy for boosting tissue repair (Jaklenec et al., 2012). However, several downsides, 
such as their costs, availability, risk of infection, pain, and low viability after injection, subvert their 
advantages (Harrison et al., 2014). Thus, the ability to elicit specific cell responses in vivo through 
the release of bioactive signaling molecules has attracted increasing attention.

Growth factors (GFs) are soluble molecules that control a wide range of signaling pathways by 
binding to specific cell receptors (Vo et al., 2012). In 2010, therapeutics based on bioactive pro-
teins and peptides represented about 13% of global sales in the biomedical field (Sheridan, 2010). 
Furthermore, sales have been predicted to increase from $14.1 billion in 2011 to $25.4 billion by 2018 
(Fosgerau and Hoffmann, 2015).

The biological response triggered by a GF depends on the target cells, their number, and other 
signaling factors present in the milieu of a specific tissue. Therefore, the successful use of GFs 
in regenerative therapies requires the selection of appropriate GFs to accomplish optimal tissue 
repair. Toward this end, the precise regulation of GFs’ concentration in space and time is vital 
(Guldberg, 2009).

In order to increase functional regeneration, many proposed approaches combine surgi-
cal  procedures, biologics, and biomaterials (Fisher and Mauck, 2013). Biomaterials (derived 
from natural or synthetic sources) are contributing to groundbreaking work in many tissue 
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FiGURe 1 | Schematic showing a spatially patterned fibrous material functionalized with different sets of delivery systems (A), in separate 
compartments (B) (Minardi et al., 2014). Schematic showing the temporal patterning of a material with two sets of delivery systems (C), for the staged release of 
bioactive molecules (D).
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engineering applications (Balint et  al., 2014), including bone 
and cartilage regeneration (Tampieri et  al., 2008; Henkel 
et al., 2013; Minardi et al., 2015). The  biomaterials market for 
implantable devices is estimated to be worth $33 billion by 
the end of 2019 (Transparency Market Research, 2012). Tissue 
healing in musculoskeletal surgery has benefited from the 
surgical implantation of bio-conductive scaffolds (Hsu et  al., 
2012). However, the use of GFs and chemo/cytokines in clini-
cal practice yielded controversial results (Garner et  al., 2011; 
Anitua et  al., 2012). One famous example involved the use of 
recombinant human bone morphogenetic protein-2 (rhBMP-2) 
in spinal fusion (Medtronic, INFUSE®: rhBMP-2-infused col-
lagen scaffold). Although approved by the US Food and Drug 
Administration (FDA) in 2002, the high doses of rhBMP-2 used 
by this device resulted in major adverse side effects, including 
cancer, spinal cord compression from soft tissue swelling, spinal 
cord impingement from ectopic bone formation, elevated bone 
resorption from osteoclast activation, and preferential induction 
of adipogenesis over osteogenesis (Kaneko et al., 2000; Smucker 
et  al., 2006; Wong et  al., 2008; Robin et  al., 2010; Zara et  al., 
2011; Epstein, 2013).

These side effects were caused by the massive release of 
rhBMP-2 from the collagen sponge after implantation (5–10 mg 
of BMP-2/implant) (McKay et al., 2007). This dose is over 5000 
times higher than the amount required for bone formation 
in  vitro (Wang et  al., 1988; Place et  al., 2009) and even higher 
than physiologic doses found in the osteogenic niche where 
other osteogenic stimuli (chemical, physical, and structural) 
additionally contribute to induce bone formation (Place et  al., 
2009; Tampieri et al., 2011). When the uncontrolled pharmacoki-
netics showed adverse side effects, the FDA revoked the device’s 
approval (McKie et al., 2014).

After this, GF dose–response effects became all the more 
crucial (Shields et al., 2006), and it became evident that adverse 
outcomes could have been avoided with the controlled, local-
ized release of rhBMP-2. It was determined that burst release 

and widespread tissue exposure to GFs, together with an early 
dissipation from the implantation site (e.g., with irrigation, 
bleeding, and edema) were not ideal pharmacokinetics for tissue 
regeneration (Lai et al., 2013). Furthermore, it has become clear 
that the first-order release of a single bioactive molecule is not 
sufficient to mimic the complex biochemical gradients present at 
a specific stage of tissue regeneration (Wang et al., 2013; Minardi 
et al., 2014).

Extraordinary progress has been made toward the design of 
biomaterials with suitable multiscale hierarchical structures, 
facilitating the staged release of a combination of bioactive mol-
ecules, according to any complex delivery pattern (Biondi et al., 
2008; Guldberg, 2009; Chen et al., 2010).

Bioactive factors can be incorporated within materials 
using layer deposition or integrated into their fibrous mesh via 
electrospinning or self-assembly techniques (Sun et  al., 2003; 
Hosseinkhani et al., 2006; Minardi et al., 2014). Herein, we review 
the most recent strategies for biomaterial fabrication, featuring 
spatiotemporal patterns of bioactive molecules.

enGineeRinG 3D BiOPATTeRneD 
MATeRiALS

The three-dimensional (3D) interactions between cells and 
the extracellular matrix (ECM) have been proven to be crucial 
to orchestrate tissue formation and regeneration in response  
to injury. Materials such as hydrogels and scaffolds engineered to 
emulate the ECM can support tissue healing (Hoffman, 2012; Loh 
and Choong, 2013).

Three-dimensional patterning has been defined as the entrap-
ment of biochemical (Lee et al., 2015a) or structural heterogene-
ity (Zorlutuna et al., 2011) within the structure of a material and 
successfully employed in the design of biomimetic materials for 
tissue engineering. To emulate tissues’ biochemical gradients, 
the patterning of bioactive molecules within biomaterials should 
be controlled over time and space (Figure 1).
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This has been accomplished using multiple strategies that 
facilitate controlled spatial and temporal release kinetics.

Hydrogels capable of promoting cell viability and interactions 
with elements of the ECM have been advantageous for many 
regenerative medicine applications (Nguyen and West, 2002). 
Hydrogels are highly hygroscopic polymers that can be fully 
engineered to mimic specific chemical and physical properties 
of tissues and are therefore often used as scaffolding materials 
for tissue engineering applications (Tibbitt and Anseth, 2009). 
Additionally, due to their biocompatibility and ability to control 
the release rates of bioactive molecules, hydrogels have been 
successfully used as drug reservoirs in tissue engineering appli-
cations (Peppas et  al., 2006). The 3D patterning of hydrogels 
is crucial to enhance their spatial heterogeneity and improve 
their features for cell seeding. 3D patterning can fall into two 
categories: those that integrate patterning during fabrication 
(i.e., stereolithography) or those that involve post-processing 
of a uniform hydrogel (Ahmed, 2015). Horn et  al. (2007) 
created hydrogels suitable for spinal cord repair by combining 
thiol-modified hydroxyl-apatite with acrylate-functionalized 
poly(ethylene glycol) (PEG). Tsang et  al. (2007) developed 
a multilayer PEG hexagonal hydrogel functionalized with 
hepatocyte cells and demonstrated better cell viability in the 
center of the construct compared to uniform hydrogel disks. 
Lim and Sun (1980) used alginate-based polymers cross-linked 
with calcium ions for the treatment of diabetic animals. De 
Souza et al. (2009) demonstrated the in vivo biocompatibility of 
chitosan, phospholipids, and lauric aldehyde or lauric chloride 
hydrogel blends. Hydrogels can also be patterned by indirect 
binding. In  an  elegant recent study, Stupp and coworkers 
described a successful example of this strategy: they proposed 
peptide amphiphile nanofibers gels with binding affinity for 
BMP-2 (Rajangam et  al., 2008; Lee et  al., 2015b), to solve the 
health concerns associated with the use of this factor in patients. 
Others have successfully functionalized the surface of gels and 
scaffolds with heparin or others glycosaminoglycans to dock 
bioactive molecules in  situ (Liang and Kiick, 2014; Corradetti 
et al., 2016).

One of the major concerns in the engineering of materials 
functionalized with bioactive molecules for regenerative medi-
cine is the preservation of the payload (Minardi et al., 2016). Due 
to their structure, 3D scaffolds proved successful in minimizing 
bioactive factors’ exposure to harsh conditions in vivo, preserving 
their bioactivity (Yuan and Liu, 2012).

Scaffolds have been biochemically patterned through many 
different approaches. An established strategy consists of the 
integration of microparticles into the biomaterial structure (Chen 
et  al., 2010). Integrating delivery systems within the scaffold 
matrix enables the design of scaffolds with patterns of various 
geometries and purpose, while controlling their release (López-
Noriega et al., 2015).

Similarly, our group proposed a chitosan–gelatin scaffold 
functionalized with composite microspheres consisting of 
mesoporous silicon microparticles and poly(lactic-co-glycolic 
acid) (PLGA) for the controlled release of small bioactive 
molecules (Pandolfi et al., 2016). Wei et al. (2007) showed that 
incorporating PLGA nanospheres into nanofibrous poly(l-lactic 

acid) (PLLA) scaffolds loaded with rhBMP-7 enhanced osteo-
genesis. Kim et  al. (2004) accomplished the incorporation of a 
combination of drugs into a PLGA-based fibrous mat, fabricated 
through electrospinning.

Interface tissue engineering focuses on the development 
of tissue grafts capable of replacing defective interfaces, such 
as ligament-to-bone, tendon-to-bone, and cartilage-to-bone 
(Almodóvar et  al., 2014). These interfaces exhibit anisotropic 
structural properties, which gradually vary from one tissue to 
another. Using homogeneous biomaterials ultimately leads to 
graft failures (Seidi et al., 2011). Singh et al. (2008) introduced an 
interesting microparticle-based scaffold fabrication technique as 
a method to create 3D scaffolds with spatial control over multiple 
bioactive molecules using uniform PLGA microspheres. They 
demonstrated that embedding the PLGA microparticles into 
their scaffolds led to more sustained payload release. Recently, we 
proposed a multiscale approach to selectively integrate different 
types of nanostructured composite microspheres in a multi-
compartmented collagen scaffold (Minardi et al., 2014). By fully 
embedding the microspheres in the type I collagen matrix 
of the scaffold, the authors were able to spatially pattern the 
microspheres into the different compartments, and the collagen 
coating on the microspheres allowed for the zero-order release 
of the payload for almost 2  months. This method of scaffold 
functionalization proved to preserve the bioactivity of cytokines 
for several weeks. The controlled release of the payloads over long 
periods of time favors on-scaffold cell recruitment while avoiding 
adverse effects due to the bolus administration of therapeutic 
molecules in the tissues surrounding the implant (Minardi et al., 
2016). To achieve the combined release of multiple molecules 
from different compartments, Song et  al. (2012) incorporated 
silica nanoparticles into electrospun fibers. Detamore’s group 
attempted osteochondral regeneration through the creation of 
continuous gradients of two bioactive factors within a 3D scaf-
fold (Dormer et  al., 2010). The authors developed a polymer 
microsphere-based scaffold, which could be fabricated using 
microspheres loaded with various GFs to create continuous and 
opposite gradients of BMP-2 and transforming growth factor-
beta (TGF-β) (Mohan et al., 2011).

CeLL ReSPOnSe TO 3D BiOCHeMiCALLY 
PATTeRneD MATeRiALS

Most of the current understanding of the regenerative process 
is based on the use of simplified in vitro 2D cell cultures, which 
fail to reproduce tissue complexity. Recently, 3D cultures on 
biomimetic materials mimicking the ECM microenvironment 
are becoming the in vitro models of choice to study the regenera-
tive process of specific tissues. 3D biomimetic cultures are more 
physiologically relevant than those in 2D and simpler than in vivo 
models (Hoffmann and West, 2010). As reviewed in the previ-
ous paragraph, over the past decade various technologies have 
been developed to create spatiotemporal gradients for complex 
biomaterials (Santos et al., 2012). Graded materials can elicit vari-
ous cell behaviors, such as adhesion, orientation, motility, surface 
antigen display, cytoskeletal condensation, activation of tyrosine 
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FiGURe 2 | Schematic representation of cells responding to gradient patterns: (1) cells recruitment, (2) cell adhesion on the surface of the scaffold, 
and (3) cell migration across scaffold thickness.
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kinases, and modulation of intracellular signaling pathways that 
regulate transcriptional activity and gene expression (Figure 2). 
Cells are able to decode information provided by the ECM and 
respond to specific stimuli, such as topography (Ishii et al., 2005; 
Raghunathan et al., 2013), mechanical properties (Ulrich et al., 
2009; Humphrey et  al., 2014), bioactive signals (Li and Folch, 
2005; Yañez-Soto et al., 2013; Malik et al., 2015), and concentra-
tion gradients of both soluble and tethered GFs (Gattazzo et al., 
2014). An established strategy to elicit such biological functions 
consists of the functionalization of hydrogels with biochemical 
cues, as described above (Tibbitt and Anseth, 2009; Geckil et al., 
2010). Synthetic biomaterials, such as hydrogels or bulk polymeric 
scaffolds, demonstrated low cellular adhesion, necessitating func-
tionalization with bioactive molecules (Tian et al., 2012). Since 
synthetic hydrogels lack biochemical cues, different strategies for 
their 3D biochemical patterning have been developed to increase 
their level of biomimicry (Luo and Shoichet, 2004) and enhance 
their interaction with cells (Yan et al., 2011). To favor cell adhe-
sion, migration, and differentiation within hydrogels, the main 
strategy has been to immobilize adhesive peptides (e.g., RGD) 
(Bellis, 2011). The use of short peptides to tune cellular response 
to hydrogels showed success due to the stability of the chemical 
conjugation between the peptide of interest and the material, 
without altering its conformation.

Recently, in a very elegant study, the Anseth research group 
proposed an RGD patterned hydrogel, synthesized through a 
versatile process of sequential bio-orthogonal click-chemistry 
reactions (DeForest et  al., 2009). Their approach was further 
developed by García and coworkers, who proposed light to 
trigger adhesive peptides on the surface of their hydrogel in vivo 
(Lee et al., 2015c). Adhesion and proliferation are not the only 
two important features to achieve tissue homeostasis, but also 
cell migration is fundamental for all morphogenetic processes in 
tissue regeneration (Sternlicht and Werb, 2001). Cell migration 
occurs in response to gradients of soluble or insoluble signals. 
In tridimensional constructs, migration is more difficult to 

achieve due to the mechanical resistance of the surrounding 
ECM. Synthetic materials must contain cell-adhesive ligands for 
traction, GFs as signals of migration, as well as space to allow cell 
movement. Taraballi and colleagues synthesized a plethora of dif-
ferent hydrogels functionalized with bioactive peptides (BMPH1 
andBMPH2) that allowed for the adhesion, proliferation, and 
differentiation of neural stem cells into neurons both in  vitro 
and in vivo (Gelain et al., 2010, 2011; Taraballi et al., 2010). They 
demonstrated that neural cells were able to migrate inside the 
gel but only extended neurites when both factors were presented 
at the same time. Their findings suggested that several signaling 
molecules could work best in combination, benefiting from their 
synergistic effect.

However, in the natural ECM, cells not only respond to signals 
presented on the surface of the ECM but also to soluble stimuli, 
especially in the regeneration process. Usually, these factors dif-
fuse through the ECM and bind to their specific receptors on 
cells’ surface, activating specific transduction cascades. In vivo, 
the transient nature of GF signaling is combined with the slow, 
sustained signals received from the ECM (Lund et  al., 2009). 
For example, epidermal growth factor (EGF), FGFs, TGF-β, and 
platelet-derived growth factor (PDGF) (Farokhi et  al., 2013) 
have been used to accelerate wound healing by inducing both 
epithelial cell and fibroblast proliferation, as well as de novo 
matrix deposition (Kim et  al., 2012). Similarly, the release of 
insulin-like growth factor 1 (IGF-1) and TGF-β1 from polymer 
scaffolds functionalized with delivery systems showed to suc-
cessfully induce chondrogenic differentiation (Ertan et al., 2013).

COnCLUSiOn

In the past decade, significant advances have been accomplished 
in the design of biopatterned materials able to accomplish tem-
porally and/or spatially controlled release of bioactive molecules. 
Despite these advances, methods should be further developed 
to prepare patterns and gradients with controlled shape and 
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kinetics, in order to tune the desired cell mechanisms in  vivo. 
Altogether, the studies herein reviewed show the potential of 3D 
biomaterials spatiotemporally patterned with bioactive molecules 
to recapitulate the complex biochemical milieu of target tissues.
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