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With the increasing advances in the fabrication and in monitoring approaches of nano-
technology devices, novel materials are being synthesized and tested for the interaction 
with biological environments. Among them, smart materials in particular provide versatile 
and dynamically tunable platforms for the investigation and manipulation of several 
biological activities with very low invasiveness in hardly accessible anatomical districts. 
In the following, we will briefly recall recent examples of nanotechnology-based materials 
that can be remotely activated and controlled through different sources of energy, such 
as electromagnetic fields or ultrasounds, for their relevance to both basic science inves-
tigations and translational nanomedicine. Moreover, we will introduce some examples of 
hybrid materials showing mutually beneficial components for the development of multi-
functional devices, able to simultaneously perform duties like imaging, tissue targeting, 
drug delivery, and redox state control. Finally, we will highlight challenging perspectives 
for the development of theranostic agents (merging diagnostic and therapeutic function-
alities), underlining open questions for these smart nanotechnology-based devices to be 
made readily available to the patients in need.
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inTRODUCTiOn

Smart materials have gained increasing attention in the biomedical research fields thanks to their 
adjustable physical and/or chemical properties in response to deliberately imparted external stimuli 
or to environmental changes. For these reasons, their introduction in nanomedicine has opened 
unprecedented possibilities of manipulation of biological entities at cellular and even sub-cellular 
level. In this scenario, the intrinsic properties of nanoparticles or nanotextured materials are exploited, 
providing active devices capable of diagnostic, therapeutic or even theranostic functions. When 
physical cues like light irradiation, ultrasounds, or electromagnetic fields are applied to a smart 
nanostructure, an energy transduction occurs and results into the activation of a precise cellular 
functionality. Moreover, a suitable modification of the nanoparticle surface (e.g., with the aid of a cell 
ligand or of a monoclonal antibody) can improve the efficacy of this activation, by targeting specific 
cell populations or even specific intracellular organelles. This approach, which can be defined as a 
new paradigm in nanomedicine, finds several applications including cancer therapy, drug delivery, 
tissue engineering, and even bionics.

www.frontiersin.org/Bioengineering_and_Biotechnology
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2017.00080&domain=pdf&date_stamp=2017-12-18
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
https://doi.org/10.3389/fbioe.2017.00080
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:giada.genchi@iit.it
mailto:gianni.ciofani@iit.it
https://doi.org/10.3389/fbioe.2017.00080
https://www.frontiersin.org/Journal/10.3389/fbioe.2017.00080/full
https://www.frontiersin.org/Journal/10.3389/fbioe.2017.00080/full
https://www.frontiersin.org/Journal/10.3389/fbioe.2017.00080/full
https://www.frontiersin.org/Journal/10.3389/fbioe.2017.00080/full
http://loop.frontiersin.org/people/465522
http://loop.frontiersin.org/people/332264
https://loop.frontiersin.org/people/470132
http://loop.frontiersin.org/people/104523


FigURe 1 | Schematic representation of various multifunctional nanostructures, their responsive stimuli, and their main biomedical applications.
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In this mini-review, we will focus on those nanomaterials 
that, in our opinion, are the most promising in terms of clinical 
translation, with particular attention to nanoparticles that act as 
“nano-transducers,” allowing for a remote manipulation of bio-
logical activities, and thus providing a “smart” interface between 
biological and non-biological environments (Figure 1).

ReMOTe CeLL STiMULATiOn THROUgH 
SMART nAnOMATeRiALS

The possibility to finely and remotely manipulate cell behavior in 
deep tissues is of extreme importance in medicine for restoring 
physiological cell activities after the onset of a pathological con-
dition (Dell’Anno et al., 2014; Li et al., 2017). Furthermore, the 
remote control of cell activities in vivo allows the elucidation of 
mechanisms at the base of different diseases and the development 
of novel therapeutic strategies (Brunoni et  al., 2012; Paz et  al., 
2013; Legon et al., 2014).

A consolidated method for the fine modulation of the activ-
ity of specific cell types is represented by optogenetics, which 
consists in the genetic sensitization of targeted cells to light 
through a promoter-driven expression of light-sensitive proteins. 
Alternatively, a new generation of smart nanomaterial-based 
approaches for the remote control of cell behavior has recently 
been proposed (Genchi et al., 2017a). Smart nanomaterials can be 
externally/wirelessly activated by different energy sources [e.g., 
near-infrared (NIR) radiations, radiofrequency stimulations, 

magnetic fields, ultrasounds, etc.] that are able to penetrate 
biological tissues efficiently and non-invasively. Nanostructure 
activation in deep tissues triggers specific behaviors (e.g., neural 
spikes and myocyte contractions) (Eom et  al., 2014; Colombo 
et al., 2016; Marino et al., 2017a), or tunes biochemical pathways 
involved in different cell activities, such as differentiation (Kim 
et al., 2016; Rau et al., 2016), morphological maturation (Ciofani 
et  al., 2010), and hormone release (Stanley et  al., 2012, 2015). 
These energy-driven nanoparticle-mediated approaches are able 
to overcome the scarce tissue penetration by visible light and 
the use of viruses to genetically modify target cells, which are 
the main drawbacks currently limiting clinical applications of 
optogenetics (Jarvis and Schultz, 2015).

Piezoelectric nanomaterials are a class of nanostructures able 
to generate a voltage on their surface when exposed to a mechani-
cal stimulation, for example by means of ultrasounds, US (Wang 
et  al., 2007). This voltage has been used for the stimulation of 
electrically excitable cells, like neurons (Ciofani et  al., 2010; 
Royo-Gascon et  al., 2013; Hoop et  al., 2017; Lee et  al., 2017) 
and bone cells (Genchi et al., 2017b). Our group demonstrated 
for the first time that the acute US-driven piezo-stimulation of 
barium titanate nanoparticles (BTNPs) associated to plasma 
membrane was able to significantly increase the intracellular 
calcium concentration in neural cells (Marino et al., 2015). The 
combination of US and non-piezoelectric BTNPs was not able 
to elicit a significant neural response, thus confirming that the 
mechanism was mediated by piezoelectricity and not by other 
unspecific phenomena (e.g., mechanical or thermal).
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Another wide-spread approach for remote cell activation is 
represented by nanoparticle-assisted heat stimulation by short-
duration temperature increments in a physiological range (of 
about 5°C) (Shapiro et al., 2012). A local increment of tempera-
ture can be obtained by exploiting different energy transduction 
approaches, such as the photothermal and the magnetothermal 
ones. Photothermal stimulation consists in the transduction of 
photon energy into heat and can be remotely triggered with NIR 
radiation in combination with many plasmonic nanomaterials, 
such as gold nanoshells (Erickson and Tunnell, 2010), gold 
nanorods (Huang et al., 2006), single-walled carbon nanotubes 
(Mocan et al., 2011), graphene oxide (Robinson et al., 2011), and 
copper sulfide (Cu2S) nanocrystals (Wang et al., 2015). Different 
independent works showed that photothermal stimulation is able 
to reversibly elicit a neural response in terms of spike activity, 
intracellular calcium levels, and neurite outgrowth (Yong et al., 
2014; Paviolo and Stoddart, 2017). These effects seem to be medi-
ated by the opening of temperature-sensitive calcium channels 
(Miyako et  al., 2014) and/or by heat-dependent capacitance 
changes of the neural plasma membrane (Carvalho-de-Souza 
et al., 2015).

However, the mechanisms of photothermal stimulation on 
complex neural networks have to be further investigated. Indeed, 
a recent work documented an inhibited neural network activity 
of hippocampal primary culture treated with gold nanorods 
upon NIR irradiation (Yoo et  al., 2014). Remote photothermal 
nerve activation was successfully used for inducing leg muscle 
contraction in frogs after treatment with carbon nanohorns and 
NIR irradiation (Miyako et al., 2014). Similarly to neural cells, 
muscle cells can be stimulated by heat: in this concern, our group 
has recently demonstrated that an acute NIR irradiation of gold 
nanoshell-containing cultures is able to induce myotube contrac-
tion, while a chronic one suggested to promote mitochondrio-
genesis (Marino et al., 2017a).

Alternatively to photothermal stimulation, magnetothermal 
transduction can be exploited for cell heating/stimulation. In 
this case, magnetic nanoparticles dissipate heat when undergo 
an alternate electric field (Noh et al., 2017). In a recent work, this 
approach was exploited for remote deep stimulation of the ven-
tral tegmental area (VTA) through the opening of a transfected 
heat-sensitive receptor TRPV1 in mice. The consequent increase 
of neural activity was also observed in the brain areas receiving 
excitatory projections from VTA. Interestingly, the retention 
period of the magnetic nanoparticles in the VTA was longer 
than a month, thus allowing for chronic magnetothermal VTA 
stimulations (Chen et al., 2015).

Other nanomaterial-assisted remote stimulation methods 
exploit magnetoelectric and optoelectric phenomena (Colombo 
et al., 2016; Wang and Guo, 2016). Concerning magnetoelectric 
materials, cobalt ferrite–barium titanate (CoFe2O4–BaTiO3) core-
shell nanoparticles were used to modulate deep-brain activity 
under a low-intensity alternating magnetic field (Guduru et al., 
2015). Moreover, the magnetic properties of these nanoparticles 
also facilitated their delivery to the central nervous system (CNS). 
Indeed, CoFe2O4–BaTiO3 nanoparticles were intravenously 
administered in mouse tail and forced to cross the blood-brain 
barrier (BBB) with a static magnetic field.

Regarding the frontiers of optoelectronic bio-interfaces, 
polymeric biocompatible organic nanoparticles/films of  
poly(3-hexylthiophene) revealed great performances both in 
restoring the functionality of blind retinas on ex vivo models [i.e., 
explants of rat retinas characterized by photoreceptor degenera-
tion (Ghezzi et al., 2013)], and in modulating the behavior of eye-
less animals (i.e., freshwater polyps) by amplifying the function of 
their primitive photoreceptors (Tortiglione et al., 2017).

As a further example, a class of nanomaterials characterized by 
elements with high atomic number Z (e.g., Au/Pt nanoparticles) 
can be also exploited as contrast agents and sensitizers of X-rays, 
representing very promising nanovectors for cancer theranostics 
(Subiel et al., 2016). The great versatility and potential of these 
nanomaterials in nanomedicine is noteworthy, especially consid-
ering their great potential also in proton therapy (Schlatholter 
et al., 2016).

MULTiFUnCTiOnAL DRUg DeLiveRY 
SYSTeMS (MDDS)

The optimization of carriers for delivering drugs specifically to 
diseased areas originated from the need to overcome drug limi-
tations, such as cytotoxicity, immunogenicity, short circulation 
times, non-controlled bio-distribution, and the non-targeting 
ability toward specific tissues. During recent years, significant 
advancements in the field of nanobiotechnology led to the 
development of MDDS for the accomplishment of diagnostic 
and therapeutic purposes through a single medical device, able 
of performing bio-imaging duties, while improving the thera-
peutic efficacy of drugs available on the market. MDDS already 
presented in the literature can have a variety of morphologies 
and sizes, and can be made of various materials like natural 
and synthetic polymers, lipids, and other inorganic and organic 
materials. Nanostructures made of polymeric materials are the 
most used MDDS, due to a number of advantages, including 
the high versatility during their fabrication, their controllable 
size and shape, their high encapsulation efficiency, and their 
easy surface functionalization by numerous targeting groups, 
including peptides, proteins, and antibodies. Furthermore, 
coating of these nanostructures with stealth materials like 
poly(ethylene glycol), PEG, increases their circulation time 
inside the body. In combination with the targeting ability, this 
renders them suitable for the specific delivery of a number of 
therapeutic preparations, including drugs, enzymes, proteins, 
RNA, and DNA (Mura et al., 2013; Srinivasan et al., 2015; Bose 
et al., 2016; Lu et al., 2016) to specific diseased tissues. The most 
used polymeric nanostructures are nanoparticles, nanocapsules, 
dendrimers, nanospheres, spherical and worm-like micelles, 
nanotubes, and hydrogels (Theato et al., 2013; Torchilin, 2014; 
Lu et al., 2016).

Another category of nanomaterials used as MDDS is repre-
sented by lipid nanostructures, including niosomes, transfer-
somes, liposomes, solid lipid nanoparticles, and nanostructured 
lipid carriers. Lipid-based nanostructures are considered a better 
alternative compared to polymeric nanostructures, especially for 
the treatment of CNS diseases, due to their inherent biocompati bility, 
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low immunogenicity, and their ability to penetrate the BBB. A 
newer approach, similar to that of lipid-based nanostructures, 
but more biomimetic, relies on cell membrane-derived vesicles 
or the coating of existing nanoparticles such as poly(lactide-co-
glycolide) and magnetite nanoparticles with the cell membrane 
of various cells, like macrophages, neutrophils, red blood cells, 
cancer cells, and others (Fang et al., 2014; Luk and Zhang, 2015; 
Bose et al., 2016; Gao et al., 2016; Krishnamurthy et al., 2016).

Inorganic nano- and microparticles, including magnetite 
(Fe3O4), maghemite (γ-Fe2O3), manganese dioxide (MnO2), 
cerium dioxide (CeO2), platinum (Pt), silver (Ag), zinc oxide 
(ZnO2), silica (SiO2), titanium dioxide (TiO2), and others, have 
also been used as MDDS combining various functionalities, such 
as imaging and hyperthermia (Hayashi et  al., 2013; Tapeinos 
et  al., 2016), reactive oxygen species (ROS) scavenging and 
oxygen generation (Bizeau et al., 2017; Tapeinos et al., 2017), and 
antimicrobial and anticancer activities (Mohanta et al., 2017).

A combination of the above-mentioned structures like 
polymers and lipids, polymers and inorganic nanoparticles, and 
lipids and inorganic nanoparticles have also been studied aiming 
at further improving the multifunctionality and the therapeutic 
effect of these nanostructures. Our group, for instance, used a 
lipid matrix to encapsulate iron oxide nanoparticles and the drug 
sorafenib, and subsequently showed its magnetically-driven 
accumulation in vitro against hepatocarcinoma cells, demonstrat-
ing localized therapy (Grillone et  al., 2015). A combination of 
inorganic and polymeric nanoparticles have also been used for 
multimodal imaging of breast cancer tissue (Cheng et al., 2012), 
providing a more precise imaging through luminescence and 
magnetic resonance.

The multifunctionality of each one of the above-mentioned 
nanostructures derives from the combination of materials with 
specific characteristics and can be translated as the response of 
the MDDS to a physical/external and/or a biological/internal 
stimulus, by changing their morphological (size, shape) and/
or their physicochemical characteristics (colloidal stability, 
crystal structure, hydrophobicity, redox state, etc.). To date, 
numerous systems that respond to external and/or internal 
stimuli have been developed, but the most important are those 
ones that respond to more than one stimulus and show ability 
of a most precise control in the release of the encapsulated 
therapeutic molecules. Stimuli–responsive systems are usually 
a combination of polymeric nanostructures and inorganic 
nanoparticles (Tapeinos et  al., 2013, 2016, 2017), although 
lipid-based nanostructures have also been developed to alter 
their properties when an external stimulus is applied (Du 
et al., 2015).

Stimuli-responsive nanostructures that have been used for 
the treatment of various diseases can respond to physical stimuli, 
including ultrasounds, light, electric fields, and magnetic fields 
(Mura et  al., 2013; Marino et  al., 2015, 2017b,c; Genchi et  al., 
2016, 2017b), or they can take advantage of the changes in the bio-
logical microenvironment of each disease and respond to altera-
tions in temperature, pH, redox conditions, ROS, and enzyme 
concentration (Tapeinos et al., 2008, 2017; de la Rica et al., 2012; 
Torchilin, 2014; Tapeinos and Pandit, 2016; Bizeau et al., 2017). 
Furthermore, a combination of these stimuli (Mura et al., 2013; 

Tapeinos et al., 2013, 2016; Efthimiadou et al., 2014a,b; Lu et al., 
2016) have also been used to increase the therapeutic versatility 
of the MDDS.

APPLiCATiOnS AnD FUTURe 
PeRSPeCTiveS

An increasing number of nanotechnology-based strategies are 
available for wireless and low-invasiveness manipulation of 
biological activities in hardly accessible anatomical districts, 
as the CNS. Among them, ultrasound activation of piezoelec-
tric materials is highly promising for the treatment of deep 
tissues (Tufail et al., 2011). Further investigations are, however, 
necessary for selective delivery of piezoelectric nanomaterials 
to target tissues and retention on site in vivo. The first studies 
on toxicity and accumulation of piezoelectric boron nitride 
nanotubes was conducted by our group with rabbits. Our stud-
ies collectively demonstrated high biocompatibility in terms 
of liver, kidney, and blood parameters of high doses (up to 
10 mg/kg) of intravenously injected nanotubes (Ciofani et al., 
2012, 2013a).

Our group also provided the first evidences on the 
applicability of piezoelectric nanocomposite films based on 
poly(vinylidenefluoride-co-trifluoroethylene), P(VDF-TrFE), 
and BTNPs to neuron-like cell stimulation for cochlear prosthet-
ics. Aiming at compensating missing/altered hair cell function, 
our nanocomposite films were satisfactorily tested for stimula-
tion of a human neuronal model by direct piezoelectric effect 
(Genchi et al., 2016). A single US application to films supporting 
SH-SY5Y cell cultures triggered significantly higher calcium 
influxes than plain P(VDF-TrFE) films and non-piezoelectric 
control substrates. Repeated stimulations significantly increased 
expression of β3-tubulin and neurite extension due to the better 
piezoelectric properties of composite films, suggesting improved 
functional maturation of the neuronal model on our artificial 
cochlear epithelium.

Smart nanomaterials are providing concrete opportunities for 
the treatment of pathological conditions that affect deep anatomi-
cal districts. However, hybrid smart material devices are opening 
even unprecedented therapeutic opportunities in nanomedicine, 
like biological barrier overcoming while multiple functions 
are accomplished (imaging, drug release, etc.). In particular, 
low-intensity magnetic field stimulation of magnetoelectric 
nanomaterials holds promise of clinical practice application in 
the near future. For instance, CoFe2O4–BaTiO3 were validated for 
Parkinson’s disease treatment in silico (Yue et al., 2012). Moreover, 
they were successfully tested for magnetically driven BBB cross-
ing, as well as for coupling with and mapping the intrinsic neural 
activity in mice (Guduru et  al., 2015). CoFe2O4–BaTiO3 nano-
particles were also used for direct current-field cell targeting and 
alternating current-field releasing of anti-HIV drug in vitro (Nair 
et al., 2013) and of paclitaxel for ovarian cancer treatment in vivo 
(Rodzinski et al., 2016).

Highly encouraging to the treatment of deep tissues are also 
cerium dioxide nanomaterials, alone and in combinations with 
other materials for the control of redox environments (both 
intercellular and intracellular ones). Our group demonstrated 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


TABLe 1 | Stimuli and effects of various multifunctional responsive structures.

Responsive material Stimulus effect Reference

Au nanorods Photothermal (NIR radiation) Neuronal spikes Eom et al. (2014)
Au@SiO2 nanoshells Photothermal (NIR radiation) Myotube contractions Marino et al. (2017a)
Peptide ligands assembled on carbon 
nanotubes

Light Cell differentiation Kim et al. (2016)

Au nanoparticles Photothermal Cell differentiation Rau et al. (2016)
Cu2S nanocrystals Photothermal and photodynamic 

(NIR radiation)
Hyperthermia and ROS-induced apoptosis Wang et al. (2015)

Au nanorods Photothermal (NIR radiation) Cancer cell imaging and photothermal therapy Huang et al. (2006)
Au nanorods Photothermal (NIR radiation) Inhibition of spontaneous and epileptiform neural activity Yoo et al. (2014)
Au nanorods Photothermal (NIR radiation) Evoking spikes on primary auditory neurons Yong et al. (2014)
Carbon nanohorns Photothermal (NIR radiation) Nerve activation (opening of the temperature-sensitive 

calcium channels)
Miyako et al. (2014)

Ultrasmall reduced graphene oxide NIR radiation Photoablation of U87MG cancer cells Robinson et al. (2011)
ZnO nanowires Ultrasounds Continuous direct-current output Wang et al. (2007)
BNNTs Ultrasounds Neural stimulation (neurite outgrowth) Ciofani et al. (2010)
BaTiO3 nanoparticles with tetragonal 
crystal

Ultrasounds Neural stimulation (calcium and sodium waves) Marino et al. (2015)

PVDF film Mechanical vibration Neural stimulation (neurite outgrowth) Royo-Gascon et al. (2013)
PVDF membranes Ultrasounds Neural differentiation Hoop et al. (2017)
P(VDF-TrFE) conduits N/A Regeneration of transected adult rat spinal cord Lee et al. (2017)
P(VDF-TrFE)/BTNP composite films Ultrasounds  1. Stimulation of a human neuronal model

 2. Increased calcium influx
 3. Increased expression of β3-tubulin
 4. Neurite extension

Genchi et al. (2016)

P(VDF-TrFE)/BNNT composite films Ultrasounds Osteogenic differentiation Genchi et al. (2017b)
High-Z nanomaterials Ionizing radiations Enhancement of irradiation effect Schlatholter et al. (2016); Subiel 

et al. (2016)
Fe3O4 magnetic nanoparticles Magnetic field Deep stimulation of the ventral tegmental area through 

opening of the transfected heat-sensitive receptor TRPV1
Chen et al. (2015)

CeO2 ROS concentration ROS scavenging Ciofani et al. (2013b, 2014); 
Rocca et al. (2014, 2015)

CoFe2O4-BaTiO3 Ultrasounds/static magnetic field Magnetically guided targeting Yue et al. (2012)
Direct current-field Cell targeting Nair et al. (2013); Rodzinski 

et al. (2016)Alternating current-field Drug release
Fe3O4, γ-Fe2O3 Alternating magnetic field  1. Magnetic resonance imaging

 2. Controlled release
 3. Tumor reduction

Hayashi et al. (2013); Tapeinos 
et al. (2016)

MnO2 ROS concentration ROS scavenging and oxygen generation Bizeau et al. (2017); Tapeinos 
et al. (2017)

CoFe2O4-BaTiO3 Low-intensity alternating magnetic 
field/static magnetic field

Modulation of deep-brain activity/guided brain targeting Guduru et al. (2015)

Poly(3-hexylthiophene) Light Restoration of the functionality of blind retinas Ghezzi et al. (2013)
Modulation of the behavior of eyeless animals Tortiglione et al. (2017)

β-cyclodextrin/CeO2 ROS concentration Intracellular compartment targeting, enhanced 
antitumoral activity and drug delivery

Xu et al. (2013)
Ferrocene/SiO2

Poly (acrylic acid), Fe3O4, Au, NaYF4: 
Yb, Er

Magnetic field NIR irradiation  1. Multimodal imaging of breast cancer tissue
 2. Magnetically targeted photothermal therapy

Cheng et al. (2012)

Cetyl palmitate/Fe3O4 Static magnetic field Localized anticancer therapy Grillone et al. (2015)
DPPC, DSPE-PEG2000-folate, 
C60-Fe3O4-PEG2000

Radiofrequency  1. Magnetic resonance imaging
 2. Photothermal ablation
 3. Controlled release

Du et al. (2015)

DMAEMA, AA, Disulfide, Fe3O4 Alternating magnetic field Enhanced release of encapsulated anticancer drugs Tapeinos et al. (2013, 2016)
Temperature
pH
GSH concentration

Carbon-based NIR irradiation Stem-cell differentiation Kim et al. (2016)
Laser Irradiation Photothermal ablation Mocan et al. (2011)

Cell membrane of various cells, like 
macrophages, neutrophils, red blood 
cells, cancer cells 

N/A  1. Tumor-specific immune response
 2. Specific targeting
 3. Drug delivery

Fang et al. (2014); Luk and 
Zhang (2015); Bose et al. 
(2016); Gao et al. (2016); 
Krishnamurthy et al. (2016)

Iron oxide nanoparticles and 
genetically encoded ferritine 
nanoparticles

Radiowave heating Insulin transgene expression and proinsulin release Stanley et al. (2012, 2015)

(Continued )
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Responsive material Stimulus effect Reference

Au nanoparticles Photothermal (light at 532 nm) Evoking spikes to hippocampal neurons through heat-
dependent changes of capacitance of the neural plasma 
membrane

Carvalho-de-Souza et al. (2015)

AA, acrylic acid; BNNTs, boron nitride nanotubes; BTNPs, barium titanate nanoparticles; C60, fullerene; Disulfide, N,N′-(disulfanediylbis (ethane-2,1-diyl))bis(2-methylacrylamide); 
DMAEMA, dimethyl aminoethyl methacrylate; DPPC, dipalmitoylphosphatidylcholine; DSPE-PEG2000-folate, 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine-N-[carboxy 
(poly(ethylene glycol))-2000]-folate; GSH, glutathione; NIR, near infrared; PEG, poly(ethylene glycol); PVDF, poly(vinylidenefluoride); P(VDF-TrFE), poly(vinylidenefluoride-co-
trifluoroethylene); ROS, reactive oxygen species.
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