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Developing a quantifier of the neural control of motion is extremely useful in characterizing
motor disorders and personalizing the model equations using data. We approach this
problem using a top-down optimal control methodology, with an aim that the quantity
estimated from the collected data is representative of the underlying neural controller.
For this purpose, we assume that during the flexion of an arm, human brain optimizes
a functional. A functional is defined as a function of a function that returns a scalar.
Generally, in forward problems, this functional is chosen to be a function of metabolic
energy spent, jerkiness, variance of motion, etc., integrated throughout the trajectory
of motion. Current states (angular configuration and velocity) and torque applied can
approximately determine the motion of a joint. Therefore, any internal cost functional
optimized by the brain has to have its effect in the control of the torque. In this work,
we study the flexion of the arm in normals and patient groups and intend to find the
cost functionals governing the motion. To achieve this, we parametrize the cost functional
governing the motion into the variables θp and ωp, which are then estimated using marker
data obtained from the subjects. These parameters are shown to vary significantly for
the normal and patient populations. The θp values were shown to be significantly higher
in the case of patients than in the case of normals and ωp values showed an exactly
opposite trend. We also studied how these cost functionals govern the applied torques
in both subject groups and how is it affected while perturbed with sinusoidal frequencies.
A time frequency analysis of the resulting solutions revealed a distinguishing pattern for
the normals compared with the patient groups.

Keywords: optimal control, arm model, cost functionals, early detection, motor disorders

1. INTRODUCTION

Primary motor cortex and supplementary motor areas govern the execution and planning of the
voluntarymotor actions of the skeletal muscles. The projections from primarymotor cortex traverse
through the corticobulbar and corticospinal tracts and synapse on to the lower motor neurons
in the brain stem and spinal cord, respectively. The system of extrapyramidal tracts controls the
movement through a non-pyramidal route composing of the nigrostriatal pathway, the basal ganglia,
the cerebellum, the vestibular nuclei, and different sensory areas of the cerebral cortex (Hall and
John, 2005). Reflexes on the other hand are the result of a hardwiredmechanismwhere interneurons
of spinal cord inhibit the stimulation of antagonistic muscles resulting in appropriate movement.
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Dysfunction of any of these areas can engender amotor deficiency
(Kandel et al., 2000). Generally, damage to lower motor neurons
produces local effects in the muscles such as weakness, muscle
atrophy, and fasciculation. However, upper motor neuron dam-
age can have diffused effects in the body-eliciting spasticity and
babinski reflex in adults (Kandel et al., 2000). Quantification of
the dynamics governed by the upper and lower motor neurons is
a difficult problem.

Computationally, this problem is approached in two ways.
First methodology is the use of detailed neural system models
with varying complexity (integrate and fire neurons (Brunel and
Hakim, 1999), spiking models (Izhikevich, 2003)) to learn the
motor control and explain the motor behavior (Grillner et al.,
2007; Eliasmith et al., 2012). These methodologies generally use
reinforcement learning methods in conjunction, which derives an
optimal policy under a set of constraints. Parameter estimation
is difficult using these approaches due to (1) their large number
and (2) difficulty in defining a tractable cost function. Even in the
case where a parameter estimation is possible the models are still
not in one to one correspondence with the physiology leading to
abstractness in the result.

The second one involves defining an abstract functional, which
is optimized to derive the control inputs for themechanical system
(Erdemir et al., 2007). This top-down approach to model the
neural controller acts in tandem with the mechanical system
that governs the trajectory of motion for a given control input.
Therefore, quantifying the motor control involves quantification
of two different systems - a mechanical system and the neural
controller. These methods, even though abstract, can be solved
perfectly to generate results that are optimal.

In this study, we use an approach closer to the second one.
The neural controller is known to have characteristics of an opti-
mizer where the cost functional minimized can be jerk, metabolic
energy, etc. Therefore, in this study, we use inverse optimal con-
trol to find the cost functional that governs the motion. Inverse
optimal control refers to a set of techniques that are used to learn
the objective functional that governs the system using a data set
(Mombaur et al., 2011). These techniques can identify under-
lying optimality criterion in human motions (Mombaur et al.,
2011). In Berret et al. (2011), authors show evidence of composite
cost functions governing the arm motion. But this work does
not examine normal and patient population and uses numerical
techniques that are computationally less efficient. Also, here the
arm is modeled using two links rather than three links ignoring
the interaction torques that is generated from the third link. The
optimal control algorithm used in this model being non-linear
also has an issue of non-uniqueness, whichmakes the applicability
of the solution less likely. There is a need to develop a simpler but
more efficient technique, so that, it can be used in clinical practice.
The method also needs to be reproducible and solution of the
optimal control algorithm unique making the results between dif-
ferent patients and at different time frames comparable. A typical
reaching task in the horizontal plain neglects gravity. Therefore,
the task needs to simulate a real life situation where the arm
moves against gravity. This type of modeling although is not a
replacement to amore detailedmodel of neural control, it is useful
to obtain personalized neuralmodels. Thismethod overcomes the

problems described in detailed models by abstracting away the
parameters to be identified. The model-based parameter estima-
tion techniques give insights into the governing motor dynamics
and therefore can be used to replace or augment traditional scales
used for the quantification. This model can be studied further to
understand the behavior of the system against perturbations such
as oscillations.

Oscillations are ubiquitous in the brain (Engel and Singer, 2001;
Varela et al., 2001), which occur in different scales and at all
levels of organization. The organizational levels can range from
microscopic (Wang, 2010), mesoscopic (Nunez and Srinivasan,
2006; Cardin et al., 2009) to macroscopic (Llinas et al., 1998;
Bollimunta et al., 2011) depending on their source of origin, that
is, if oscillations arise from single neurons, a small groups of
neurons, or different regions in the brain, respectively.

While intrinsic properties such as conductance govern the
oscillations in cellular level (Llinas et al., 1991), the network
connection strengths and excitatory-inhibitory nature of the con-
nections control them at network level (Kilpatrick, 2013). A group
of neurons engaging in oscillatory activity can be mathematically
represented as a lumped system (Haken, 1996). Therefore, in this
work, we study how oscillations can affect the motor control.

The primary objective of this study is the development of
a methodology to determine a functional governing the motor
commands in such a way that it quantifies the neuromotor con-
trol abstractly. This method shall give a unique solution for the
optimal control problem analytically. This will help in develop-
ing an efficient solution that is comparable within and between
patient groups at different time frames. The second objective is
to validate this model in normal and patient population with
mild neuromotor disabilities. (We chose the population with mild
neuromotor disabilities as mild neuromotor disability is hard
to quantify. The subtle changes in those patients can only be
detected by an expert in the field.) The secondary objective is
to test the model developed against perturbations and study its
effects. We hypothesize that there will be a significant statistical
difference between the normal and patient population when the
parameters governing the optimal criterion are compared.We also
hypothesize that the perturbations of at frequencies around beta
frequencies will have higher energy as motor problems manifest
around these frequencies.

2. METHODOLOGY

We present the detail methodology of deriving the cost functional
governing the arm movement using inverse optimal control. The
block diagram for the overall algorithm is given in Figure 1 The
transformation matrix is analyzed to understand the principal
direction of resistance and a time frequency analysis is done to
study the effect of perturbations on the dynamical system. A
flowchart is given in Figure 2 with various functional blocks
relating with the equations presented in this work.

2.1. Optimal Control Formalism
Optimal control formalism relies on the variational formulation
(Laub, 1979; Bhattacharyya et al., 2009) of the problem where
a functional is minimized under differential constraints. This is
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FIGURE 1 | The overall algorithm: the Kinect data after resampling was used as the input to the algorithm. These data were then scaled to correct the model with the
joint coordinates of the subject. This was then feed to an inverse optimal control algorithm where the functional J is optimized to match the Kinect data. The optimal
control in itself involved an optimization of a functional using variational calculus formulation where the search is done in the space of smooth functions matching the
boundary conditions.

FIGURE 2 | Flowchart shows how the set of equations (1)–(30) are used. The equation numbers are given in brackets. The optimal control and model equations
cannot be fully separated to have one causally influencing the other, therefore, it is shown as coupled. The last two equations come from the results section, which
depicts the derived functional.

particularly useful in situations where the cost has to be described
as an integral of a function over a trajectory and the variables of the
integrand are governed by system dynamics. A special case of this
problem with linear differential constraints is described below.

The problem of minimizing a functional equation (1) with
differential constraints equation (2) can be solved in the following
way. In equation (2) only c(t) is unknown and is the control input,
this need to be found in such a way that the cost functional J is
minimized.

Let the functional to be minimized be

J =
∫ ∞

0
(xTZx + cTUc)dt, (1)

where Z and U are known and let the differential constraint be
dx
dt = Ax(t) + Bc(t) (2)

and x(t0)= x0 then the optimal

c(t) = −Kx(t), (3)

where
K = U−1BTS (4)

and S is the solution of the following equation

− SA − ATS + SBU−1BTS − Z = 0. (5)

This equation is known as algebraic Riccatti equation, which is
easy to solve using standard techniques. For each J, there is a
solution x that is optimal.

2.2. Mathematical Modeling and Cost
Functional
A 3 linked armmodel with 3-revolute joints was developed with a
sigmoid non-linear constraint function (k∈C∞)1 imposed on the
joints to avoid elbow hyper extension. This constraint is imposed
so to restrict the motion in the physiological range. These were
rigid links without friction and with shoulder joint as inertial
frame of reference.

Control parameter c(t) are the torques at different joints; gravity
is assumed to be acting at center of mass. Kane’s method (Kane
et al., 1987) was used to derive the equations of motion (EOM) in
the following form:

f + f∗ = 0, (6)

where f is the generalized active force vector and f* is the gen-
eralized inertial force vector. These set of equations were then
converted and assembled to the following form and solved using
Hindmarsh (1983):

Mdx
dt = r, (7)

whereM is themassmatrix, x is the state vector, and r is the forcing
vector. Here, the generalized coordinates and speeds were chosen
to be the angles and angular velocities, respectively. The system
of equation (7) is non-linear. This was linearized at the unstable
equilibrium point to convert to the following form. This equation

1Cn is the set of all n times differentiable functions.
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was only used to derive the necessary controller c(t). c(t) and c are
used to refer these control inputs interchangeably.

dx
dt = Ax + Bc, (8)

where A∈ R6× 6 and B∈ R6× 3 represent2 the linearized coef-
ficients of the differential equation. The model was scaled for
each subject to match the experimentally obtained lengths of the
different joints. Equation (9) was then used as the cost functional.
First term inside the integral represents cost of change in state x,
and the second term represents the cost of controls c. The final
time of the integral is assumed ∞ as the subjects were not given
an end time to complete the task.

J =
∫ ∞

0
(xTZx + cTUc)dt =

∫ ∞

0
Iv + Ic, (9)

where

Iv = xTZx, (10)
Iv = cTUc, (11)

x = [θ1, θ2, θ3, ω1, ω2, ω3]T, (12)

where θ1–θ3 are the joint angles in shoulder, elbow, and wrist,
respectively, and ω1–ω3 are the angular velocities. x is the state
variable, c is the control torques and Z∈ R6× 6 and U∈ R3× 3

are the weights of independent and controllable variables of the
differential equation, respectively. These were constrained to be
positive definite. As the function was linearized at the final state
x*, and minimization of the cost function J also results in mini-
mization of the Euclidean distance between this equilibrium point
and the current state. Here, the matrices Z andUwere assumed to
be diagonal and arbitrary with the following structure for Z.

Z =


θp 0 0 0 0 0
0 θp 0 0 0 0
0 0 θp 0 0 0
0 0 0 ωp 0 0
0 0 0 0 ωp 0
0 0 0 0 0 ωp

, (13)

where θp and ωp represent penalty to angular displacements
and velocities, respectively. We assumed U= I3× 3 is the identity
matrix making Ic fixed with respect to which Iv can be thought
to be varied. In the inverse optimal control problem (Figure 1),
a requirement for increased penalty to torques applied would
translate to an appropriate change in the penalties θp and ωp and
therefore determination of the function is given by equation (14)

Iv = ωp(ω2
1 + ω2

2 + ω2
3) + θp(θ21 + θ22 + θ23). (14)

Let Ω and Θ be mean squared values of ω1−3 and θ1−3, respec-
tively.

Ω2 = ω2
1 + ω2

2 + ω2
3 , (15)

Θ2 = θ21 + θ22 + θ23, (16)
⇒ Iv = ωpΩ2 + θpΘ2. (17)

2Rm×n is the set of allm× nmatrices.

Making a set of weights constant in relation to another also helps
in reducing the search space for the algorithm thus reducing the
computational cost considerably. The problem was formulated as
an infinite horizon to account the fact that final timewas not given
to the patients as a criterion while performing the experiments.
In summary, the cost functional J was solved with differential
constraints in equation (8). The inverse optimal control problem
of determining the matrix Z was done using Nelder and Mead
(1965) and Wright (1996). The overall algorithm is depicted in
Figure 1.

Mathematically, the optimization problem of finding the per-
sonalized J* can be described as in the following way. Each Jmaps
to only one trajectory x; This makes x a function of J or f x(J)

J∗ = argmin
J∈C2

Er(x(J), x̃), (18)

where x is the solution of the optimal control problem for a
given J and x̃ is the measured state trajectory. The error function
Er(x(J), x̃)maps the trajectories of the states x̃ and x to the l2 norm
of the difference between the corresponding displacements in the
Cartesian y-coordinate of the wrist. The projection of the data in
the way described helps to reduce the complexity of the optimiza-
tion problem significantly in a way that is physically meaningful.
The data collection procedure is described in Section 2.5.

2.3. Stiffness Ellipsoid or Principal
Directions of Resistance in the State Space
The control torques τ depends on the states x in the followingway:

τ = Kx. (19)

Let

K =
[
K1 K2

]
, (20)

x =
[
x1
x2

]
, (21)

⇒ τ = K1x1 + K2x2, (22)

where K∈ R3× 6 is the transformation matrix, x1 and x1 are the
angles and angular velocities, respectively. For constants K1 and
K2 and x1, the value of x2 determines the value of applied torque.
We define

τ∗ = max
x2∈R1×3

∥Kx∥, (23)

where x2 is the vector of angular velocities. The resistance torque
applied by the neuromuscular system depends on two character-
istics of the angular velocity vector x. First one, the magnitude of
the angular velocity vector, which will directly increase the torque
applied. The second one is the direction of the angular velocity
vector. We denote this direction by x∗

2 and this is the principal
eigenvector of the matrix K2. If angular velocities are perturbed
in this direction the resistance offered by the neuromechanical
system peaks. This torque vector acts solely against the angular
velocities resisting a higher velocity ofmotion. The largest compo-
nent of this vector is indicative of the joint velocity that is resisted
the most and the difference these eigen values among subjects
represent intra-subject variability in resistance to motion.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2017 | Volume 5 | Article 784

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Unni et al. Cost Functionals of Neural Control

2.4. Frequency Response and Time
Frequency Analysis
To understand the response of the dynamical system behavior
against perturbations, we studied the response of patient and
normal systems to spectral perturbations. The new set of equa-
tions governing the perturbed system is same as that is described
previously except equation (3), which is replaced by equation (24)

c(t) = −Kxn(t), (24)
xn = x + λcos(γt)), (25)

λ = κ ∗ I6×6, (26)

where xn is the “perturbed” state signal, which represents different
oscillations that arise in the brain and I6× 6 is an identity matrix.
The resulting solution of the optimal dynamical system for dif-
ferent γ values was computed, and a time frequency analysis of
the solutions was performed using equation (27). κ (κ= 0.2) was
chosen to be of a value that produces physiological relevant ranges
for the results and easy to manage numerically.

W(t, f) =
∫

x(t + τ/2)x′(t − τ/2)e−j2πτ fdτ. (27)

The functionW(t, f ) corresponding to each solution x is analyzed
the following way by using equation (28) to understand the time
frequency pattern against different frequency of inputs. Here, τ is
an arbitrary delay variable.

Et,f =
∫ f

0

∫ t

0
W(t, f). (28)

TheEt ,f was computed for a timewindow of 60 s for all frequencies
estimated. This limit was chosen to understand the effect of the
frequencies during the motion rather than at the trailing end of
the bell curve of velocities.

2.5. Data Collection Using Kinect and
Signal Processing
The range of motion for left shoulder flexion is collected using
Microsoft Kinect XBox One.3 A total of 13 normal subjects and
19 patients with neuromuscular disorders were selected for the
study. Each session was repeated four times for all normal subjects
resulting in total of 52 samples whereas a single trial was used for
patients generating total 19 samples.

The clearance on ethical issues corresponding to the patient
data collection has been obtained from the Institute Ethics Com-
mittee (IEC) in Advanced Medical Research Institute (AMRI)
Hospitals. Informed consents are also taken from the subjects in
written form. The data are annonymized by representatives of
AMRI in a community setup and provided to TCS Research Lab
for purpose of the analysis presented in this paper. The clearance
on ethical issues corresponding to the handling and analysis of the
data collection has been obtained from relevant body in TCS. The
patients were of the age group range 56–74 with a mean of 65.6
and a SD of 4.62. The normal subjects were of the age group 22–45

3http://www.xbox.com/en-IN/xbox-one/accessories/kinect.

with an SD of 10.3 and mean of 30.1. For the healthy group male,
the average height was 172 (163–183) cm, and for the females,
it was 158 (150–161) cm. For male patients, the average height
was 171 (164–180) cm, and for the female patients, it was 160
(156–170) cm. The average weight of the healthy male group was
78.25 (70–84) kg, and for the female group, it was 63.5 (56–68) kg.
The average weight of the patient male group was 74.83 (62–90)
kg and that of the female patients was 67.2 (60–74) kg. The patient
group hadmild neuromotor abnormalities due to diabetes and old
age.

These data were then resampled from 30 to 60 fps for the
analysis using built-in python Fourier method. This resampling
was done to make the numerically generated trajectory vector,
and the data collected have the same dimension. The lengths of
different bone segments were then computed for each subject
using the 3D coordinates of the skeleton data of the initial 5 s of
static window before the start of the exercise. This was used for
scaling, and the scaled model was given as input to the inverse
optimal control algorithm to optimize the cost functional.

3. RESULTS

We observed that the displacements obtained from the model
matched with the experimental results from the Kinect with neg-
ligible error, see Figure 3. In Figure 3, each subject is represented
using a single color. The subfigure of Figure 3 titledModel vs Data
shows how themodeled displacement is matched to the measured
displacements (noisy due to the measurement noise) using the
optimization procedure given in Subsection 2.2 using equation
(18). The computed velocity is also shown to match the measured
values as shown in Figure 4. This verifies the ability of the model
to approximately reproduce the kinematics of the subjects.

Figure 5 shows the comparison of the θp and ωp in normal
and patient categories. To analyze the significance, a Welch’s t-test
(Welch, 1947) was performed without assuming equal variance or
equal number of samples (Ruxton, 2006). We found these cost-
function parameters vary significantly between normal subjects
and patients (see Figure 5) with a test statistic value of −2.28, p-
value of 0.027 and test statistic value of 2.3, p-value of 0.023 for ωp
and θp, respectively.

The test used did not assume the equal variance, which if
assumed the p-value will be lower. Therefore, these parameters
can be considered as a good measure to understand the under-
lying optimality criterion for the motor control mechanism of
a patient. A lower ωp was observed in patients indicating jerky
and fast movements. On the other hand, a higher θp change was
observed in patients indicating a lower ability to hold the hand
at intermediate position. There are two objectives for this study,
first one being the detection of optimal functions governing the
neuromotor control and the second one finding the response of
the model against perturbations.

3.1. Optimal Functions—Patient and
Normal
Here, we detail the optimal functions of the normals and patient
groups. Using the optimal control equations described in the
methods sections, we estimated the functions Iv for the normals
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FIGURE 3 | Model predicted torques for wrist, shoulder, and elbow joints for 4 normal subject samples are shown (each of the subjects is assigned a single color in
the graph). The model is personalized to match the experimental observations of displacement. The range of motion is very well matched by the model used.

FIGURE 4 | The modeled velocity profiles match qualitatively with the Kinect data. The deviation of the Kinect data from the model is due to the fact that the process
of finding the instantaneous velocity involves taking numerical derivatives, which amplify the high-frequency noise. Modeled velocity is in blue, and the data are shown
in green.

(Ivn) and the patients (Ivp), which take the forms described in
equations (29) and (30).

Ivn = 9, 315, 830Ω2 + 12, 926, 292Θ2, (29)
Ivp = 5, 245, 197Ω2 + 13, 950, 617Θ2. (30)

The contour plots of Ivp and Ivn with respect to different values
of Θ and Ω are shown in Figure 6. The contours in the case of
normals are more circular than that of the patients. This is due to
the fact that ratio of ωp to θp is lower in the case of patients than

in the case of normals. This increases the tendency to move faster
in the case of the patients leading to a more jerkier motion and
inability of the patients to slowdown in an intermediate position.
Figure 7 shows how in different subject groups the θp and ωp
varies in detail. Here, each point represents a subject. The value of
θp is higher in the case of patients (shown in red) and lower in the
case of normals (shown in black). Figure 7 also shows the pattern
of θp and ωp with respect to the average velocity of motion. An
increased θp and a lowered ωp show similar effects on the average
velocity. The optimal torques for both patient and normal cases
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FIGURE 5 | Variation in θp and ωp for normal and patient categories. The θp (black) is significantly higher in patients than in normals whereas ωp (red) is significantly
lower in patients than in normals.

FIGURE 6 | Shows the contour plot of Iv(Θ, Ω) of normals and patients with abscissa show change in Ω and ordinate change in Θ. The normal Iv is more circular
compared with the patient Iv. This owes to the fact that the motion is more smoother and of lower velocity in normals compared with the patient group.

are shown in Figure 8. As expected from the cost functions, the
normals use lesser torques than that of the patients for reaching the
same targets. The shoulder experiences maximum range of torque
inputs compared with the elbow and wrist. This higher range of
torques in the shoulder helps it resist the higher moments against
which it moves.

3.2. Response to Oscillations and the
Eigen Values
We then studied the response of the system. The time frequency
analysis performed using equation (27) showed and increased
energy in earlier in time frame than later as shown in Figure 9.
The energy levels, computed using equation (28), are higher at
lower frequencies and around the frequencies that correspond to
the beta oscillations. To illustrate this, we have computed Et ,f for

t= 60 and f =max (as there is a bound to the maximum fre-
quency content that can be estimated) was computed, normalized
by dividing with the maximum value of the response and plotted
in Figure 10.

Even though, all the principle directions remained the same for
patient and normal groups, normals had lower eigen values com-
pared with the patients. This shows why normal population apply
lesser torques compared with the patient. The eigen directions
x∗
2 remained the same for the normals and patients. The wrist
velocities corresponding to the input oscillation at frequencies
0.5–45.5Hz are shown in Figure 11.

4. DISCUSSION AND FUTURE RESEARCH

The objective of this work was to develop a methodology to
quantify and understand the neuromechanical pathologies and
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FIGURE 7 | The variation of parameters θp and ωp with respect to the average velocity is shown. The blue curve is a fit that predicts the value of parameters for a
given value of average velocity. The values of θp are higher for the patients and lower for the normals; ωp shows an opposite trend.

FIGURE 8 | Torques of the normal (black) and patient (red) are shown here for shoulder, elbow, and wrist. The patients tend to use a higher torque than normals, and
shoulder torque has a higher range in compared with elbow and wrist.

validate it using the methodology on two subject groups one
normal and another with mild neuromotor abnormalities. We
found that the inverse optimal controlmethodology can be used to
personalize model of the arm dynamics. Thus, the cost functional
J parameterized by θp and ωp can be used to understand subject
specific variations. We also have showed how the eigen vectors
of the matrix K2 controls the torque applied. The different eigen
values controlling the resistant torques are indicative of the higher
resistance offered by the normals against a drastic change in
velocity. This protects the population against natural wear and

tear. In Figure 6, for the patient case moving through the ordinate
will reach the maximum values (shown in red) compared with
moving through the abscissa. We also note that in the case of
normals as the cost function is more steeper ease of reaching
the minima is more faster. It can be speculated that in a noisy
case, this will govern the ease with which motor control deci-
sions are taken making the control in case of the patients more
difficult.

The lower frequencies and the frequencies around 30Hz show
an elevated response eliciting the differential response of the
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FIGURE 9 | The WVD of the velocity waveforms is shown. The patient group tends have a higher energy at the start of the motion compared with the normals.

FIGURE 10 | The value of
∫ 30
0

∫ 60
0 W(t, f) for different frequencies is shown. At low frequencies and close to beta oscillation frequencies, the response of the system

is observed to be higher.

controller against different frequencies. This also indicates why
some oscillations in the brain can result in motor symptoms.

In future, we intend to collect data from patients with neuro-
muscular disorders and estimate the parameters as the disease
progresses. We argue that reversal of the parameters from dis-
eased states to the normal (see Figure 5) is a necessary condition
to validate treatment efficacy (from elliptical to normal). The
cost functional can be further generalized, and a detailed set of

parameters can be estimated to better understand the physiol-
ogy. Careful considerations are needed from optimization front
while generalizing the cost functional as this will increase the
dimensionality of the problem.

Even though we have used a simple planar 3-link arm that is
not a major limitation of the study as the task was constrained
to a planar motion. But constraining the task to a planar motion
may not be able to reveal all aspects of proprioception and motor
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FIGURE 11 | Velocity profiles of motion corresponding to different frequency of inputs (0.5, 15.5, 30.5, and 45.5Hz left to right) are shown. The higher frequencies do
not affect the velocity profiles as much as the lower frequency values. Also there is a qualitative change in the velocity profiles at 30.5Hz. The normal subjects are
shown in black, and the patients are shown in red.

control but this helps in making the task easily reproducible in
a clinical setting. Another limitation is the linearization that was
carried out to make the solution unique for the optimal control
problem. Linearizing at different points, solving the optimal con-
trol problem and comparing the results will resolve this limitation.
Extending the model to a realistic motion involves adding more
dimensionalities to shoulder, elbow, and wrist joints and con-
straining the motion realistically. Although, this not necessary to
simulate a planar motion could be used for other tasks such as
pick and place. But this will render the problem of optimization
computationally expensive. But simulating and doing the optimal
control on such a task may provide very valuable information to
the clinician such as how differentmuscles are affected by the neu-
romotor disorders. This will help in designing a task to strengthen
the appropriate muscles. The shoulder flexion task involvesmove-
ment of the arm against gravity. Most of the practical real life
scenarios such as combing hair involve movement against gravity.
θp and ωp are abstract quantities. Supplementary motor area and
other areas of the brain involved in planning of themotion directly
affect the magnitude of these quantities. Velocity-dependent con-
ditions such as hyper reflexia and spasticity can directly affect
the eigen values of the matrix K2 and thus resistance against
velocities.

More precisely, an ischemic stroke in themiddle cerebral artery
(MCA) affecting the motor cortex or sensory cortex will have an
impact on the parameters mentioned. The parameters can also be
affected by stroke in subcortical regions which in turn result in
motor deficits. In addition, the parameters could be influenced
by aging-related changes such as changes in spindle innervation,
increased co-contraction of agonist and antagonist muscles, and
decreased reaction times due to decreased motor conduction.

Precisely, mapping different disease conditions to parameters is
a future work.

Noise in smaller levels will not affect the computation of these
parameters as the differential equation can only give smooth
solutions, the method will act as a filter. But in cases where the
noise is very high and skewed will contribute to the study results.
A careful study may be conducted later to understand the effects
of noise in the analysis.
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