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Based upon the two fluid model (TFM) theory, a CFD model was implemented to
investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to
characterize the fluid dynamic of the experimental system, and compare it to model
predictions, was the time-pressure drop induced by the bubble motion across the
bed. This time signal was then processed to obtain the power spectral density (PSD)
distribution of pressure fluctuations. As an important aspect of this work, the effect of
the sampling time scale on the empirical power spectral density (PSD) was investigated.
A time scale of 40 s was found to be a good compromise ensuring both simulation
performance and numerical validation consistency. The CFD model was first numerically
verified by mesh refinement process, after what it was used to investigate the sensitivity
with regards to minimum fluidization velocity (as a calibration point for drag law), restitution
coefficient, and solid pressure termwhile assessing his accuracy in matching the empirical
PSD. The 2Dmodel provided a fair match with the empirical time-averaged pressure drop,
the relating fluctuations amplitude, and the signal’s energy computed as integral of the
PSD. A 3D version of the TFM was also used and it improved the match with the empirical
PSD in the very first part of the frequency spectrum.

Keywords: Eulerian–Eulerian two fluid model, fluidized bed, pressure drop oscillations, power spectral density,
interphase drag law

INTRODUCTION

Fluidized bubbling reactors are extensively employed in the industry, both for chemical and
biochemical processes as well as for power generation, and one of the main reasons is due to their
optimal level of heat and mass transfer induced by the bubbling turbulence (Singh et al., 2013).
Under this regime, bubbles are responsible for the overall mixing among phases, and it is hence
essential to understand their fluid dynamics to optimize the whole process. Improving reactors
efficiency while at the same time reducing their CAPEX and OPEX is still a source of numerous
investigations in literature (Singh et al., 2013). Today, small- to medium-scale fluidized bed and
their applications are studied usingCFDmodels throughout different numerical approaches offering
different types of accuracy (as well as different computational costs). These latter represent a very
important barrier when modeling complex systems such as bubbling fluidized beds (BFBs), and
research is actively focusing on reducing the computational requirement of numerical models while
improving their accuracy. In multiphase applications, where the solid phase involves a very high
number of particles, the Eulerian–Eulerian two fluid model (TFM) has been proven to be the most
convenient investigation approach (Singh et al., 2013). In addition to this method, two possible
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alternatives for describing the fluid dynamic of amultiphase gran-
ular system are the Eulerian–Lagrangian discrete particle model
and the direct numerical simulation. These two methods, and
especially the latter, are well known for their accuracy in estimat-
ing the particles trajectories while providing a full detailed map
of the fluid patterns inside the system. However, their application
to dense particle systems is not an easy task since they require
massive computational cost especially when describing a large
amount of particles (in addition to their countless interactions).
The TFM represents a convenient mathematical way to model
dense particles systembecause of its intrinsic quicker performance
(when compared with the aforementioned approaches) in captur-
ing and providing information about bubble shapes, motions as
well as on the bed expansion.

Among the different experimental strategies that could be used
to study and monitor the bubbling process, pressure fluctuation
is one of the most convenient ones since it is easy to measure
and can be directly linked to the bubbles dynamics. Numerous
studies have investigated the coupling between bubbles dynamics
and pressure fluctuations as a convenient way to characterize the
transient behavior of a bubblingmultiphase system, from the early
works published by Davidson and Harrison (1963) up to more
recent studies (Johnsson and Johnsson, 2001; Peirano et al., 2001;
Acosta-Iborra et al., 2011).

Despite these advantages, the interpretation of pressure fluctu-
ations is both complicated and challenging since there are various
sources involved in generating this signal (Bi, 2007). Qingcheng
et al. (2011) observed the physical phenomenon of a bubble
formation and motion rising up through the solid particles bed
and found in this process the main source of perturbation of the
gas–solid system. While linking the local pressure fluctuations
to the bubbles presence and movement, they also assessed the
influence of the operating gas velocity on the overall amplitude
of pressure drop as well as on their major frequency.

Peirano et al. (2001) conducted a CFD study of a BFB using
an Eulerian TFM approach. In their study, they highlighted the
importance of pressure drop low frequencies because of their
direct connection with the bubbling motion. Nevertheless a clear
interpretation about the origin of the higher frequencies was not
provided. Furthermore, they assessed the suitability of a 2Dmodel
as far as the sensitivity analysis is regarded while recommending
a full 3D modeling when attempting to catch the dynamic of
the real system. A similar conclusion was also found by Acosta-
Iborra et al. (2011) who performed differential pressure spectrum
analysis along with particle fraction spectrum. While showing
the close relation of these two spectrums and consequently the
local character of the information provided by differential pres-
sure probes, they also advised the use of a full 3D simulation to
catch the bubble coalescence and interaction with the surface of
the bed.

The primary importance of the fluid-particle drag, as the main
driving force in cold fluid dynamic systems, is often noticed in
open literature and represents one of the key points to achieve a
good prediction of bubbling bed hydrodynamic. In general, the
drag law depends on a drag coefficient (CD), which in its turn
depends on the local relative velocity between phases and the void
fraction. This coefficient depends as well on other factors such as
particle size distribution and particle shape. However, it is difficult

to characterize the void fraction dependency for any conditions
other than for a packed bed or for infinite dilution (single particle
model, Vejahati et al., 2009). To bypass this lack of crucial data,
some authors attempted to exploit the experimental minimum
fluidization velocity of their own system as a calibration point.
For example, Syamlal and O’Brien (1987) introduced a method
to adjust the drag law using the Umf value of their system (Syam-
lal and O’Brien, 1988). This approach allows calibrating (before
starting the simulations) a special correlation between a single and
a multiple particle systems under settling condition. Esmaili and
Mahinpey (2011) compared the results of their 3DTFM to empiri-
cal data using time-averaged pressure drop at different locations as
well as bed expansion ratio. They specifically focused on the effect
brought by different drag formulations, finding the parametric
Syamlal–O’Brien drag law (Syamlal and O’Brien, 1987) as one of
the best for providing a correct prediction of these two indicators
over the wide range of superficial velocities investigated.Min et al.
(2010) validated their 2D and 3D TFM throughout gas holdup
measurements (using X-ray imaging system) as well as by the
time-averaged pressure drop data. They also focused on the effect
brought by different formulations of the drag law. Both their 2D
and 3Dmodel correctly predicted the experimental time-averaged
pressure drop and also, in this case, the Syamlal–O’Brien drag
formulation showed a better prediction of the gas holdup variation
through the bed height.

This drag law was used in this work because of its intrinsic
superior capability to provide the best prediction for solid bed
expansions, bubbling displacement and foremost, bymatching the
experimental pressure drop.

While it is clear that model validation cannot be achieved by
means of mere time-averaged pressure drop (since no informa-
tion related to the bed dynamic can be recovered out of it) the
stochastic behavior of bubbles do not allow having an univocal
time signal that could be used as a validation point.However, these
limitations can be rounded up by performing spectrum analysis to
obtain a frequency distribution, which is univocal of any specific
operating condition setup (bed height, air velocity, particle size,
etc.). Even though a few studies went through the analysis of pres-
sure fluctuations (by performing spectrum analysis), information
about the (sampling) time scale required to fully catch the “finger
prints” of pressure drop fluctuations through the bed has not being
investigated in depth.

One major target of this work is to test the effect of sampling
time on the empirical pressure drop oscillations spectra (PSD) to
limit the duration of CFD simulations while ensuring the valida-
tion of CFDmodel with empirical data. This work will investigate
the numerical sensitivity of a TFMmodel applied to a BFB reactor,
to better understand the impact of certain parameters on the accu-
racy that such model can provide once compared to the empirical
data. To this purpose the model was tested on a 2D geometry
employing the parametric Syamlal–O’Brien drag law. For each
parameter, a specific set of simulations have been performed by
varying its value or the related mathematical formulation. The
results have been compared in terms of time-averaged pressure
drop, variance, and signal energy. Numerical verification was also
carried out, prior to the model sensitivity analysis, identifying the
maximum mesh size and therefore guaranteeing the convergence
of the numerical solution. A full 3D model was also implemented
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and used to improve the numerical accuracy, ultimately resulting
in a better fit with the first part of the empirical PSD.

EXPERIMENTAL SETUP

The experimental setup used in this work (shown in Figure 1) has
been chosen following the assemblingmethod discussed inASTM
International (2012). The latter comprises of a lab-scale fluidized
bed and specific instrumentationmeasuring andmonitoring both
the gas flow discharge and the pressure drop along the bed. In
the actual work the reactor body is made of clear PVC, which has
been selected to allow a dynamic visual analysis of the process.
The body of this system is a 15 cm i.d. over a 1m height cylinder.
The bottom flange allows stabilization of the base of the PVC
cylinder wall while embedding the porous gas distributor plate.
This latter is stainless 316 L made and presents a microporosity
of 1.3μm such as to ensure an optimal homogenization of the
gas prior to the reactor inlet. The choice of such a distributor
typology is dual, first contributing to generate small bubbles all
over the cross section while ultimately helping avoiding some
experimental drawbacks like dead spaces and the back sitting of
solids. Second, it allows an easier numerical schematization of
the inlet boundary condition that can be accounted easily into
a 2D geometry, differently from what it would be required by
other types of air injectors (such as nozzles) where the 3D model
would be the only possible choice. This last aspect is crucial to
perform CFD simulations with significant time economy in the
early stages of model implementation and verification. Moreover,
the very fine porosity is such to guarantee a local pressure drop
(induced by its own intrinsic porosity) comparable to the one
along the bed in the fluidization regime. Despite being highly

FIGURE 1 | Schematic of test apparatus (left) and real laboratory scale bench
(right) used for the first part of this work.

conservative, this precaution is always considered when designing
a proper gas distributor to avoid a potential and persistent gas
channeling inside the bed induced by a too low pressure drop.
However, at industrial scale, porous plates are not often employed
hence avoiding the risks of clogging which could be induced by
inert material (that does not fluidize) as well as other compounds
that might melt on the distributor surface.

A filter is placed on top of the upper flange to prevent solid
particles from being entrained out of the bed during fluidization
regime and, right next to it, a relief valve allowing to avoid any dan-
gerous overpressures. For the tests, the reactor was operated under
ambient conditions. The key device, for validation purposes, was
a differential pressure gage (Kistler 4264A), capable of recording
up to 1,000 pressure drop data per second. These latter were then
transferred to a Labview acquisition system for data saving and
real time-pressure drop monitoring. The pressure drop was mea-
sured between two points at the extremities of the cylinder’s body.
The bottom probe was positioned at 2.5′′ over the porous plate,
and the upper onewas at the proximity of the top flange. Two small
meshed screens were put inside the two pipes of the differential
pressure gage to avoid particles entrainment and therefore poten-
tial damages to the instrument. Two flow meters were included in
the setup, onemanual (rotameter) potentially available tomeasure
high air flows, and the otherwas an electronic unit operating in the
range 0–300 SLPM. Experiments were performed at 22°C (room
temperature) and 1 atm, conditions that remained constant during
the tests. Finally a small light bulbwas located in the upper interior
section of the reactor flange, lighting up the bed surface hence
allowing to take better quality pictures and videos.

The bedmaterial used is alumina powder (190μmSauter diam-
eter) belonging to the Geldart Group B. Alumina was selected
since it is often used in industrial-scale gasifiers (where this inert
represents by far the major part of the total solid bed mass). The
particular size allowed covering a good range of hydrodynamic
conditions (from fixed bed to vigorous bubbling condition) since
the minimum fluidization velocity is strongly linked to the diam-
eter of solid particle. By doing so, the system could be operated
without the need for amanual flowmeter, whose reading accuracy,
could be considerably lower than the electronic unit. Gas and solid
properties used for both experiments and corresponding CFD
simulations are listed in Table 1.

The bench reactor was filled with alumina up to a bed height
of 263mm, corresponding to a total mass of approximately 9.5 kg.

TABLE 1 | Materials physical properties for the experimental gas–solid system.

Material Properties Units Value

Alumina Particle diameter μm 190
Particle density kgm−3 3,883
Particle sphericity – 0.6
Coefficient of restitution – 0.85
Static bed height mm 263
Packing limit – 0.54
Friction packing limit – 0.48
Initial solid volume fraction – 0.52
Angle of internal friction – 60°

Air Density kgm−3 2.417
Viscosity N sm−2 1.8×10−5
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Different superficial velocity values below the minimum fluidiza-
tion onewere exploited for the CFD validation in the fixed regime,
whereas only one value corresponding to 3.5 times the minimum
fluidization velocity was used for validating the CFDmodel in the
“bubbling” regime. This valuewas selected to guarantee a vigorous
fluidization regime while respecting a margin of accuracy for the
electronic air flow reading.

HYDRODYNAMIC AND NUMERICAL
MODEL

This cold system includes gas and solid particles mixed together
in an enclosed cylindrical vessel where the bubbles are generated
at the very bottom of the reactor when the superficial velocity of
the gasifying agents exceeds the minimum fluidization value. In
this work, CFD analysis is meant to predict the effect of bubble
formation as well as their motion toward the bed surface. It should
also allow predicting the pressure drop oscillations induced by
bubble patterns and chaotic particles displacement. The model
considers both the gas (generally air in cold fluid dynamic appli-
cations) and the solid phase as two interpenetrating fluids for
which conservation equations (mass andmomentum) are derived.
However, these equations require a proper closure, which can
be provided by the constitutive/rheological laws. The latter are
obtained from empirical correlations and by application of the
kinetic theory of granular flows (KTGFs). The general form of the
TFM equations is the following.

Continuity equation (valid for both gas and solid phase)

∂

∂tαqρq + ∇ · αqρqu⃗q =
n∑

p=1
ṁpq (1)

where αq is the volume fraction of phase q (here representing
either the gas or the solid phase), ρq its density, and u⃗q the
corresponding velocity vector. The term ṁpq represents the mass
transfer between phases (kgm−3 s−1). By definition, the sum of
the phase fractions αq is equal to 1.

Gas phase momentum equation

∂

∂tαgρgu⃗g + ∇ · (αgρgu⃗g ⊗ u⃗g) = −αg∇P + ∇ · αg τ̄g + αgρg⃗g

+ Kgs(⃗us − u⃗g) (2)

where P represents the operating pressure inside the system, g the
gravity, and Kgs the drag factor of phase s in phase g (kgm−3 s−1).

The gas stress tensor is given by:

τ̄g = μg(∇u⃗g + (∇u⃗g)T) +
(

λg − 2
3

μg

)
∇u⃗g · I (3)

Solid phase momentum equation

∂

∂tαsρsu⃗s + ∇ · (αsρs
u⃗s ⊗ u⃗s) = −αs∇P − ∇Ps + ∇ · αs τ̄s

+ αsρsg + Kgs(⃗ug − u⃗s) (4)

where αs is the volume fraction of the solid phase s and
u⃗s (m s−1) is the corresponding velocity vector. All the other terms
are explained in the following.

Also for the solid phase, the total viscous stress tensor is
expressed by the following expression:

τ̄s = μs,tot(∇u⃗s + (∇u⃗s)T) +
(

λs − 2
3

μs

)
∇u⃗s · I (5)

where the viscosity coefficients include the combination of differ-
ent terms:

μs,tot = μs,col + μs,kin + μs,frict (6)

where μs ,tot is the total solid shear viscosity resulting from the
summation of three different components, which are described
below and are correspondingly the collisional (Gidaspow et al.,
1992; Syamlal et al., 1993), kinetic (Gidaspow et al., 1992), and
frictional (Schaeffer, 1987) components of the total sheer stress.

μs,col =
4
5

αsρsdsgo,ss(1 + ess)
(

Θs

π

)1/2
αs (7)

μs,kin =
10αsρsds

√
Θsπ

96αs(1 + ess)go,ss

[
1 +

4
5
go,ssαs(1 + ess)

]2
(8)

μs,frict =
Ps sinΦ
2
√
I2D

(9)

where αs represents the solid volume fraction, Θs (m2 s−2) the
granular temperature, go ,ss the radial distribution (Ogawa et al.,
1980), ds (m) the solid particle diameter (Sauter), and Ps the total
solid pressure [below the expression from Lun et al. (1984)]. Pfrict
is a frictional component (Johnson and Jackson, 1987), λs is the
solid bulk viscosity (Lun et al., 1984) accounting for the resistance
of the granular flow to compression and expansion, and ess is the
restitution coefficient expressing the ratio between the particle
speed after and before collisions. Mathematical description of
these variables is given by the following:

Θs =
1
3
⟨
u⃗s′ · u⃗s′

⟩
(10)

go,ss =

[
1 −

(
αs

αs,max

)1/3]−1

(11)

λs =
4
3

αsρsdsgs(1 + ess)
(

Θs

π

)1/2
αs (12)

Pfrict = Fr (αs − αs,min)2

(αs − αs,max)5
(13)

Ps = αsρsΘs + 2ρs(1 + ess)αs
2go,ssΘs (14)

Ps = 2ρs(1 + ess)αs
2go,ssΘs (15)

Ps = αsρsΘs

[
(1 + 4αsgo,ss) +

1
2

[(1 + ess) (1 − ess + 2μfric)]
]

(16)

Drag Law Formulation
The last term on the RHS both for Eqs 2 and 4 represents the drag
force causing the interphase momentum exchange between the
gas and solid phases. This term is by far the predominant one in
cold systems, and its formulation can significantly affect the CFD
outputs (Esmaili and Mahinpey, 2011).
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The drag force depends in general of the local relative velocity
between phases and the void fraction but also on some other
factors such as the particle size distribution andparticle shape. The
particle void fraction is, however, very difficult to be determined
other than in a packed bed or infinite dilution (single particle).
Other factors such as particle shape, clustering, and particle size
distribution can also affect the local drag force, but they have
never been considered in deriving drag correlations (Vejahati
et al., 2009). Syamlal and O’Brien (1987) derived a formula for
the fluid–solid drag coefficient for multiparticle system using the
Richardson–Zaki type velocity–voidage correlation (Richardson
and Zaki, 1954). Based on the terminal velocity of particles in
fluidized or settling beds, the authors proposed the following drag
correlation:

Kgs =
3
4
CD

v2r,s
ρg |⃗us − u⃗g|

ds
αgαs (17)

where

CD =

(
0.63 +

4.8√
Res/vr,s

)2

(18)

Res =
ρgds |⃗us − u⃗g|

μg
(19)

vr,s = 0.5
[
A− 0.06Re+

√
0.0036Re2 + 0.12Re(2B−A)+A2

]
(20)

with
A = α4.14

g (21)

B =


αC1
g if αg ≥ 0.85

C2α1.28
g if αg < 0.85

C1 = 2.65 and C2 = 0.8
(22)

However, the Syamlal–O’Brien drag model presented above
(with constant coefficientsC1 andC2) can result in the under/over
prediction of theminimum fluidization velocity and consequently
in a too high/low bed expansion (ANSYS, 2012). To cope with
this drawback, a parametric version of the Syamlal–O’Brien drag
model was used in this work. This parametric drag model exploits
the minimum fluidization velocity and void fraction (on the flu-
idization onset) as a calibration point to adjust the drag force. Both
these two parameters have to be experimentally measured and
provided to the (drag model) inner algorithm which performs an
iteration process to minimize the following objective function:{

Uexp eriment
mf − Ret

αgμg

dsρg

}
Min→ 0 (23)

where
Ret = vr,sRets (24)

vr,s =
A + 0.06BRets
1 + 0.06Rets

(25)

Rets =


√

4.82 + 2.52
√

4Ar/3 − 4.8
1.26

2 (26)

Ar =
(ρs − ρg)d

3
s ρgg

μ2
g

(27)

with

A = α4.14
g (28)

B =


αd1
g if αg ≥ 0.85

C2α1.28
g if αg < 0.85

d1 = 1.28 + log(C2)
log(0.85)

(29)

CD(Re, αg) =

(
0.63 +

4.8√
Re/vr,s

)2
(30)

where Ret represents the Reynold number of a multiparticle sys-
tem at the fluidization onset (minimum fluidization velocity or
settling condition), Rets corresponding number for one single par-
ticle, Ar the Archimede number, CD(Re,αg) an analytical expres-
sion for the multiparticle drag coefficient, and vr is the terminal
velocity for the solid phase as derived by the velocity–voidage
correlation proposed by Garside and Al-Dibouni (1977). Accord-
ing to an algorithm, the parameter C2 (and consequently d1) is
changed until the objective function (relation 23) is minimized.
Hence, a new set of two parameters is obtained, giving a more
accurate estimation of the drag coefficient for any dynamic con-
dition inside the bed (Re and αg) as shown by Eq. 30. The main
critical point of this parametric drag law is given by the necessity
to provide very precise values both for the minimum fluidization
velocity and the air (void) volume fraction (since the CFD model
is really sensitive to both). Thus, these couple of values are to be
provided to the CFD model according to the estimated experi-
mental values on the onset of fluidization. However, especially
regarding the determination of theUmf, there is always amargin of
uncertainty since from experiments, there is a not a clear limit of
gas velocitymarking the transition from fix regime to bubbling. To
cope with this uncertainty, a series of simulations (as reported in
Sections “TFM vs Experiments: Model Validation Methodology”
and “Model Sensitivity Analysis”) were performed using different
minimum fluidization velocities. The second parameter (bed void
fraction) was determined univocally and according to the bed’s
weight and corresponding volume occupied inside the bed at the
fluidization onset.

As shown above (Eqs 14–16), in this work three different for-
mulation for the solid pressure term (Ps) have been considered to
test the model sensitivity analysis with regards to this parameter
as discussed in Section “Model Sensitivity Analysis.” Based upon
the KTGF, an algebraic formulation (obtained neglecting the con-
vection and diffusion term) of the conservation of energy for the
solid particles was used to work as a closure for the solid stress
tensor (Eq. 5).

NUMERICAL SIMULATION

Numerical simulations were performed using Ansys-Fluent 16.2
and ran on high performance computing (HPC) at the University
the Sherbrooke (Mammoth Parallel II). The software adopted
proper numerical methods for discretizing and solving the set
of equations shown in Section “Hydrodynamic and Numerical
Model.” The Eulerian–Eulerian TFM approach accounts for a set
of conservation equations for each phase.
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Based upon The Finite Volume approach, as the general frame-
work for discretizing and integrating main equations, a Phase-
Coupled Semi ImplicitMethod for Pressure Linked Equations was
used, thus extending the SIMPLE approach to multiphase cases.
According to this method, the pressure values are computed for
each time step in the cell centers while the velocities components
are calculated at each cell interface. In this staggered scheme,
velocities and pressure are first calculated and secondly corrected
according to an iterative process to respect the continuity con-
straint. Because of the transient formulation of the problem, an
implicit second order scheme has been adopted for temporal
discretization of time-derivate variables. A fixed time step of
10−4 s was chosen for all the simulations to ensure their stable
convergence. The convergence criteria is based on the residual
values of the solution (for each of the unknown variables) solved
inside the numerical domain. The tolerances on residuals were
set to 10−3 for continuity and 10−4 for the velocity components.
For spatial discretization, the MUSCL method has been chosen
to minimize numerical diffusion. In fact, as shown by Tagliaferri
et al. (2013), in the full fluidization regime, the FirstOrderUpwind
(FUS) scheme (provided inside the software as default option
for spatial discretization) introduces a high numerical diffusion
leading to the potential risk of smoothing out the solid volume
fraction gradients at bubbles boundaries and ultimately failing to
predict the correct bubble size and distribution.

Mesh Grid Sensitivity Analysis (2D Model)
Based upon the numerical setup described in the previous section,
a mesh grid sensitivity analysis was carried out to evaluate the
convergence of numerical solutions. The performance of the CFD
models (time required by the simulations to perform) are heavily
affected by the choice of the mesh size. To this purpose, four sim-
ulations were carried out based on identical operating conditions
(Ugas = 0.2m s−1) and material properties setup (Table 1) using
four different square mesh sizes. The choice of the exact mesh
size was made to obtain a precise discretization of the geometry
thus avoiding any cut cells within the grid. For the 3D model,
only one mesh was investigated corresponding to 20 times the
particles diameter. Related results and simulation performances
are reported in terms ofmathematical indicators inTables 2 and 3,
respectively. The solid fraction distributions in Figure 2 show
the different accuracy of CFD models in displaying the bubbles
shape and distribution. According to Vejahati et al. (2009), the
convergence of the numerical solution could be evaluated based
upon macroscopic key indicators of the bubbling bed behavior
such as the time-averaged pressure drop (measured across the
bed between two fixed points) and void fraction (computed as
a surface time-averaged integral for a certain bed height, i.e.,
8 cm in this study). Finally, the variance of the pressure drop
signal was compared, and results were time averaged in the
2–40 s range thus excluding the initial unsteady state behavior of
the system (see Table 2). The observation of the pressure drop
and void fraction values (both time averaged) along with the
contours of solid fraction led to choose grid c (1.905mm) as
the one ensuring the convergence of the overall hydrodynamic
behavior. This result supports what was previously reported by
van der Hoef et al. (2006), Syamlal and O’Brien (2003), and

TABLE 2 | Mesh sensitivity outputs used to assess the convergence of numerical
solution.

Mesh spacing (mm) ΔΔΔP (kPa) Time-averaged void fraction

Δ = 7.62 (a) 4.144 0.64
Δ = 3.81 (b) 4.119 0.59
Δ = 1.905 (c) 4.026 0.61
Δ = 0.635 (d) 4.045 0.62

TABLE 3 | Simulations performances: effect of mesh refinement on the total CFD
simulation time for the 2D and 3D model.

ΔΔΔtime 2–40 s HPC Number of cells Total simulation time (h)

2D—7.62mm 16 1,333 46
2D—3.81mm 16 5,333 63
2D—1.905mm 16 21,333 96
2D—0.635mm 32 19,200 264
3D—3.81mm 48 285,000 336

Simulations run on HPC machines (Mammoth Parallel II) at the University of Sherbrooke.

FIGURE 2 | Solid volume fraction contours at time 20 s for U= 0.2ms−1.
From left to right four decreasing mesh size 7.62 (A), 3.81 (B), 1.905 (C), and
0.635 (D) mm.

Zimmermann and Taghipour (2005), confirming the necessity to
employ a mesh size less than or equal to 10 times the Sauter
diameter of particles (0.19mm) for solution grid independency.

Based on these results square meshes of 1.905mm side, corre-
sponding approximately to 10 times the particles Sauter diameter,
were chosen to investigate the 2D model sensitivity.

RESULTS AND DISCUSSION

CFD simulation results were analyzed to test the TFM model
sensitivity as well as its accuracy in matching empirical data.
The key parameter used to assess the CFD models accuracy was
the experimental pressure drop across the bed. Specifically the
power spectral density (PSD) analysis was used, attempting to
quantify the effect of bubbles motions and bed mass oscillation
on the pressure drop signal. Once the time-dependent pressure
drop signal was obtained, two other main mathematical steps
were followed to investigate the pressure fluctuation distribution.
First, a power spectral density (PSD) of the signal was calculated,
showing the frequency distributions of these oscillations. To this
purpose a fast Fourier transform (FFT) was applied to the original
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signal, cutting the first 2 s of each simulation to exclude the
transitory behavior of the system. Then an integral calculation
of this PSD distribution was computed to show the cumulate
frequency growth. This last step has been put forward just to
ease the reading and the interpretation of the PSD distribution
itself. Moreover, it can be noticed that the final value of the PSD
integral also represents the total “energy” reached by the original
signal in time. Besides being an useful indicator of the bubbling
vigor, this value was also used in certain case to normalize the
PSD curves (dividing their cumulative distribution by this value)
and make these independent from the time scale of the pressure
drop signal (see Experimental Tests to Evaluate the Dependency
of PSD Distribution on Time). Accordingly only the shape of the
PSD growth could be observed and analyzed. To carry out the
model validation, a proper campaign of measurement was carried
out covering both the “fixed” and the “bubbling” bed regimes. A
dedicated experimental test allowed identifying a minimum time
threshold to ensure a representative PSD of the model, which will
be explained in the following section.

Experimental Tests to Evaluate the
Dependency of PSD Distribution on Time
The time-pressure drop signal shows random pressure fluctu-
ations because of the intrinsic stochastic behavior of bubbles.
Therefore, the results are always different for a given set of geome-
tries and operating conditions. Because of this variability, an alter-
native strategy would logically be required to univocally trace the
“fingerprint” of bubble formation and motion inside the reactor.
To this purpose, the signal was processed using FFT algorithm to
obtain a frequency spectrum distribution and its corresponding
integral (over the frequency domain) which, at this point, were
no longer specific of the singular experiment. However, to gain a
good PSD resolution, the time horizon of these experiments had
to be considerably wider as compared to the one required by the
single bed oscillation. Such an issue could be comparable to the
choice of a representative sample size in statistics and therefore
three experiments involving different duration (40 s, 5min, 1 h)
were carried out. The three corresponding normalized cumulative
PSDs are plotted in Figure 3. The integral of PSD function was

FIGURE 3 | Normalized PSD integral for three different empirical tests
performed in the bubbling regime (according to operating conditions reported
in Section “Experimental Setup”): 40 s (red), 5min (green), and 1 h (blue).

preferred to have a better definition of the curves. Normalization
is required here to overcome the intrinsic effect of different time
duration on the total energy of the original signal (which is
intrinsically linked to it by definition).

All three tests show a very similar trend where the curves
corresponding to tests 2 and 3 are almost overlapping while test
1 (40 s test) present minor differences due to some missing peaks
in the spectrum, which ultimately results in a less regular growth
of the cumulative distribution. Nevertheless, according to these
results, it has been concluded that 40 s can reasonably be accepted
as an end-time reference for CFD simulations. The postprocessing
data of shorter tests (not reported in this work) revealed a very
poor PSD distribution because of a significant lack of frequencies
ultimately suggesting not to reduce any further the flow time
for CFD simulations. Under the chosen numerical setup, high
performance computing (HPC) can solve 40 s of real time in
approximately 5 days (for the 2D model) using a 0.075′′ mesh
grid. The 0–25Hz range in the frequency spectrum covers almost
the entire distribution of pressure fluctuations showing that the
specific fingerprints of bubbles is confined in this limited range
with a major concentration of peaks in the 3–5Hz range. The lack
of a single, dominant frequency (“natural” frequency of bed mass
oscillation) is not surprising and can be explained by the existence
of different modes of bed oscillations which alter the natural
frequency of gas–solid interactions in the fluidized bed (Ommen
et al., 2011). Bi (2007) reported that these differentmodes are to be
taken into account in such a system because of their direct impact
on the pressure drop spectrum of the signal. Moreover, the major
concentration of peaks in the lower part of the frequency spectrum
is deemed to be strongly linked to bubbles formation and eruption
as also found by Peirano et al. (2001).

TFM vs Experiments: Model Validation
Methodology
Fixed Regime
Despite the main purpose of this work being the investigation
of the bubbling regime, it could be as well useful to validate the
CFD model in the fixed regime. Details of the mechanical prop-
erties of the solid phase and their mathematical formulations, as
implemented inside the CFDmodel, can be found in Table 4. The

TABLE 4 |Mechanical properties of solid phase and mathematical formulation used
in the CFD model (Ansys/Fluent) to simulate the gas–solid system.

Alumina (granular) properties Units Model

Granular temperature model – Phase property
Particle diameter μm 190
Granular viscosity kgm−1 s−1 Gidaspow
Granular bulk viscosity kgm−1 s−1 Lun et al.
Frictional viscosity kgm−1s−1 Schaeffer
Frictional pressure Pa Based KTGFa

Frictional modulus Pa Derived
Granular temperature m2 s−2 Algebraic
Solid pressure Pa Lun et al.
Radial distribution – Lun et al.
Elasticity modulus Pa Derived

aJohnson and Jackson (for fixed regime).
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FIGURE 4 | Experimental and CFDs time-averaged pressure drops for different superficial velocity tested in the fixed regime. CFD simulations were performed based
on a different Umf (used within the drag calibration algorithm). The graphic also depicts the experimental uncertainty produced by the differential pressure gage
precision.

latter is valid for simulations both in the bubbling and fixed regime
(with only a different definition of the frictional pressure term for
fixed condition). This type of analysis was principally aimed to
assess whether or not the value of minimum fluidization velocity
(Umf) used inside the CFD (as one of two calibration points for
our customized drag law) can also be properly predicted by the
CFD model. To this purpose, six superficial velocity values were
used for empirical tests and corresponding CFD simulations. As
mentioned, the transition from the fixed to the bubbling regime is
not abrupt, and consequently it is difficult to identify a precise and
representative value ofUmf. As explained in the last part of Section
“Hydrodynamic and Numerical Model,” the Umf represents, in
the CFD model, an important calibration point impacting on
the ultimate value of the drag coefficient. Consequently, three
values of Umf (in the range identified for the experiments) were
tested by providing them as an input to the CFD model (used
within the drag calibration algorithm). Three corresponding sets
of simulations were performed based upon these values and the
six superficial velocity used for the fixed regime as shown in
Figure 4. Simulation results showed good agreement with the
experimental curve where the average relative error varies around
10% for all three cases. A bigger gap was observed for lower
superficial velocities and a smaller error when the bed approaches
the transition to a fluidized regime. The end flow time of these
simulations was set to 10 s since in the fixed regime the steady
state is reached quickly. The best match with the experiments was
found using a value of Umf = 0.06m s−1 (as drag law calibration
point) when the superficial velocity was such as to approach the
bubbling condition. Thus using the highest value of superficial
velocity tested, Uo = 0.0548m s−1, we obtained a relative error
between experiments and CFD around 1%. Results also showed
that numerical results are closer to empirical values at lower
superficial velocity when the smallest Umf (0.055m s−1) is used
into the CFD drag law. For intermediate superficial velocities, the
simulation performed using Umf = 0.058m s−1 provided better

results. Consequently there is not an unique trend on the best
value ofUmf to be employed into the CFD drag law and the impact
of this parameter on CFD outputs was also tested for the bubbling
regime.

Bubbling Regime
Once the air velocity exceeds a critical value (Umf), bubbles are
generated above the air distributor and moves upwards tending
to grow and coalesce. The pressure fluctuations across the bed
are greatly influenced by the gas velocity because of the drag
effect brought on the particles that ultimately reflects on the
bubbles formation and motion (Qingcheng et al., 2011). To this
purpose, a value of Uo = 0.2m s−1 (approximately 3.5 times the
Umf) was used as boundary condition for the CFD simulations
of the bubbling regime. In addition, a no slip condition was
set both for the primary and the secondary phase at the wall.
Given the primary importance of the drag effect in cold fluid
dynamic applications and according to preliminary CFD tests
and literature review (Esmaili and Mahinpey, 2011), the adjusted
Syamlal–O’Brien model has been chosen and used for all CFD
simulation in this work.More details about the solid phase proper-
ties and mathematical formulation that was set in the CFDmodel
(for the bubbling regime) can be found in Table 4.

Example of graphical outputs is shown in Figure 5 (comparison
between experimental values and CFD simulations). Although
there are similarities between the two set of data (Figure 5, left),
the qualitative comparison of the pressure oscillation in time is not
sufficient to assess the accuracy of CFDmodel in reproducing the
experimental data. Figure 5 (right) shows a divergence between
the PSD of the experimental and simulation signals (especially in
the first part of the spectrum 0–2Hz), which is mainly due to the
intrinsic inability for the 2Dmodel to capture andpredict the exact
“fingerprint” of bubbles. That might be due to the natural three
dimensionality of the flow, supporting what found in previous
works (Peirano et al., 2001; Acosta-Iborra et al., 2011).
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FIGURE 5 | Experimental vs 2D two fluid model of a bubbling bed using alumina as fluidizing medium: comparison between the pressure drop signal in time (on the
left) and its corresponding representation in the frequency spectrum (on the right).

In addition to the pressure drop signal, the distribution of the
phase-volume fractions inside the bed is crucial and often used
as a key validation point. However, the visual empirical observa-
tion of the stochastic evolution of flow patterns (bubble, cluster,
channeling phenomenon, etc.) is rather challenging. Under the
fluidization regime, bubbles move really fast and their presence
close to the reactor wall is unpredictable. Their presence can be
only observed in the wall proximity (in certain moments) and
without any chance to evaluate what occurs deeper inside the
system body. In addition, the presence of a thin layer of dust
between bubbles approaching the reactor wall and the PVC wall
itself further complicates the visual analysis.

Model Sensitivity Analysis
The outputs of the 2D model sensitivity analysis are reported
in the following along with the empirical data to also assess the
accuracy of the numerical results. Together with the principle
indicators of time-pressure drop, all the results were compared in
terms of PSD cumulative (integral function) that summarizes at
best the dynamic behavior of the bubbling system.

Restitution Coefficient
As mentioned in Section “Hydrodynamic and Numerical Model,”
this parameter quantifies the loss of energy due to the particles
collisions, which impacts the momentum equation for the solid
phase in Eqs 7, 8, 12, and 14. In this work, simulations were
repeated using five different values of the restitution coefficient, in
the 0.5–1 range, and results are compared inTable 5 and Figure 6.

Results showed that the restitution coefficient does not have a
significant impact on the CFD simulations outputs except when
ideal collisions are assumed (ess = 1). This is in agreement with
the work of Tagliaferri et al. (2013) as well as with what was
previously reported in open literature (McKeen andPugsley, 2003;
Zimmermann and Taghipour, 2005).

Esmaili and Mahinpey (2011) found comparable results con-
cluding that when collisions becomes less ideal, particles become
closely packed in the densest region of the bed resulting in sharper
porosity contours and larger bubble. The simulation with ess = 0.7
presented the best match with empirical data in terms of cumu-
lated PSD, showing the lowest concentration of peaks in the first
part of the spectrum as compared to the other simulations. In

TABLE 5 | Comparison of main statistical indicators (of time-pressure drop) for the
experiment and CFD simulations (varying the restitution coefficient—ess).

ΔΔΔtime 2–40 s Time
aver.

ΔΔΔP (Pa)

Min.
(Pa)

Max.
(Pa)

Variance
(Pa2)

Signal
energy

(Pa2)×105

2D—ess =0.5 4,049 2,395 6,669 178,208 1.765
2D—ess =0.7 4,052 2,738 6,163 167,538 1.679
2D—ess =0.9 4,051 2,310 7,625 175,998 1.762
2D—ess =0.98 4,082 2,694 5,934 176,553 1.764
2D—ess =1 4,102 2,922 6,434 150,331 1.490
Exp. 3,965 1,916 6,322 204,544 2.051

simulation where ess = 1, the absence of sharp and big bubbles
leads to a smaller variance of pressure drop and ultimately to a
lower final signal energy (see Table 5 and Figure 6).

Solid Pressure
This parameter plays an important role in themomentumEq. 2 for
the granular phase and, along with shear stress tensor, contains all
the parameters describing the intrinsic nature of granular flows.

Open literature shows no clear convergence on the best expres-
sion to be used for BFBs (Vejahati et al., 2009; Esmaili and
Mahinpey, 2011) and, also for this reason, various formulations
of the solid pressure termwere investigated.Mathematical expres-
sions for this term can be found in Section “Hydrodynamic and
Numerical Model” according to Lun et al. (1984), Syamlal and
O’Brien (1989), and Ahmadi and Ma (1990), respectively. This
latter, differently from the first two, also embeds the frictional
viscosity effects as shown in Eq. 16.

Similarity between the Ma–Ahmadi and Syamlal–O’Brien
model is depicted by the overlap within the 0–20Hz range
(Figure 7). The Syamlal–O’Brien model provides the best estima-
tion in terms of the final total power achieved (with respect to
the empirical data of our experimental bench, see Table 6). This
model produced a slightly superior signal energy when compared
to the Ma–Ahmadi expression. However, this little gap is due to
the presence of peaks at frequencies higher than 20Hz, which
cannot be observed on the experimental PSD. This result may
seem surprising since major contribution to particles momentum
exchange arises from collisions in the dilute part of the bed and
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FIGURE 6 | Left: solid volume distribution for ess values of 1 (A), 0.98 (B), 0.9 (C), 0.7 (D), and 0.5 (E). Right: corresponding PSD integral distribution.

FIGURE 7 | PSD cumulative trend for the experiment (red) and three CFD simulations based upon three different formulations of the solid pressure term.

above all from particles friction, in the denser zones, which is
accounted in the Ma–Ahmadi formulation through the frictional
viscosity. However, in the TFM approach, the frictional viscosity
is derived from the frictional pressure, which is only based on the
solid fraction distribution inside the bed, and not on the real prop-
erties of solid particles such as their static, dynamic and rotational
frictional components (that can be instead defined when using a
discrete element method for particle–particle interactions). The
importance of including a proper closure for particles friction,
including also the rotational dynamic and effects (not accounted
in this TFM study), has been very thoroughly explained and
justified by Yang et al. (2016) in their recent TFM work.

Minimum Fluidization Velocity (Drag Law)
In this study, focusing on a cold multiphase system, the drag
force is the dominant term coupling the two phases. The adjusted
Syamlal–O’Brien drag law was chosen because of his superior
accuracy, also in agreement to what was previously found in litera-
ture (Vejahati et al., 2009; Min et al., 2010; Esmaili andMahinpey,

TABLE 6 | Comparison of main statistical indicators (of time-pressure drop) for the
experiment and CFD simulations (varying the formulations for the solid pressure
term—Ps).

ΔΔΔtime 2–40 s Time
aver.

ΔΔΔP (Pa)

Min.
(Pa)

Max
(Pa)

Variance
(Pa2)

Signal
energy

(Pa2)×105

2D—Ps = Lun et al. 4,051 2,310 7,625 175,988 1.762
2D—Ps =Syamlal–O’Brien 4,064 2,470 6,652 205,555 1.991
2D—Ps =Ma–Ahmadi 4,077 2,729 6,935 189,681 1.899
Exp. 3,965 1,916 6,322 204,544 2.051

2011). As explained in Section “Hydrodynamic and Numerical
Model,” this drag law is particularly sensitive to the empirical value
of the void fraction and the minimum fluidization velocity. While
the former can be quite univocally computed (knowing the bed
weight and the bed volume occupied by the solid phase when
the fluidization onset occurs) the latter is often more complex to
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estimate (as we experienced in this case of study where the pro-
gressive transition between the fixed and the bubbling regime can
be noticed). Three simulations corresponding to three different
values ofUmf were carried out without modifying anything else in
the operating condition setup or numerical settings.

Results shown in Table 7 and Figure 8 depict the sensitiv-
ity of the model to a Umf variation. The CFD simulation with
Umf = 0.055m s−1 shows the best match with the empirical data
in terms of pressure drop variance and final energy despite an
overprediction of 500 Pa both for the maximum and minimum
oscillation peaks found in the pressure drop signal. However, as
already observed for the solid pressure analysis, the energy gap
between the CFD simulation and empirical data has been reduced
because of the frequency peaks over the 20Hz, which are absent
in the experiments. A better trend was found for the simulation
with Umf = 0.06m s−1 with a minor growth of its PSD integral in
the 20–60Hz range (Figure 8). In this case (as also found for the
other parameters investigated in this study), all the 2Dmodel sim-
ulations showed some deficiency in reproducing the experimental
PSD distribution with an unrealistic presence of peaks in the low
frequencies zone. The model also depicted a weaker distribution
of peaks in the 2–10Hz rangewhere the experimental PSD already

TABLE 7 | Comparison of main statistical indicators (of time-pressure drop) for the
experiment and CFD simulations (varying the Umf used within the drag calibration
algorithm).

ΔΔΔtime 2–40 s Time
aver.

ΔΔΔP (Pa)

Min.
(Pa)

Max
(Pa)

Variance
(Pa2)

Signal
energy

(Pa2)×105

2D—Umf = 0.06 4,051 2,393 7,637 184,297 1.853
2D—Umf = 0.058 4,053 2,762 6,774 177,677 1.773
2D—Umf = 0.055 4,082 2,557 7,146 207,083 2.021
Experimental 3,965 1,916 6,322 204,544 2.051

reaches 90% of its total energy. Nevertheless, the mean pressure
drop is correctly predicted in all of three cases, with a relative error
found to be between 2 and 3% of the experimental one.

2D vs 3D Models—Effects Induced by Numerical
Geometry
This section focuses on the comparison of CFD results achieved
by using 2Dmodels (with two different mesh sizes corresponding
to 10 and 20 times the particles diameter) and a 3D set with
a relatively coarse grid (hexahedron of 3.81mm side, namely,
about 20 times the particles diameter) to restrain its computa-
tional costs. This particular comparison aimed at showing the
potential improvements of 3D simulation while warranting its
limitation inmatching the total signal energy of the experiment as
a result of coarse meshing. All the other numerical settings were
the same for these simulations to have a fair comparison of the
results.

Figures 9C,D show how the choice of a coarser mesh (3.81mm
in green vs 1.91mm in orange) leads to an underestimation of the
PSD distribution all over the frequency domain, which is partic-
ularly clear after the first 2Hz. As for the grid sensitivity analysis
[see Mesh Grid Sensitivity Analysis (2D Model)], the CFD model
ability to capture the real distribution of bubbles as well as their
sharp contours gradients is strongly linked to the mesh resolution
(thanks to the reduce numerical diffusion). Consequently a finer
grid allows for a better accuracy in the prediction of the pressure
drop signal and its PSD distribution. Despite the overall general
validity of this consideration, it is worth reminding that given the
3D nature of bubbles, the PSD should be used only as a qualitative
tool in analyzing results coming from the 2D models. According
to the present results for the 2D model (see Table 8), a coarser
grid leads to an over prediction of the time-averaged pressure drop
with a relative error of 4%, which is almost twice the error of the
simulation with the finer grid.

FIGURE 8 | PSD cumulative trend for the experiment (red) and three CFD simulations based upon three different value of minimum fluidization velocity (Umf).
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FIGURE 9 | Comparison between the experiment and CFD of fluidized bed reactor: a time window of the pressure drop signals (A), the corresponding PSD
distributions (B), the PSD integral curves in the range 0–50Hz (C), and its zoom in the range 0–4Hz (D).

TABLE 8 | Comparison of main statistical indicators (time-pressure drop) for the
experiment and CFD simulations (based upon two mesh grid size in 2D and using
a full 3D geometry).

ΔΔΔtime 2–40 s Time
aver.

ΔΔΔP (Pa)

Min.
(Pa)

Max
(Pa)

Variance
(Pa2)

Signal
energy

(Pa2)×105

2D—Δ = 3.81mm 4,119 2,441 7,687 182,169 1.771
2D—Δ = 1.91mm 4,051 2,393 7,637 184,297 1.853
3D—Δ = 3.81mm 3,960 2,557 6,526 193,892 1.9465
Exp. 3,965 1,916 6,322 204,544 2.051

The PSD analysis of the 3D simulation (marked in blue in
Figure 9) shows that the full geometry model does improve the
match with the empirical data. This improvement emerges clearly
from the observation of the first part of the PSDpeaks distribution
(0–2Hz). Here, the 3D model and the experiment (marked in
red) are in a very good agreement. This relevant improvement
is also evident from the analysis of the PSD integral evolution in
the 0–4Hz range (see Figure 9D), where the divergence between
2D (green line) and 3D (blue line) simulations which were run
with the same mesh grid, emerges clearly. However, slightly
before 2Hz, the 3D curve starts growing with a weaker intensity
(as compared to the experiment) and this is most likely due to
the coarse mesh used for this case, which was chosen to limit the
duration of the 3D simulation. Further investigation will clarify
and quantify the impact of the grid choice on the 3D model as
it was done for the 2D case. Besides, the high frequency peaks
(>15Hz) are still present in the 3D simulation, which means that

this error is independent of the 2D/3D approach and it might be
an intrinsic limitation of the TFM approach. The presence of low
frequency peaks was found to be a limitation of the 2D model,
which could not be prevented by any parameters variation in the
model sensitivity (performed in this work) and the extension to a
full 3D model brought important improvement confirming what
found and recommended by Peirano et al. (2001) and Acosta-
Iborra et al. (2011) in their works.

Physical Correlation between Pressure
Drop and Void Fraction (Bubbles)
Distribution
The physical correlation between pressure drop and void fraction
(bubbles) distribution it is quite complex due to the dampened
effect of pressure waves propagating through the solid media.
Specifically when a bubble reaches the surface the change in the
voids distribution over the entire domain comes along with the
generation of new pressure waves. However, there is always a
certain delay in their propagation which result in a time lag of
pressure variation. Because of this delay, along with the simulta-
neous bubbles eruptions and consequent changing of the voids
distribution, it is difficult to correlate the pressure oscillations
in time and the bubbles displacement. However, as shown by
Acosta-Iborra et al. (2011), it is possible to simplify this analysis
by considering the pressure difference between two points in the
bed that very close to each other (see Figure 10, left hand side).
This strategy allows correlating the local pressure drop with a
single local bubble, rather than accounting for the global voids
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FIGURE 10 | Correlation between bubbles distribution and pressure drop in bubbling bed reactor: a view of the whole bubble distribution as predicted by CFD-TFM
along with the two points where pressure is monitored (on the left), the pressure drop trend vs solid fraction for a little time window (top), bubbles distribution in the
area of the two points for different time (case-1 and case-2, bottom pictures).

distribution in the whole bed. It is possible to locally apply the
Ergun Equation, where the pressure drop is strictly linked to the
void fraction and the gas velocity. Figure 10 shows two extreme
cases, first (case-1), a single bubble embeds both check points. In
such case the solid fraction drops to a value close to 0 because of
the dearth of solid obstacles between point A and B. The lack of
particles between the two points leads to an insignificant pressure
drop. Case-2 shows the opposite situation, when both the check
points are embedded in the emulsion phase (at high concentra-
tion of solid phase), which makes the fluid motion energetically
expensive. In both cases the strong link between solid fraction
and pressure drop is well depicted in the upper part of Figure 10.
A third case is also possible, when the solid fraction is close to
the maximum packing limit (like in case-2), but a lower value of
pressure drop is predicted by the model. Such an occurrence is
not surprising, since the gas velocity also plays a role in the gas
pressure drop (as shown in the Ergun equation). According to the
simulation, the gas velocity at the points A and B is 0.85m s−1

for case-2 and 0.6m s−1 for case-3, which explains the different
simulated pressure drop.

CONCLUSION

The results presented in this paper concern the application of
a CFD TFM to a gas–solid fluidized bubbling bed reactor. The
power spectral density (PSD) analysis (of pressure drop fluctua-
tions) was used to compare the empirical data with the numerical
predictions. The need of containing the computational costs was
one of the priority and resulted in finding a flow time threshold
for model simulations. Testing the effect of the sampling time
on the empirical power spectral density (PSD) of pressure drop
fluctuations it was found that 40 s could represent a good com-
promise to limit the duration of CFD simulations while ensuring
the consistency ofmodel validationwith empirical data. Themesh
size analysis carried out in this study showed that an interval
spacing of 10 times the mean particle diameter was able to give
acceptable results supporting what found in previous studies.
Because of the unclear transition between fixed and bubbling
regime, in the present experimental setup, the effect of Umf (used
as a parameter in the parametric drag law) on CFD simulations
was investigated. The model outputs showed a better agreement
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with empirical data when the highest Umf value (in the transition
zone of the fluidization curve) was used. Beside in the ideal
collision case (ess = 1), the effect of the restitution coefficient
appeared to be negligible on model predictions as well as the solid
pressure term which was tested throughout two different formu-
lations. In general, the 2D model revealed to correctly predict
the time-averaged pressure drop and its fluctuations amplitude.
Moreover, the post processing analysis of 2D simulations revealed
a straightforward correlation between the pressure drop and void
fraction distribution, confirming the presence of bubbles as the
main source of local variation of pressure. A 3D version of the
model was also implemented and compared with the 2D model.
Despite being based on a “medium” size mesh, the 3D model
drastically improved the results over the first part of the spectrum
(0–2Hz), namely, where all the previous 2D model simulations
failed. The effect of a coarser grid on the numerical PSD was
prior assessed allowing to believe how 3Dmodel results may have
been closer to the empirical ones also in the remaining part of
the spectrum if a finer mesh was exploited. However, according
to the simulation performances, reported in this work, this would
result prohibitive from a computational standpoint especially in
the perspective of a model scale up to industrial application. This
barrier may possibly be overtaken if: (a) coarser particles can be
used (which would result in a coarser mesh required to numerical
verification); (b) a different type of variable analysis is needed
possibly requiring a lower flow time as compared to the one used
in this work; (c) the study involves macroscopic variables or type
of analysis which do not require very fine mesh to be investigated.

NOTATION

ds diameter of particles in the solid phase, m
ess restitution coefficient between colliding particles of solid phase
g⃗ vector representation of acceleration due to gravity, 9.81ms−2

go ,ss radial distribution function between particles of solid phase
Kgs momentum exchange coefficient between gas and solid phase,

kgm−3 s−1

ṁpq mass flow rate from the generic phase p to the generic phase q,
kgm−3 s−1

P pressure, Pa
Ps solid pressure, Pa
Pfrict frictional component of solid pressure, Pa
t time, s
u⃗q velocity vector of the generic (gas and solid) phase q, m s−1

u⃗g velocity vector of gas phase, m s−1

u⃗s velocity vector of solid phase, m s−1

u⃗s′ velocity fluctuation vector of particles, m s−1

GREEK LETTERS

αq volume fraction of the generic (gas and solid) phase q
αg volume fraction of the gas phase
αs volume fraction of the solid phase
αs ,max maximum packing limit (volume fraction) of the solid phase
Θs granular temperature, m2 s−2

λs granular bulk viscosity, Pa s
μg viscosity of gas phase, Pa s
μs ,tot total granular viscosity of solid phase, Pa s
μs ,col collisional component of total granular viscosity, Pa s
μs ,kin kinetic component of total granular viscosity, Pa s
μs ,frict frictional component of total granular viscosity, Pa s
ρq density of the generic (gas and solid) phase q, kgm−3

ρg density of the gas phase, kgm−3

ρs density of the solid phase, kgm−3

τ̄g stress–strain tensor for the gas phase, Pa
τ̄s stress–strain tensor for the solid phase, Pa

AUTHOR CONTRIBUTIONS

LT made the experimental tests and part of the numerical sim-
ulation; he also was closely involved with the writing of the
manuscript. TM helped supervise the different test both experi-
mental and numerical simulations; he also contributed strongly
to the manuscript redaction and reviewal. MB supervised the
work helping to provide an industrial orientation; he was also
involved in reviewing the manuscript. DC is co-PI of this work
and codirector of LT; he was strongly involved in the reviewal
of the manuscript. JL is the PI of this work; he was closely
involved in the research orientation to start with; he supervised
both LT and TM and contributed significantly to the manuscript
reviewal.

FUNDING

The authors are grateful to the Industrial Research Chair on
Cellulosic Ethanol and Biocommodities of the Université de Sher-
brooke and especially its sponsors: The Ministère de l’Énergie
et des Ressources Naturelles du Québec (MERNQ), CRB Inno-
vations, Enerkem, and Éthanol GreenFIeld Québec Inc. The
authors are also grateful to MITACS for LT and TM’s grant
and finally Compute Canada for having made possible to per-
form most of the simulations throughout high performance
computing (HPC) machines at the Université de Sherbrooke
(Mammoth Parallel II).

REFERENCES
Acosta-Iborra, A., Sobrino, C., Herna, F., and de Vega, M. (2011). Experimental and

computational study on the bubble behavior in a 3-D fluidized bed. Chem. Eng.
Sci. 66, 3499–3512. doi:10.1016/j.ces.2011.04.009

Ahmadi, G., and Ma, D. (1990). A thermodynamical formulation for dispersed
multiphase turbulent flows. Int. J. Multiphase Flow 16, 323–351. doi:10.1016/
0301-9322(90)90062-N

ANSYS. (2012). ANSYS FLUENT Theory Guide. Canonsburg, PA: Ansys. Inc,
511–545.

ASTM International. (2012). ASTM D774312 Standard Test Method for Measur-
ing the Minimum Fluidization Velocities of Free Flowing Powders. West Con-
shohocken, PA: ASTM International.

Bi, H. T. (2007). A critical review of the complex pressure fluctuation phenomenon
in gas-solids fluidized beds. Chem. Eng. Sci. 62, 3473–3493. doi:10.1016/j.ces.
2006.12.092

Davidson, J. F., and Harrison, D. (1963). Fluidised Particles. New York, NY: Cam-
bridge University Press.

Esmaili, E., and Mahinpey, N. (2011). Advances in engineering software adjust-
ment of drag coefficient correlations in three dimensional CFD simulation of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2017 | Volume 5 | Article 3814

https://doi.org/10.1016/j.ces.2011.04.009
https://doi.org/10.1016/0301-9322(90)90062-N
https://doi.org/10.1016/0301-9322(90)90062-N
https://doi.org/10.1016/j.ces.2006.12.092
https://doi.org/10.1016/j.ces.2006.12.092
http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Tricomi et al. CFD-TFM of a Bubbling Bed

gas–solid bubbling fluidized bed. Adv. Eng. Software 42, 375–386. doi:10.1016/j.
advengsoft.2011.03.005

Garside, J., and Al-Dibouni, M. R. (1977). Velocity-voidage relationships for flu-
idization and sedimentation in solid-liquid systems. Indus. Eng. Chem. Proc. Des.
Dev. 16, 206–214. doi:10.1021/i260062a008

Gidaspow, D., Bezburuah, R., and Ding, J. (1992). “Hydrodynamics of cir-
culating fluidized beds, kinetic theory approach,” in Fluidization VII, Pro-
ceedings of the 7th Engineering Foundation Conference on Fluidization,
eds O. E. Potter and D. J. Nicklin (New York: Engineering Foundation),
75–82.

Johnson, P. C., and Jackson, R. (1987). Frictional–collisional constitutive relations
for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67.
doi:10.1017/S0022112087000570

Johnsson, H., and Johnsson, F. (2001). Measurements of local solids volume-
fraction in fluidized bed boilers. Powder Technol. 115, 13–26. doi:10.1016/
S0032-5910(00)00270-9

Lun, C. K. K., Savage, S. B., Jeffrey, D. J., and Chepurniy, N. (1984). Kinetic
theories for granular flow: inelastic particles in Couette flow and slightly
inelastic particles in a general flowfield. J. Fluid Mech. 140, 223. doi:10.1017/
S0022112084000586

McKeen, T., and Pugsley, T. (2003). Simulation and experimental validation of a
freely bubbling bed of FCC catalyst. Powder Technol. 129, 139–152. doi:10.1016/
S0032-5910(02)00294-2

Min, J., Drake, B. J., Heindel, J. T., and Fox, R. O. (2010). Experimental validation of
CFD simulations of a lab-scale fluidized-bed reactor with and without side-gas
injection. AIChE J. 56, 1434–1446. doi:10.1002/aic.12077

Ogawa, S., Umemura, A., and Oshima, N. (1980). On the equations of
fully fluidized granular materials. Appl. Math Phys. 31, 483. doi:10.1007/
BF01590859

Ommen, J. R., Sasic, S., Van Der Schaaf, J., Gheorghiu, S., Johnsson, F., Cop-
pens, M-O. (2011). Time-series analysis of pressure fluctuations in gas–solid
fluidized beds – a review. Int. J. Multiphase Flow 37, 403–428. doi:10.1016/j.
ijmultiphaseflow.2010.12.007

Peirano, E., Delloume, V., and Leckner, B. (2001). Two- or three-dimensional
simulations of turbulent gas-solid flows applied to fluidization. Chem. Eng. Sci.
56, 4787–4799. doi:10.1016/S0009-2509(01)00141-5

Qingcheng, W., Kai, Z., and Hongyan, G. (2011). CFD simulation of pressure
fluctuation characteristics in the gas-solid fluidized bed: comparisons with
experiments. Pet. Sci. 8, 211–218. doi:10.1007/s12182-011-0137-x

Richardson, J. F., and Zaki, W. N. (1954). Sedimentation and fluidization: part I.
Trans. Inst. Chem. Eng. 32, 35–53.

Schaeffer, D. G. (1987). Instability in the evolution equations describing incom-
pressible granular flow. J. Differ. Equ. 66, 19–50. doi:10.1016/0022-0396(87)
90038-6

Singh, R. I., Brink, A., and Hupa, M. (2013). CFD modeling to study fluidized
bed combustion and gasification. Appl. Therm. Eng. 52, 585–614. doi:10.1016/j.
applthermaleng.2012.12.017

Syamlal, M., and O’Brien, T. J. (1987). The Derivation of a Drag Coefficient Formula
from Velocity-Voidage Correlations. Unpublished.

Syamlal, M., and O’Brien, T. J. (1988). Simulation of granular layer inversion in
liquid fluidized beds. Int. J. Multiphase Flow 14, 473–481. doi:10.1016/0301-
9322(88)90023-7

Syamlal,M., andO’Brien, T. J. (1989). Computer simulation of bubbles in a fluidized
bed. AIChE Symp. Ser. 85, 22–31.

Syamlal, M., and O’Brien, T. J. (2003). Fluid dynamic simulation of O-3 decom-
position in a bubbling fluidized bed. AIChE J. 49, 2793–2801. doi:10.1002/aic.
690491112

Syamlal, M., Rogers, W., and O’Brien, T. J. (1993). MFIX Documentation: Vol-
ume 1, Theory Guide. Springfield, VA: National Technical Information Service
(DOE/METC 9411004, NTIS/DE9400087).

Tagliaferri, C., Mazzei, L., Lettieri, P., Marzocchella, A., Olivieri, G., and Salatino,
P. (2013). CFD simulation of bubbling fluidized bidisperse mixtures: effect of
integration methods and restitution coefficient. Chem. Eng. Sci. 102, 324–334.
doi:10.1016/j.ces.2013.08.015

van der Hoef, M. A., Ye, M., van Sint Annaland, M., Andrews, A. T., Sundaresan,
S., and Kuipers, J. A. M. (2006). Multiscale modeling of gas-fluidized beds. Adv.
Chem. Eng. 31, 65–149. doi:10.1016/S0065-2377(06)31002-2

Vejahati, F., Mahinpey, N., Ellis, N., and Nikoo, M. B. (2009). CFD simulation of
gas-solid bubbling fluidized bed: a new method for adjusting drag law. Can. J.
Chem. Eng. 87, 19–30. doi:10.1002/cjce.20139

Yang, L. L., Padding, J. T. J., and Kuipers, J. A. M. H. (2016). Modification of kinetic
theory of granular flow for frictional spheres, part I: two-fluid model derivation
and numerical implementation. Chem. Eng. Sci. 152, 767–782. doi:10.1016/j.ces.
2016.06.015

Zimmermann, S., and Taghipour, F. (2005). CFD modeling of the hydrodynamics
and reaction kinetics of FCC fluidized-bed reactors. Ind. Eng. Chem. Res. 44,
9818–9827. doi:10.1021/ie050490+

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Tricomi, Melchiori, Chiaramonti, Boulet and Lavoie. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2017 | Volume 5 | Article 3815

https://doi.org/10.1016/j.advengsoft.2011.03.005
https://doi.org/10.1016/j.advengsoft.2011.03.005
https://doi.org/10.1021/i260062a008
https://doi.org/10.1017/S0022112087000570
https://doi.org/10.1016/S0032-5910(00)00270-9
https://doi.org/10.1016/S0032-5910(00)00270-9
https://doi.org/10.1017/S0022112084000586
https://doi.org/10.1017/S0022112084000586
https://doi.org/10.1016/S0032-5910(02)00294-2
https://doi.org/10.1016/S0032-5910(02)00294-2
https://doi.org/10.1002/aic.12077
https://doi.org/10.1007/BF01590859
https://doi.org/10.1007/BF01590859
https://doi.org/10.1016/j.ijmultiphaseflow.2010.12.007
https://doi.org/10.1016/j.ijmultiphaseflow.2010.12.007
https://doi.org/10.1016/S0009-2509(01)00141-5
https://doi.org/10.1007/s12182-011-0137-x
https://doi.org/10.1016/0022-0396(87)90038-6
https://doi.org/10.1016/0022-0396(87)90038-6
https://doi.org/10.1016/j.applthermaleng.2012.12.017
https://doi.org/10.1016/j.applthermaleng.2012.12.017
https://doi.org/10.1016/0301-9322(88)90023-7
https://doi.org/10.1016/0301-9322(88)90023-7
https://doi.org/10.1002/aic.690491112
https://doi.org/10.1002/aic.690491112
https://doi.org/10.1016/j.ces.2013.08.015
https://doi.org/10.1016/S0065-2377(06)31002-2
https://doi.org/10.1002/cjce.20139
https://doi.org/10.1016/j.ces.2016.06.015
https://doi.org/10.1016/j.ces.2016.06.015
https://doi.org/10.1021/ie050490+
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive

	Sensitivity Analysis and Accuracy of a CFD-TFM Approach to Bubbling Bed Using Pressure Drop Fluctuations
	Introduction
	Experimental Setup
	Hydrodynamic and Numerical Model
	Drag Law Formulation

	Numerical Simulation
	Mesh Grid Sensitivity Analysis (2D Model)

	Results and Discussion
	Experimental Tests to Evaluate the Dependency of PSD Distribution on Time
	TFM vs Experiments: Model Validation Methodology
	Fixed Regime
	Bubbling Regime

	Model Sensitivity Analysis
	Restitution Coefficient
	Solid Pressure
	Minimum Fluidization Velocity (Drag Law)
	2D vs 3D Models—Effects Induced by Numerical Geometry

	Physical Correlation between Pressure Drop and Void Fraction (Bubbles) Distribution

	Conclusion
	Notation
	Greek Letters
	Author Contributions
	Funding
	References


