
October 2017 | Volume 5 | Article 581

Original research
published: 10 October 2017

doi: 10.3389/fbioe.2017.00058

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

Edited by: 
Ramana Vinjamuri,  

Stevens Institute of Technology, 
United States

Reviewed by: 
Cesare Stefanini,  

Sant’Anna School of  
Advanced Studies, Italy  

Shigeru Kuchii,  
National Institute of Technology, 

Japan

*Correspondence:
Ying Zhao  

amengs@imust.cn

Specialty section: 
This article was submitted to  

Bionics and Biomimetics,  
a section of the journal  

Frontiers in Bioengineering  
and Biotechnology

Received: 20 May 2017
Accepted: 20 September 2017

Published: 10 October 2017

Citation: 
Zhao Y, Geng X, Li Q, Jiang G, Gu Y 

and Lv X (2017) Recognition of a 
Virtual Scene via Simulated 

Prosthetic Vision. 
Front. Bioeng. Biotechnol. 5:58. 
doi: 10.3389/fbioe.2017.00058

recognition of a Virtual scene via 
simulated Prosthetic Vision
Ying Zhao1*, Xiulin Geng1, Qi Li1, Guangqi Jiang1, Yu Gu1,2 and Xiaoqi Lv1,2

1 School of Information Engineering, University of Science and Technology, Baotou, China, 2 School of Computer Engineering 
and Science, Shanghai University, Shanghai, China

In order to effectively aid the blind with optimal low-resolution vision and visual recovery 
training, pathfinding and recognition tests were performed using a simulated visual pros-
thetic scene. Simple and complex virtual scenes were built using 3DMAX and Unity, and 
pixelated to three different resolutions (32 × 32, 64 × 64, and 128 × 128) for real-time 
pixel processing. Twenty subjects were recruited to complete the pathfinding and object 
recognition tasks within the scene. The recognition accuracy and time required were 
recorded and analyzed after the trials. In the simple simulated prosthetic vision (SPV) 
scene, when the resolution was increased from 32 × 32 to 48 × 48, the object recogni-
tion time decreased from 92.19 ± 6.97 to 43.05 ± 6.08 s, and the recognition accuracy 
increased from 51.22 ± 8.53 to 85.52 ± 4.93%. Furthermore, the number of collisions 
decreased from 10.00 ± 2.31 to 3.00 ± 0.68. When the resolution was increased from 
48 × 48 to 64 × 64, the object recognition time further decreased from 43.05 ± 6.08 to 
19.46 ± 3.71 s, the recognition accuracy increased from 85.52 ± 4.93 to 96.89 ± 2.06%, 
and the number of collisions decreased from 3.00 ± 0.68 to 1.00 ± 0.29. In complex 
scenes, the time required to recognize the room type decreased from 115.00 ± 23.02 
to 68.25 ± 17.23 s, and object recognition accuracy increased from 65.69 ± 9.61 to 
80.42 ± 7.70% when the resolution increased from 48 × 48 to 64 × 64. When the res-
olution increased from 64 × 64 to 128 × 128, the time required to recognize the room 
type decreased from 68.25 ± 17.23 to 44.88 ± 9.94 s, and object recognition accuracy 
increased from 80.42 ± 7.71 to 85.69 ± 7.39%. Therefore, one can conclude that there 
are correlations between pathfinding and recognition. When the resolution increased, 
the time required for recognition decreased, the recognition accuracy increased,  
and the number of collisions decreased. Although the subjects could partially complete 
the recognition task at a resolution of 32 × 32, the recognition time was too long and 
recognition accuracy was not good enough to identify simple scenes. Complex scenes 
required a resolution of at least 48 × 48 for complete recognition. In addition, increasing 
the resolution shortened the time required to identify the type of room, and improved 
the recognition accuracy.

Keywords: prosthetic vision, virtual scene, pathfinding, object identification, collision detection

inTrODUcTiOn

When people see, light in the visible spectrum is reflected by the objects in the environment, passes 
through the corona, is focused by the lens, and forms images on the retina. Then, the visual nerve 
system delivers the information to the brain, where it is perceived as vision. Through the visual 
system, humans and animals perceive object sizes, brightnesses, colors, and movement and obtain 
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various types of information. At least 80% of external informa-
tion is obtained via vision; it is the most important human and 
animal sense (Haibin, 2011; Weizhen, 2013).

According to statistical reports on visual impairment and 
blindness by the World Health Organization, 285 million people 
are vision impaired worldwide. Of these, 39 million are blind 
and 246 million suffer from amblyopia. About 90% of the world’s 
vision impaired people live in low income countries, and 82% of 
blind patients are at least 50 years old. Since the world’s popu-
lation is aging, this number is expected to rise (World Health 
Organization, 2009). The main causes of blindness are cataracts 
(Javitt et al., 1991) and age-related macular degeneration (AMD) 
(Jager et al., 2008). Although treatment for cataracts is available, 
AMD has no effective treatment and is one of the main causes of 
blindness (Chunyong, 2010). Macular degeneration is a chronic, 
incurable disease that can cause a sharp decline in central visual 
acuity and led to irreversible decreases in, or loss of central 
vision. Central vision is necessary for reading, determining 
the time, recognition of facial features, driving, and other daily 
activities (Shaohua and Yu, 2015). Macular degeneration usually 
occurs among those over 45 years old, and its incidence increases 
with age. The incidence of macular degeneration depends on 
race, with the disease being more common among whites than 
among colored people (Elfervig, 1998).

Other causes of blindness include primary retinitis pigmentosa 
(RP) (Senthil et al., 2017), congenital blindness (Greenaway and 
Dale, 2017), corneal opacity (Durkin et al., 2007), uncorrected 
refractive errors (Naidoo and Jaggernath, 2012), and diabetic 
retinopathy (Busik et al., 2017). The historically common retinal 
pigment degeneration called RP is frequently observed in peo-
ple with underlying retinal degeneration (Senthil et  al., 2017). 
According to survey data, its prevalence in some parts of China 
is about 1 in 3,500 (Shintani et al., 2009). The disease manifests 
as chronic, progressive retinal degeneration, eventually leading 
to blindness. The disease in some RP patients are autosomal 
dominant, which means that if one parent has the pathogenic 
gene, then the children will have the disease. However, some of 
them is linkage inheritance, which means if the mothers carry 
the disease genes, their children will be sick. Other cases may be 
accompanied by hearing loss and more common among males 
(Hongmin, 2004).

The blind person who lives in the darkness bears pain that 
sighted people cannot understand (Menghui and Qiushi, 2015). 
The birth of visual prostheses has given blind people the hope of 
recovering eyesight but is not applicable to all types of blindness. 
Currently, visual prostheses are designed primarily for RP and 
AMD patients (Kawashima et al., 2015). In these cases, the cause 
of blindness is apoptosis of retinal lateral photoreceptor cells 
and loss of the ability photosensitive. The ganglion and bipolar 
cells in the inner retina are still alive. Most of these surviving 
neurons can be stimulated by visual prostheses, resulting in 
artificial vision. Although the resulting visual acuity is far lower 
than normal, even such low-resolution vision serves as a “light” 
for the blind to save them from a dark world (Srivastava et al., 
2009; Menghui and Qiushi, 2015).

In principle, visual prostheses use micro cameras to obtain 
images, process and encode them using an image processor, 

and transmit the information through wireless coils to a micro 
stimulator implanted in the body. This device receives the 
information, decodes it and sends signals to a microelectrode 
array that stimulates the visual nervous system to induce lumi-
nescence photoism, resulting in artificial vision (Duret et  al., 
2006; Chader et al., 2009; Rizzo, 2011; Zapf et al., 2015).

Although the principle is simple, it is very difficult to 
accomplish artificial vision. First, the structure of the eye and 
the construction of the visual cortex are very fine and provide 
a limited operating area. The prosthesis requires implanting 
dozens or even hundreds of electrodes within the macular area 
of 5 mm in diameter (Jinhai et al., 2007; Seungwoo et al., 2009). 
Furthermore, compatibility requirements for biological materi-
als are high. In addition, the mechanisms of the human brain 
and visual neural system are not yet fully understood. Since it is 
still unclear how the brain perceives and processes color through 
vision, current visual prostheses only present “black and white” 
vision formed by phosphenes.

The United States, Germany, Australia, Belgium, Japan, etc. 
have carried out research on and designed visual prostheses. 
Some researchers have reported clinical and commercial appli-
cations. In the United States, Second Sight produces an epireti-
nal prosthesis called Argus II (Barry et  al., 2012; Cruz et  al., 
2013), which was authorized by the European EMA in 2011 and 
the United States FDA in 2013 (Stronks and Dagnelie, 2014). 
Alpha-IMS, a subretinal prosthesis by Retina Implant AG in 
Germany won European EMA authorization allowing it to begin 
sales in 2013 (Stingl et al., 2013). In addition, Australia’s Vitoria 
Monash University Clayton campus researchers have developed 
a bionic vision system called “bionic eye” that bypasses the visual 
pathway and directly stimulates the primary visual cortex via 
a series of 9 mm × 9 mm tiles implanted into the brain to let 
patients perceive visual patterns from combinations of up to 
473 spots of light (phosphenes). Although perception from the 
normal eye produces about 1,500,000 pixels, the rough, artificial 
image allows users to identify objects with simple shapes, the 
directions of moving objects, and perform other daily tasks 
(Kaufman, 2016).

To improve object identification and performance, a simu-
lated prosthetic visual test was conducted with sighted people to 
evaluate the potential benefits of particular electrode arrays. The 
results can provide useful aid to clinical studies (Dagnelie et al., 
2007; Chen et al., 2009; Zhao et al., 2010). In this article, a virtual 
scene was created using 3DMAX and Unity and presented to 
the subjects after binarization, color inversion, and simulated 
phosphenes template matching. The subjects used the first-
person view and were asked to use the real-time pixelated scene 
to perform pathfinding and object recognition tasks by using 
the mouse and WASD (or arrow) keys on a keyboard to control 
their orientations and directions of movement. The object iden-
tification time, object recognition accuracy, and the types and 
occurrences of collisions were detected and analyzed at various 
resolutions. We hope the results of this work will provide effec-
tive guidance and help in the development of image processing 
strategies, visual prosthesis stimulation, and visual recovery 
training, as well as further guidance on prosthesis implantation 
in patients with non-terminal RP.
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FigUre 1 | Photograph of a specific experimental scenario.
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MaTerials anD MeThODs

selection of subjects
Twenty volunteers were recruited from the Inner Mongolia 
University of Science and Technology graduate school. They 
had normal or corrected visual acuities of 20/20. The subjects 
were between 22 and 29 years old, with half being men and half 
women.

compliance statement
All of the experimental process meet the requirements of the 
Helsinki declaration of the World Medical Association and 
comply with national medical device clinical trial require-
ments. All participating subjects were informed of the course 
and purpose of the experiment and signed informed consent 
documentation before participation. According to the local 
and national guidelines, this study was not required specifically 
reviewed and approved by an ethics committee.

equipment and environment
The experimental platform included a camera (Logitech c920) 
and two personal computers. Software such as Audodesk 3ds 
Max 2012, Unity 4.3.4f1, Statistical Product and Service Solutions 
(SPSS), Java, C #, Visual Studio 2010, Matlab 2014b, screen video 
expert V2016, etc. were used to make models, as well as to per-
form image processing and statistical analysis.

The data points represent the mean value (seconds or 
accuracy ± SD) for combined data from all subjects. Data were 
analyzed using ANOVA and t-tests (two-tailed; a Bonferroni cor-
rection was applied to multiple comparisons) with SPSS 19.0 for 
Windows (SPSS Inc.), and p values ≤ 0.05 (after correction) were 
considered significant.

Before the experiments began, we ensured that the parti-
cipants experienced no interruptions and remained relaxed. 
The subjects sat in front of the LCD monitor at a distance of 
40–50  cm. One of the computers with a screen resolution of 
1,920 × 1,080 ran a real-time pixelization program that captured 
the virtual scene information from the camera and processed 
it into pixelated images. The virtual scene was built in Unity 
4.3.4f1, which was running on another desktop station. Subjects 
were asked to use the direction keys on the keyboard to control 
movement in the scene and walking speed. The mouse was used 
to control the angle of vision, and audio prompt information 
was provided through the headset. Figure  1 shows the expe-
rimental scenario.

Material library and Preexperiment Data
Because of individual differences in operation of the mouse and 
keyboard in a virtual environment with first-person perspective, 
the subjects with a good sense of direction, or who are familiar 
with first-person video games or the housing layout were filtered 
and recruited via a questionnaire. Then, the preexperimental 
training were performed.

The scenarios used in preexperimental training included a 
model that was created in 3DMAX and transferred into the unity 
virtual scene. Collision processing and first-person perspective 

were added, and the mouse and keyboard were configured to 
control viewing and ensure that the walking speed was in line 
with a normal pace. The default line of sight was horizontal and 
set to 0°. The vertical plane view was set to 50° above and 70° 
below this, and the horizontal field of view was about 50° from 
left to right. These settings placed the upper, lower, left, and right 
perspectives in line with those normally provided by the human 
eye (Shizhong, 1996).

Collision detection was used to cause doors to open auto-
matically when users approached the door handles. Sound 
prompts were set to activate when people identified or collided 
with objects or the wall, or entered the door. The type of interac-
tion, door, and time were recorded in the software. Next, the 
entire virtual scene was binarized and placed in four different 
pixelated templates with the following resolutions: f32 (32 × 32), 
f48 (48 × 48), f64 (64 × 64), and f128 (128 × 128), to produce 
real-time, pixelated virtual scenes.

The preexperimental scene required three tasks:

 1. A pathfinding task called maze walking. Subjects controlled 
the perspective and the direction of movement, and used the 
mouse and direction keys to complete the maze.

 2. An identification task called cylindrical literacy. Subjects 
identified the text on nearby large and small cylinders.

 3. Way-finding and identification tasks. In simple indoor 
scenes, subjects were required to find and identify the sofa 
and the door. They needed to open the door and complete 
pathfinding tasks at the same time. It was necessary for them 
to become familiar with the collision alarm and the sound 
of the door switch. The specific preexperiment scenario is 
shown in Figure  2. After the preexperiment, the subjects 
could use the equipment independently, respond to the alarm 
and the sound of the door, and conduct normal activities in 
the virtual environment.

Formal experiments
Formal experiments were carried out using real-time scene 
processing. The first computer used Unity to present a virtual 
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FigUre 2 | Preexperimental scenarios in the first-person perspective. 
(a) Preexperiment scene I: maze walking. (B) Preexperiment scene II: 
cylindrical literacy. (a,B) show scene layouts before operation, with the  
camera showing the user’s perspective; (c) shows a running scene in which 
the subjects used the first-person point of view to see specific information in 
the scene. The speaker provides audible feedback after collisions.

FigUre 3 | The scene pixelization process.
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scene. The real-time video image was captured by a camera con-
nected to the second computer, binarized, inverted, pixelated, and 
presented to the subjects. The subjects controlled the mouse and 
keyboard to perform specified tasks. Figure 3 shows the scene 
pixelization process.

There were two scenarios that had different tasks in the formal 
tests. In the pathfinding situation, the first scene (scene I) was 

composed by several rooms with a corridor. Along the corridor, 
two offices containing various items were located on one side.  
The doors were configured for collision detection and could 
open or shut automatically when the user approached or entered 
a room. Furthermore, there were audible responses when users 
collided with walls or objects.

The task was to perform pathfinding and identification with 
assistance from door opening/closing sounds. In addition, col-
lisions were detected. The subjects were required to identify 
the door positions with the previously described audible 
assistance and perform object recognition in the hall and the 
room. They were informed in advance of the need to find the 
remaining two doors and encouraged to identify the object,  
the door, and the door handle position by walking and chang-
ing perspectives. The time allotted for object identification  
was limited to 2 min.

The time required to enter the door included the time 
required to identify the door, approach the door, identify the 
door handle, and complete the entry. The exit time included 
identifying the door, approaching the door, and actuating the 
door handle to exit.

The recognition time, accuracy, and collision information 
(including type, time, and frequency) were recorded at each 
resolution by the experimenter. In order to prevent learning 
effects, the shapes, sizes, and locations of the objects in the hall 
and offices were different in each of the three resolutions, as 
shown in Figure 4.

The second scene (scene II) included a house with two 
bedrooms, two bathrooms, a study, a kitchen, a dining room, 
and a living room. In the second scene, the task was to complete 
pathfinding and identification. The dining room and living 
room were connected and all of the doors were open. In the 
pathfinding situation, subjects had to walk in a straight line 
and turn in the house. They had to determine room types based 
on their life experiences. The subjects who more effectively 
determined the room types would continue to complete the 
following four tasks:

 1. Find the bedroom lamp.
 2. Find the kitchen pot.
 3. Find the bathroom toilet.
 4. Find the toilet in another bathroom.

In order to prevent learning effects, the locations of the rooms 
and the shapes, sizes, and locations of the objects were different 
in each of the three resolutions, as shown in Figure 5. There were 
no sound effects, the subjects were informed in advance not to 
move in the event of a collision. All of the doors were open and 
subjects were asked not to go to the rear door. The recognition 
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FigUre 5 | Schematic diagram of formal experiment scene II.  
(a–c), respectively, expressed the transformed scene at f32, f48,  
and f64 resolutions.

FigUre 4 | Schematic diagram of formal experiment scene I.  
(a–c), respectively, denote the transformed scene at f32, f48,  
and f64 resolutions.
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time and accuracy under different resolutions were recorded by 
the experimenter.

Before the experiment, the subjects were encouraged not to 
look at the ground and try to face forward to keep horizontal 
eye level. They were informed that the door locations would be 
different in each of the three resolutions and that they should 
determine the specific type of object according to the object’s 
height, size, and shape.

resUlTs

analysis of the First scene
As Figure 6A shows, the identification times for the sofa, chair, 
desk, and green plant decreased from 81.60 ± 6.82, 88.25 ± 6.94, 

101.80 ± 6.24, and 97.10 ± 7.89 to 16.65 ± 2.96, 21.80 ± 3.57, 
30.35  ±  4.21, and 9.05  ±  4.11  s, respectively, as the resolution 
increased from f32 to f64. Therefore, the average identifica-
tion time decreased from 92.19  ±  6.97 to 43.05  ±  6.08 and 
19.46 ±  3.71  s at f32, f48, and f64. Using the t-test, significant 
differences were found within f32–f48 and f48–f64 resolution 
comparisons (p < 0.05).

On transitioning from f32 to f64, the accuracy with which the 
sofa, chair, desk, and green plant were identified increased from 
73.75 ± 5.38, 45.00 ± 9.02, 58.33 ± 9.39, and 27.78 ± 10.32 to 
100.00 ± 0.30, 91.45 ± 4.93, 100.00 ± 2.50, and 96.11 ± 0.50%, 
respectively as Figure  6B shows. Then, the average accuracy 
increased from 51.22 ± 8.53 to 85.52 ± 4.93 and 96.89 ± 2.06% at 
f32, f48, and f64. The recognition accuracy improvements associ-
ated with the f32–f48 and f48–f64 comparisons were significant 
for each object (p < 0.05).

In addition, collisions were detected and recorded. As shown 
in Figure 7, there were 2.00 ± 0.59, 1.00 ± 0.38, and 0 ± 0 col-
lisions at f32, f48, and f64 resolutions during chair identifica-
tion. The number of collisions associated with finding the sofa 
decreased from 13.00 ± 2.73 to 9.00 ± 1.31 and 0 ± 0 when the 
resolution increased from f32 to f48 and f64. During the process 
of identifying the desk, 9.00 ±  2.26 collisions occurred at f32, 
while 2.00  ±  0.71, 2.00  ±  0.78 collisions occurred at f48 and 
f64. Plant identification led to 14.00 ± 3.64 collisions at f32 and 
1.00 ± 0.38, 1.00 ± 0.32 collision at f48 and f64. The average colli-
sions decreased from 10.00 ± 2.31 to 3.00 ± 0.68 and 1.00 ± 0.29 
at f32, f48, and f64.

As shown in Figure  8, the time required to enter the door 
decreased from 68.05  ±  5.74 to 28.10  ±  3.29  s, and the time 
required to exit decreased from 74.05 ± 8.71 to 25.75 ± 4.64 s 
when the resolution increased from f32 to f64. The paired sam-
ple t-test based on entry and exit data for different resolutions 
indicates significant differences associated with the f48–f64 and 
f32–f48 resolution comparisons.

When the resolution increases from f32 to f48, the door 
entry recognition accuracy rate increases from 96.30  ±  2.34 
to 100.00  ±  0%, and the door exit recognition accuracy rate 
increases from 88.89 ± 4.65 to 100.00 ± 0%. At f48 and f64, the 
recognition accuracy associated with entering or exiting through 
the door reaches 100%. The results of the t-test that compares 
door entry/exit at different resolutions are p > 0.05.

analysis of the second scene
As is seen in Figure 9, as the resolution increases from f48 to f64, 
the room type recognition time decreases from 115.00 ± 23.02 to 
68.25 ± 17.23 s, and the recognition accuracy rate increases from 
65.69  ±  9.61 to 80.42  ±  7.70%. When the resolution increases 
from f64 to f128, the room recognition time decreases from 
68.25  ±  17.23 to 44.88  ±  9.94  s, and the recognition accuracy 
increases from 80.42 ± 7.70 to 85.69 ± 7.39%. The recognition 
time and accuracy for the three types of room were tested using 
the paired sample t-test. The identification times changed signifi-
cantly (p < 0.05) in the f48–f64 and f64–f128 comparisons. The 
recognition accuracy was significantly different for the f48–f64 
comparison, but there was no significant difference associated 
with the f64–f128 comparison.
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A

B

FigUre 9 | Room identification time and recognition accuracy at various 
resolutions in scene II. The numbers 1–8 on the abscissa represent the living 
room, dining room, kitchen, study, bedroom one, bedroom two, bathroom 
one, and bathroom two, respectively. (a) is the recognition time and (B) is  
the recognition accuracy.

A B

FigUre 8 | The time requirements and recognition accuracies for entry and 
exit through the door in scene I at various resolutions. (a) Shows the time 
required and (B) shows the recognition accuracy.

FigUre 7 | Collision detection results during identifying the chair, sofa, desk, 
and green plant.

A B

FigUre 6 | Object recognition time and identification accuracy for the sofa, chair, desk, and green plant in scene I at various resolutions. (a) Recognition  
time, and (B) accuracy.
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As Figure  10 shows, as the resolution increases from f48 
to f64, the recognition time for task completion decreases 
from 144.00 ±  22.23 to 84.75 ±  16.11  s, and the recognition 
accuracy increases from 47.50 ± 10.86 to 93.38 ± 2.21%. When 
the resolution increases from f64 to f128, the room type rec-
ognition time decreases from 84.75 ± 16.11 to 39.00 ± 6.13 s, 
and the recognition accuracy increases from 93.38 ±  2.21 to 
100.00  ±  0%. The t-test shows significant recognition time 
differences in the f48–f64 and f64–f128 resolution compari-
sons. There are significant recognition accuracy differences in 
the f48–f64 comparison, but no significant differences in the 
f64–f128 comparison.

The subjects selected to participate in the scene II task 
performing experiment had better performance in scene I and 
scene II identifications. Familiarity with the test environment 
still caused a significant difference in the results, but the same 
trends emerged, with the f64 resolution effectively applicable to 
the default identification task.

DiscUssiOn anD cOnclUsiOn

advantages of Virtual scenes
Virtual scenes can be built to implement the intended experi-
mental platform without constraints associated with real scenes 
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B

FigUre 10 | The recognition time and accuracy results at various 
resolutions in scene II. The numbers 1–4 on the abscissa represent  
tasks 1–4, respectively. (a) is the recognition time and (B) is the  
recognition accuracy.
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or other factors. Furthermore, use of virtual scenes can help to 
avoid the experimental error caused by collisions and the use 
of touch to identify objects indirectly. Because the virtual scene 
is artificial, we selected subjects who play virtual video games 
frequently and were familiar with scenes similar to ours via a 
questionnaire. Before the formal experiment, preexperimental 
training was carried out to familiarize subjects with the experi-
ments and input device operation. The experimenter was able 
to improve the experimental design using feedback from the 
subjects.

resolution selection
In experimental scene I, the virtual experimental scene was 
pixelated into three resolutions (f32, f48, and f64). Before the 
formal test, we tested an f16 (16 × 16) resolution scene. It was 
difficult to identify the locations and directions of the objects, as 
well as to control the mouse and keyboard for pathfinding and 
identification. Although the results were not as good as with 
the actual scene in f64 resolution, the subjects could complete 
pathfinding and identification. In the more complex scene II, 
the subjects were asked to identify the type of room by iden-
tifying the items in it. Although each room was distinctive, it 
was necessary to identify at least one or two items in the room 
and to control the approximate direction of travel. In the pre-
experiment, subjects were unable to perform pathfinding and 
room type identification at f32 resolution. Hence, f48, f64, and 
f128 were selected for comparison in the complex scenario of  
scene II.

individual Difference
In the identification task in scene I, 1 of the 20 subjects identi-
fied the sofa in 2.5 s at f48 resolution and in 15 s at f64. A similar 
situation occurred in green plant identification, where the iden-
tification time was 18 s at f32 and 22 s at f48. These events may 
have occurred because the subjects did not respond to changes 
in object locations in different scenes of various resolutions. 
With regard to the door entry process, the recognition times of 
the two subjects increased upon the transition from f48 to f64. 
This may be due to the change in door position between the dif-
ferent scenes. Although we hinted at the position changes before 
the formal test, some subjects failed to act carefully, resulting 
in experimental error. In the process of exiting through the 
door, one subject’s recognition time increased from f32 to f48 
and the other subject’s recognition time increased from f48 to 
f64. The subject recognized the door hinge as the door handle 
while exiting, and was unable to exit from the door hinge 
position. This may have led to fluctuations in the results of the  
experiment.

conclusion
In the relatively simple simulated visual scene, only a subset 
of the targeted pathfinding and identification tasks could 
be completed at f32 resolution. As the resolution increased, 
the reco gnition time decreased and the recognition accu-
racy improved. For identification, increasing the resolution 
significan tly increases the recognition accuracy. Particularly 
significant changes occu rred between f32 and f48. Subjects 
could enter and exit through the door with recognition accu-
racy of 100% at f48. Changing the resolution from f48 to f64 
had no significant effect on completion of the task. In addition, 
collision detection mechanisms were configured for the four 
objects. The collisions were counted at each resolution after 
completion of identification. As the resolution increased, 
the number of collisions gradually decreased. Subjects could 
identify the objects without collisions at f64.

In the more complex simulated visual scene, subjects  
could partially complete the same pathfinding and identifica-
tion tasks at f48. As the resolution increased, the time required 
to identify the room type was shortened and the recognition 
accuracy increased. The recognition times associated with the 
f48–f64 and f64–f128 resolution pairs exhibited significant 
differences, and the recognition accuracy changed significantly 
bet ween f48 and f64. No significant difference was noted 
between f64 and f128. Thus, a resolution of f64 is appropriate 
for simple pathfinding and identification tasks in the complex 
simulation scene.

We hope that these conclusions provide meaningful guidance 
that helps blind people to benefit from the best low-resolution 
visual technologies. We also hope that they can be used to aid in 
subsequent physiological information acquisition and analysis, 
and for further studies.
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