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Economically-viable biofuel production is often limited by low levels of microbial

tolerance to high biofuel concentrations. Here we demonstrate the first application

of deactivated CRISPR perturbations of gene expression to improve Escherichia

coli biofuel tolerance. We construct a library of 31 unique CRISPR inhibitions and

activations of gene expression in E. coli and explore their impacts on growth during

10 days of exposure to n-butanol and n-hexane. We show that perturbation of

metabolism and membrane-related genes induces the greatest impacts on growth

in n-butanol, as does perturbation of redox-related genes in n-hexanes. We identify

uncharacterized genes yjjZ and yehSwith strong potential for improving tolerance to both

biofuels. Perturbations demonstrated significant temporal dependencies, suggesting that

rationally designing time-sensitive gene circuits can optimize tolerance.We also introduce

a sgRNA-specific hyper-mutator phenotype (∼2,600-fold increase) into our perturbation

strains using error-prone Pol1. We show that despite this change, strains exhibited similar

growth phenotypes in n-butanol as before, demonstrating the robustness of CRISPR

perturbations during prolonged use. Collectively, these results demonstrate the potential

of CRISPR manipulation of gene expression for improving biofuel tolerance and provide

constructive starting points for optimization of biofuel producing microorganisms.

Keywords: dCas9, gene expression, biofuels, tolerance, n-butanol, n-hexane, Pol1

INTRODUCTION

Bacteria have long been investigated for their ability to produce renewable, biologically-derived
replacements for petroleum-based fuels such as gasoline. Microbially produced biofuels have a
promising future (Blazeck et al., 2014; Liu et al., 2015), with particular interest in straight-chain
carbon alcohols (Trinh, 2012) and alkanes (Chen et al., 2013). Despite their potential, biofuels
represent only ∼2% of total transportation-based energy consumption (Jin et al., 2011), primarily
due to their low economic competitiveness. This is limited to a large degree by the inherent toxicity
such products exhibit to their hosts (Dunlop, 2011).

One particularly interesting biofuel is n-butanol due to its high energy density, low volatility,
and ability to interface with our current gasoline-based infrastructure (Dürre, 2007; Qureshi and
Ezeji, 2008). However, in a clear representation of the aforementioned tolerance issue, butanol is
one of the most toxic biofuel compounds to microorganisms (Sardessai and Bhosle, 2002), with
yields typically limited to a maximum of 2% vol/vol under optimal conditions (Knoshaug and
Zhang, 2009; Xue et al., 2014). Engineering improved butanol tolerance is a key limiting factor to its
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economic viability and remains an elusive goal (Tian et al., 2013).
Similar problems have plagued the progress of bringing other
biofuels such as n-hexane to market (Liu et al., 2012).

Increasingmicrobial tolerance to biofuels would go a long way
toward improving their economic competitiveness and remains
a high-priority research goal. Many studies have explored
improving the tolerance of specialized strains such asClostridium
(Tomas et al., 2004; Li et al., 2016; Wang S. et al., 2017)
or Synechocystis (Anfelt et al., 2013; Kaczmarzyk et al., 2018).
While attempts have been made to import heterologous biofuel
pathways into the well-characterized and easy to use Escherichia
coli (Atsumi et al., 2008; Nielsen et al., 2009; Zheng et al., 2009),
the tolerance of this model organism still poses a significant
barrier to exploring these pathways in E. coli to their full
potential. In E. coli, n-butanol tolerance has been associated with
oxidative stress response, respiration, transport, and metabolite
synthesis (Rutherford et al., 2010; Reyes et al., 2013). While
these studies have posed promising pathways to target, the
extensive knowledge established in other strains has yet to be
fully translated to E. coli. For instance, a 20–30% increase in
membrane fluidity has been associated with n-butanol exposure
in Clostridium, suggesting that membrane related genes could
also be involved in improving E. coli n-butanol tolerance (Liu and
Qureshi, 2009; Fletcher et al., 2016).

A promising approach to improving tolerance is to engineer
alternative gene expression states. Manipulating gene expression
is an essential metabolic engineering approach that has been
previously applied to increase ethanol tolerance (Alper et al.,
2006), and could similarly be applied to improving tolerance
toward other biofuels (Erickson et al., 2014). This has a crucial
advantage over gene knockout or insertion approaches in that
it can be used to fine-tune biofuel pathways so as to not
waste essential resources and restrict growth (Wang C. et al.,
2017). Furthermore, manipulation of gene expression can be
easily implemented into genetic feedback circuits for real-time
pathway balancing during biofuel production (Jones et al., 2015).
However, successful manipulation of transcriptional machinery
to regulate specific genes has been difficult to achieve, preventing
widespread implementation of such practices (Liu et al., 2014).

Utilizing CRISPR technology is a promising way to overcome
these barriers. Deactivated versions of Cas9 have been developed
to fine-tune expression patterns by inhibiting (Qi et al., 2013) or
activating (Bikard et al., 2013) virtually any gene in a relatively
facile manner. This has sparked renewed interest in engineering
gene expression to enhance biofuel production (Hsu et al., 2014),
as CRISPR-mediated gene modulation has the potential for fine-
tuned optimization of cellular pathways (Deaner and Alper,
2017). Furthermore, while CRISPR-Cas9 has been applied toward
the integration of heterologous genes (Li et al., 2015; Alonso-
Gutierrez et al., 2017) increasing fatty acid production (Wu
J. et al., 2017), improving butanediol production (Wu M. Y.

Abbreviations: CRISPR, clustered regularly interspaced short palindromic

repeats; dCas9, deactivated CRISPR-associated protein 9; dCas9-ω, fusion of dCas9

with omega subunit of RNA polymerase; sgRNA, single guide RNA; CRISPRi,

CRISPR interference (of gene expression); CRISPRa, CRISPR activation (of gene

expression); ORF, open reading frame; RFP, red fluorescent protein.

et al., 2017), or redirecting metabolic flux (Wang C. et al., 2017),
no work has explored the use of deactivated CRISPR systems
for improving biofuel tolerance in E. coli (Cress et al., 2015b).
Additionally, CRISPR interference has been used to improve
Klebsiella n-butanol production 154%, demonstrating that there
is similar potential for improving E. coli n-butanol tolerance
(Wang M. et al., 2017).

Here we systematically explore the growth impacts of a library
of 31 CRISPR inhibitions or activations of E. coli gene expression
during exposure to either n-butanol or n-hexane (Figure 1A).
These CRISPR constructs were targeted to genes involved in a
broad range of cellular processes including metabolism, redox,
transport, DNA, and RNA processes, and motility, as all have
been implicated for their importance in determining biofuel
tolerance capacity (Sardessai and Bhosle, 2002; Dunlop, 2011;
Erickson et al., 2014, 2017; Otoupal et al., 2017; Figures 1B,C).
We explored both inhibition and activation of gene expression, as
both approaches could feasibly lead to optimization of tolerance.
As growth phenotypes can be time-sensitive, we explored growth
impacts over 10 days of exposure to identify perturbations that
impact growth phenotypes in either the short-term (1 day) or
long-term (10 days), as each result points to different approaches
that could be implemented (Figure 1D).

Our CRISPR perturbation approach reveals a number of
promising gene targets whose expression could be engineered
for improved biofuel tolerance. Manipulation of metabolism-
related genes, as well as membrane and periplasm related genes,
appears the most promising pathways for increasing tolerance
to n-butanol. Conversely, redox genes appear to be more
influential in improving n-hexane tolerance. Strong temporal
effects were identified under both conditions, suggesting that
time-sensitive alterations of gene expression should be taken
into consideration while engineering improved biofuel tolerance.
We also present evidence that these perturbations are stable by
artificially introducing a hyper-mutator phenotype (increasing
basal mutation rates ∼2,600-fold) during exposure to n-butanol
(Camps et al., 2003; Alexander et al., 2014). Despite this
increased mutation rate, perturbations largely demonstrate the
same relative impact on growth phenotypes as before, suggesting
that CRISPR perturbations maintain efficacy over prolonged
periods. Together, these results demonstrate the power of
CRISPR perturbations for improving biofuel tolerance.

MATERIALS AND METHODS

CRISPR Plasmid and Strain Construction
Addgene plasmids #44249 and #44251 were used for expression
of dCas9 and sgRNA respectively (obtained directly from
Addgene). These plasmids harbor the chloramphenicol (cm) and
ampicillin (amp) resistance markers respectively. Native 44251
targets the ORF of RFP, which is not present in any of the
strains used in this study and was therefore used as the nonsense
control sgRNA target sequence. Plasmid pPO-dCas9ω was
constructed in a previous study (Otoupal et al., 2017) and used for
expression of dCas9-ω alongside 44251. Unique sgRNA targets
were constructed by PCR amplifying cloning inserts (primers
obtained from Integrated DNA Technologies) replacing the RFP
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FIGURE 1 | Improving bacterial tolerance to biofuels using CRISPR gene expression perturbation. (A) CRISPR perturbations of gene expression (both inhibition and

activation) were designed for 31 E. coli genes and expressed using a two-plasmid system. (B) Strains used in this study. Whether CRISPR constructs were used to

inhibit or activate gene expression are notated by -i or -a in the strain name respectively. (C) These perturbations were designed to disrupt expression of a variety of

genes related to bacterial metabolism, redox, transport, various DNA and RNA processes, and motility. (D) Strains harboring these individual perturbations were

exposed to biofuels (n-butanol and n-hexane) over multiple days, with the characterization of both short-term and long-term growth impacts.

target sequence with the new target sequence for each gene.
Inserts were flanked with SpeI and ApaI restriction sites. Plasmid
44251 digested with SpeI and ApaI (New England Biolabs)
was used as the cloning backbone. Digested inserts were gel
extracted (GeneJET Gel Extraction Kit, Thermo Fisher Scientific)
and ligated (T4 DNA ligase, New England Biolabs) alongside
this backbone and transformed into electrocompetent NEB 10-β
(New England Biolabs). Final constructs were recovered using
Zyppy Plasmid Miniprep Kit (Zymo Research Corporation) and
confirmed by sequencing (via GENEWIZ) before transformation
into chemically competent E. coli MG1655 (ATCC 700926)
harboring either dCas9 or dCas9-ω plasmids for gene repression
or activation respectively. Exact gene targets for each sgRNA are
listed in Supplementary Table S1. The successful perturbation of
gene expression using this CRISPR system was confirmed using
quantitative real-time PCR in previous studies (Erickson et al.,
2015, 2017; Otoupal et al., 2017). These constructs were built to
perturb gene expression roughly 10-fold from basal levels.

Error-Prone Strain Construction
Strain JS200 expressing temperature-sensitive polA was obtained
from Addgene (#11722) harboring the pEP Pol1 plasmid (error-
prone polA D424A, I709N, A759R with reduced fidelity) with
cm resistance marker. The plasmid was miniprepped from the
strain, after which the strain’s plasmid was removed by growing
for 5 days at 30◦C in 3mL LB cultures, with 1:1,000 dilution into

fresh culture every 24 h. The culture was streaked on plain LB
agar plates at the end of this exposure period to obtain individual
colonies. These colonies were screened for successful plasmid
removal by plating in both the presence and absence of cm. A
colony that grew only in the absence of cm was picked and saved
to obtain strain JS200 with no plasmid.

Plasmids dCas9 and dCas9-ω were PCR amplified as
Gibson Assembly inserts, while plasmid pEP Pol1 was PCR
amplified as a Gibson Assembly backbone. Primers are
listed in Supplementary Table S2 (obtained from Integrated
DNA Technologies, Supporting Information). Successful PCR
products were gel extracted, and Gibson Assembly was
performed to insert pEP into dCas9 and dCa9-ω plasmids. A
home-made Gibson Assembly mix was prepared using 2 µL Taq
DNA Ligase (New England Biolabs M0208S), 0.25 µL Phusion
High-Fidelity DNA polymerase (New England Biolabs, M0530S),
0.008 µL T5 exonuclease (New England Biolabs, M0363S), and
4 µL home-made ISO buffer. Gibson controls using only insert
or backbone were run in parallel to confirm successful assembly.
Constructs were transformed into electrocompetent NEB10-β,
plasmids were recovered and run on a gel to confirm appropriate
sizes, and submitted for sequencing confirmation. Plasmids
were then transformed into empty chemically competent JS200,
with overnight growth at 30◦C with 35µg/mL cm selection.
Successful transformants of Pol1-dCas9 and Pol1-dCas9-ω were
picked and grown overnight at 30◦C. Each strain was made
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chemically competent (Zymo Mix & Go! Transformation Kit)
and immediately transformed with each of the individual sgRNA
targets, with growth at 30◦C. To prevent excessive mutation
before the start of the experiment, transformation plates were
used directly to inoculate 4 biological replicates grown overnight
at 30◦C for the experiment represented in Figure 7. Experiments
using these strains included 100µM IPTG to drive expression of
error-prone Pol1.

Growth and Media Conditions
All cultures were grown in Lennox Luria-Bertani Broth
(LB) (Sigma-Aldrich). Media was supplemented with amp
(100µg/mL, Sigma-Aldrich) to maintain a selection of sgRNA
plasmids, or supplemented with cm (35µg/mL, Sigma-Aldrich)
to maintain a selection of dCas9/dCas9-ω/pEP Pol1 plasmids.
Unless noted, amp and cm were always included in media.
Growth of gene knockout strains was performed without
supplementation of any antibiotic. Expression of dCas9/dCas9-ω
during experiments was driven by supplementation of 50 ng/mL
anhydrotetracycline (aTc, Sigma-Aldrich). Expression of error-
prone Pol1 during experiments was driven by supplementation
of 100µM Isopropyl-β-D-thiogalactosidase (IPTG, Sigma-
Aldrich). All cultures were grown at 37◦C, with shaking at 225
rpm unless otherwise noted. Growth at 30◦C was used during
cloning of the error-prone strains in order to drive expression of
wild-type Pol1.

Growth Assays During Biofuel Exposure
For all growth experiments, individual colonies of normal
CRISPR-perturbation constructs or gene knockouts were
inoculated into 100 µL cultures in 384 well flat-bottom
microplates and grown overnight for 16 h. Cultures were then
diluted 1:100 into fresh 100 µL cultures supplemented with
aTc (except for gene knockout strains) and grown for 24 h.
Cultures were then diluted 1:100 into fresh 100 µL cultures
supplemented with either no biofuel (Figure 2), 0.5% vol/vol
n-butanol (Macron, Figures 3, 4, 6) or 10% vol/vol n-hexane
(Macron, Figure 5), and grown in a GENios plate reader (Tecan
Group Ltd.) operating under Magellan software (version 7.2)
with shaking every 16.6min before OD580nm measurement
every 20min. Temperature was maintained at 37◦C for this
entire period. Cultures were grown for 24 h, and data from the
microplate run was used to determine growth characteristics on
“day 1” of the experiment. The significant volatility of n-hexanes
disrupted optical density (OD) measurements during the first
∼5 h of growth due to excessive evaporation onto the top of
microplate lids causing significant condensation, hence the
exclusion of lag times and growth rates for n-hexane data. For
CRISPR perturbation strains, after 24 h of growth, cultures were
diluted 1:100 into fresh media and grown in a regular shaking
incubator for days two-four and six-nine. Cultures were again
grown in the plate reader on days 5 and 10 of the experiment to
capture changing growth characteristics over time.

For Figure 7, four individual colonies of CRISPR-
perturbation constructs expressing error-prone Pol1 in JS200
were inoculated directly from transformation plates into 100
µL cultures supplemented with amp and cm and grown for

16 h overnight. Cultures were diluted 1:100 into fresh 100
µL cultures supplemented with aTc, IPTG, and 1.0% vol/vol
n-butanol (increased to exacerbate selective pressure) and grown
for 24 h in the plate reader for day 1 growth measurements. OD
measurements were repeated in the microplate reader for day 5
of the experiment. The increase in n-butanol concentration was
done to drive further selection against CRISPR plasmids, while
the reduced time of the experiment was due to our previous
results showing similar growth phenotypes for most strains
between days 5 and 10 of the experiment.

Mutation Fluctuation Assay
Whole-genome mutation rates were determined using the
Luria-Delbruck method of identifying spontaneous rifampicin
resistance (Luria and Delbruck, 1943). An individual colony
of strains for this experiment was inoculated in 3mL of LB
and grown overnight for 16 h without amp or cm selection.
Each culture was then normalized to the same OD595nm and
grown, and diluted 1:10,000 into 35 parallel 100 µL cultures
supplemented with 50 ng/mL aTc and grown for another 24 h.
Three cultures of each strain were used to determine colony
forming units, revealing overall viable cells per strain. Of the
remaining 32 cultures, 50 µL of each were plated on LB agar
supplemented with 100µg/mL rifampicin (Sigma-Aldrich) and
grown for 24 h. Colonies were then calculated, andmutation rates
were estimated using the FALCOR web tool (Hall et al., 2009).

Determination of sgRNA Mutation Rate via
Sequencing
To quantify mutation rates of the sgRNA plasmids in the error-
prone polymerase system, twelve JS200 E. coli cells harboring
error-prone Pol1 alongside dCas9-ω and the ompF activation
sgRNA were exposed to 1.0% n-butanol for 5 days using the
protocol listed above. After 5 days of exposure, replicates were
streaked on plain LB plates and grown overnight. Sixteen
individual colonies were selected from one replicate showing the
greatest amount of growth, grown overnight in 5mL LB, and
miniprepped to recover the sgRNA plasmids. These plasmids
were submitted for standard Sanger sequencing (GENEWIZ)
using the primer 5′-aaataggcgtatcacgaggc-3′. Sequencing results
revealed ∼900 nucleotides of reliable sequence per sample.
Mutations were identified via BLAST alignment, revealing a total
of four point mutations in all 16 samples. From this data, it
was estimated that four mutations per 900 ∗ 16 nucleotides or
a mutation profile of 2.78 ∗ 10−4 mutations per nucleotide. As a
1:100 dilution of E. coli into fresh LB has been estimated to result
in roughly ∼6.64 new generations per day (Lenski et al., 1991),
we estimate that 33.2 generations of bacteria passed throughout
the 5-day evolution experiment. This gives an estimatedmutation
rate of 8.36 ∗ 10−6 mutations per nucleotide per generation of
the sgRNA plasmid. The established mutation rate of E. coli is
3.2 ∗ 10−9 mutations per nucleotide per generation (Luria and
Delbruck, 1943) (within error of our calculated mutation rate of
the control in Figure 6B), suggesting that our system exhibited a
∼2,600-fold increase in mutation rate. While this level is clearly
higher than basal levels, it is significantly lower than the reported
∼80,000-fold increase (Camps et al., 2003). This is likely due to
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FIGURE 2 | Growth of E. coli harboring CRISPR gene perturbations in the absence of biofuels. (A) Normalized growth (maximum OD/starting OD) of all strains.

Strains are organized based on pathways affected by perturbation, and a dashed line extends from the control for comparison. Asterisks indicate significant

differences in relation to the control (P < 0.05). A two-tailed type II t-test was used to calculate significance relative to the control. (B) Growth curves of the three

strains growing to the highest levels (green, top) or lowest levels (red, bottom). (C) Growth rates (µ) and lag times (τ ) of each strain in relation to the control strain,

located at the intersection of the x- and y-axes. Pathways of the affected perturbation are again indicated using symbol and color. Red #significant differences in lag

times, while orange *Significant differences in growth rates, relative to the control. (D) Organized rankings of strains by highest growth reached, with the color scale to

indicate relative growth. The top 10 and bottom 10 are indicated as “best growth” and “worst growth,” respectively. All error bars represent the standard deviation of

four biological replicates.

FIGURE 3 | Normalized growth (maximum OD/starting OD) of E. coli harboring CRISPR gene perturbations during 0.5% vol/vol n-butanol exposure. (A) Change in

growth of each strain over 10 days of exposure, with quantification on days one (D1), five (D5), and ten (D10). Strains are organized based on pathways affected by

perturbation. Dashed lines extend from the control for each experimental day. A two-tailed type II t-test was used to calculate significance (as indicated by *P < 0.05)

relative to the control on the same experimental day. (B) Growth curves of the three strains growing to the highest levels (green, top) or lowest levels (red, bottom) on

D1, D5, and D10. (C) Organized rankings of strains with highest growth reached on each day, with the color scale to indicate relative growth. The top ten and bottom

ten are indicated as “best growth” and “worst growth,” respectively. All error bars represent the standard deviation of eight biological replicates.

a reduction in mutagenesis efficiency after reaching stationary
phase, as has been reported (Alexander et al., 2014). Improved
mutation rates could likely be achieved by maintaining cultures
in exponential phase through growth in a bioreactor.

Growth Analysis
OD580nm measurements were normalized to blank-LB cultures
from the same day of each experiment. The resulting starting
OD of each cutlure was then subtracted from each subsequent
measurrement, thus normalizing growth to the starting
timepoint. This was done in order to ensure accurate
quantification of growth rates and lag times, as starting OD
values were found to interfere with the program used to calculate

these values. These final values were used to determine lag
times, growth rates, and maximum ODs using the program
GrowthRates version 1.8 (Hall et al., 2014).

For Supplementary Figures S1–S4, the normalized growth of
all CRISPR perturbation strains in the absence of stress from
Figure 2 were in turn normalized to growth of the control
strain in the absence of stress. The change in growth that each
CRISPR perturbation demonstrated relative to the control strain
the absence of stress was calculated in Supplementary Figure S1.
These relative growth values were used to normalize results
from Figures 3A, 5A, 7C and Supplementary Figures S2–S4
respectively by multiplying these results to the output shown in
Supplementary Figure S1.
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FIGURE 4 | Growth rates (µ) and lag times (τ ) of E. coli harboring CRISPR gene perturbations during 0.5% vol/vol n-butanol exposure. These growth characteristics

were quantified on (A) day one, (B) day five, (C) and day 10 of the experiment. Scales are set to intersect the control in each graph. A two-tailed type II t-test was

used to calculate significance (P < 0.05) relative to the control in growth rates (orange *) and lag times (red #). Error bars represent the standard deviation of eight

biological replicates.

FIGURE 5 | Normalized growth (maximum OD/starting OD) of E. coli harboring CRISPR gene perturbations during 10.0% vol/vol n-hexane exposure. (A) Change in

the growth of each strain over 10 days of exposure, with quantification on days one (D1), five (D5), and ten (D10). Strains are organized based on pathways affected

by perturbation. Dashed lines extend from the control for each experimental day. A two-tailed type II t-test was used to calculate significance (as indicated by *P <

0.05) relative to the control on the same experimental day. Error bars represent the standard deviation of four biological replicates. (B) Organized rankings of strains

with highest growth reached on each day, with the color scale to indicate relative growth. The top 10 and bottom 10 are indicated as “best growth” and “worst

growth,” respectively.

Batch Culture Growth
The four replicates of the five strains most tolerant to n-butanol,
as well as the control strain perturbing rfp, were saved as glycerol
stocks at the end of 10 days of 0.5% n-butanol exposure. Stabs
of these glycerol stocks were used to inoculate 3mL LB cultures
supplemented with amp, cm, aTc, and 0.5% n-butanol, and grown
overnight for 16 h in a 37◦C incubator with continuous shaking
at 225 rpm. Overnight cultures were then diluted 1:100 into fresh
15mL cultures supplemented with amp, cm, aTc, and 0.5% n-
butanol. A 200 µL aliquot of each culture was then collected

to determine starting ODs in a microplate, while the remaining
culture was grown in a 37◦C incubator with continuous shaking
at 225 rpm. After 6 h of growth (i.e., mid-log phase), another 200
µL aliquot of each culture was collected to determine ODs in a
microplate. The rest of the culture was grown for another 18 h
and used for RT-qPCR.

Quantitative Reverse Transcription PCR
The majority of constructs’ impact on bacterial gene expression
were confirmed in previous studies to perturb mRNA levels
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FIGURE 6 | Growth of gene knockouts in relation to wildtype E. coli BW25113. Normalized growth (maximum OD/starting OD) of knockouts in (A) 0.5% vol/vol

n-butanol or (C) n-hexane. Strains are organized based on pathways affected by perturbation. Dashed lines extend from the control (A) two-tailed type II t-test was

used to calculate significance (P < 0.05) relative to the control. (B) Growth rates (µ) and lag times (τ ) of knockouts during 0.5% vol/vol n-butanol exposure. Axes are

set to intersect the control in each graph. A two-tailed type II t-test was used to calculate significance (P < 0.05) relative to the control in growth rates (orange *) and

lag times (red #). (D) Organized rankings of strains with highest growth reached on each day, with the color scale to indicate relative growth. The top five and bottom

five are indicated as “best growth” and “worst growth,” respectively. All error bars represent the standard deviation of four biological replicates.

FIGURE 7 | Design of a hyper-mutator strain of E. coli for targeted error-prone replication of the sgRNA plasmid, and subsequent growth of these strains in 1.0%

vol/vol n-butanol exposure. (A) We move dCas9 and dCas9-ω onto a plasmid expressing IPTG inducible error-prone Pol1 in a strain of E. coli expressing

temperature-sensitive native Pol1. During growth at 37◦C, error-prone Pol1 is expressed, causing low fidelity replication of plasmids with the ColE1 ori. This imparts

significant mutations of the sgRNA plasmids with minimal impact on the dCas9/dCas9-ω plasmid or genome at large. (B) Whole-genome mutation rates of the control

strain and the hyper-mutator control strain. Error bars represent the standard deviation of 32 technical replicates. A two-tailed type II t-test was used to calculate the

statistical difference between the strains. (C) Normalized growth (maximum OD/starting OD) of hyper-mutator E. coli harboring CRISPR gene perturbations during

1.0% vol/vol n-butanol exposure. Change in the growth of each strain over 5days of exposure, with quantification on days one (D1) and five (D5). Strains are organized

based on pathways affected by perturbation. Dashed lines extend from the control for each experimental day. A two-tailed type II t-test was used to calculate

significance (as indicated by *P < 0.05) relative to the control on the same experimental day. Error bars represent the standard deviation of four biological replicates.

(D) Growth curves of the three strains growing to the highest levels (green, top) and lowest levels (red, bottom) on D1 and D5. (E) Organized rankings of strains with

the highest growth reached on each day, with the color scale to indicate relative growth. The top 10 and bottom 10 are indicated as “best growth” and “worst

growth,” respectively.
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in a 10-fold range above or below basal levels (Erickson
et al., 2015, 2017; Otoupal et al., 2017). To confirm that
perturbations remained effective over prolonged periods, RT-
qPCR was performed on the samples collected in the Batch
Culture Growth section above. Three of the four replicates
of each strain was collected at the end of 24 h of growth,
and RNA was extracted using the GeneJET RNA Purification
Kit (Thermo Scientific). The collected RNA was diluted to a
concentration of 5,000 ng per 100 µL, and was purified for any
DNA contamination with the TURBO DNA-free kit (Ambion).
Purified 100 ng of RNA was subsequently converted into 100
ng of cDNA through the Maxima First Strand cDNA Synthesis
Kit for RT-qPCR (Thermo Scientific). RT-qPCR reactions were
then performed on technical duplicates of each replicate using
the Maxima SYBR Green qPCR Master Mix (Thermo Scientific).
Two ng of cDNA were used in 25 µL RT-qPCR reactions,
which were run on the QuantStudio 6 Flex Real-Time PCR
System (Applied Biosystems). Forty cycles of 98◦C melting for
15 s, 50◦C annealing for 30 s, and 72◦C extension for 30 s. Rox
normalization was applied across the plate, after which Ct values
were estimated and averaged across technical duplicates. Gene
expression changes were calculated using the 2−11Ct approach
with the genes gyrA and cysG serving as separate housekeeping
gene controls. Application of the 2−11Ct approach was done
for both housekeeping genes separately, relative to the 1Ct
expression of the control strain perturbing rfp. Averages of fold
changes in gene expression were taken from both housekeeping
genes. Controls were also included, using either no cDNA in the
reaction or using an RNA sample for which cDNA was prepared
with no reverse transcriptase present.

Statistical Analysis
All P values reported were calculated using a standard two-
tailed type II student’s t-test in comparison to the RFP-targeting
control strain within each graph, with a significance value of
α = 0.05. All normalized growth, optical density, growth rate,
and lag time error bars represent standard deviations of four or
eight biological replicates as indicated. Error bars of mutation
fluctuation analysis represent standard deviations of 32 technical
replicates.

RESULTS

Construction of CRISPR Perturbations and
Quantification of Impact on E. coli Growth
During No Biofuel Exposure
We first designed a diverse library of 31 CRISPR perturbations
to modulate gene expression in E. coli. These gene targets were
selected based on previous genes known to be involved in general
bacterial stress response (acrA, dinB, marA, mutS, recA, soxS,
and tolC) (Otoupal et al., 2017), or to be involved in central
biological processes (dfp, frr, gadA, topA, and zwf ) (Sardessai
and Bhosle, 2002; Dunlop, 2011; Erickson et al., 2014). We
also explored genes that we had previously identified to exhibit
altered transcriptomic signatures during exposure to n-butanol
or n-hexane (Erickson et al., 2017) (tar, fliA, fiu, wcaA, wzc,

ybjG, ydhY, yehS, and ybjG). OmpF has been associated with
improved solvent tolerance (Isken and de Bont, 1998), and
ampC expression has been directly correlated to diminished
ompF activity (Pérez et al., 2007). Finally, sodB overexpression
has demonstrated significantly increased n-butanol tolerance
(Reyes et al., 2013). These genes were selected over other genes
associated with biofuel tolerance as they are not co-transcribed
with other genes, or are contained in relatively small operons, so
as to minimize the CRISPR perturbation’s direct impact on other
genes.

CRISPR inhibition constructs were designed to repress gene
expression by binding within the first∼50 nt of the open reading
frame, or around the +1 site of the respective promoter (Larson
et al., 2013). CRISPR activation constructs were designed to bind
∼80–100 nt upstream of the +1 site of the promoter. These
gene perturbations resulted in decreasing or increasing mRNA
production to ∼10-fold basal levels as shown in previous studies
(Erickson et al., 2015, 2017; Otoupal et al., 2017).

We first tested how these strains behaved during growth in
plain LB, to demonstrate how perturbations impacted growth in
the absence of stress (Figure 2). We quantified the maximum
growth each strain reached at the end of 1 day of growth
(Figure 2A) and plotted the growth curves of the fastest and
slowest growing three strains as ranked by maximum growth
reached (Figure 2B). We also determined the growth rates and
lag times of each strain in relation to the control (Figure 2C).

Out of 31 perturbation strains, only six showed significant
differences in growth. Only strain DinB-a grew significantly
better than the control. Five strains (RecA-i, TopA-i, WcaA-i,
AmpC-i, andOmpF-a) grew to significantly lower concentrations
than the control. Only TopA-i grew slower than the control.
Two strains (MarA-a and SodB-i) exhibited a longer lag time,
while five strains (RecA-a, TolC-a, AcrA-a, DinB-a, and Wzc-i)
exhibited shorter lag times. All five of these strains exhibiting
shorter lag times were also in the top ten strains in terms of
ranked growth (Figure 2D), suggesting a slight inherent benefit
to gene activation on E. coli growth.

Overall, these data demonstrate that growth of perturbed
strains in plain LB medium was at most moderately disrupted
by gene perturbations. This is most noticeable by observing the
overall growth curves of the top and bottom-growing strains,
which reveal similar growth trajectories relative to the control
(Figure 2B). Any noted difference from the control of each
perturbed strain was taken into consideration in future analysis.
A summary of every strains’ growth in the presence of biofuel
stress relative to its growth in the absence of stress is presented in
Supplementary Figures S1–S4.

Impact of CRISPR Perturbations on E. coli

Growth During n-Butanol Exposure
We next exposed our CRISPR perturbations to 0.5% vol/vol
n-butanol and analyzed how each perturbation impacted growth.
This experiment was performed over the course of 10 days, with
1:100 dilution into fresh media at the start of each day. Growth
was quantified in a microplate reader on days 1, 5, and 10 of the
experiment. We again analyzed the normalized growth of each
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strain on each day of the experiment (Figure 3A) and plotted
the growth curves of the top three and bottom three strains
on each day of the experiment (Figure 3B). We also ranked
each perturbation by maximum growth reached during each day,
parsing out the top 10 strains exhibiting the highest and lowest
growth respectively (Figure 3C). Perturbations were compared
against the nonsense targeting RFP control strain.

The most prominent growth impacts were observed from
metabolic pathway perturbations. Strains Dfp-i, Zwf-i, and
GadA-i always fell within the 10 worst performing strains. Each
of these genes is involved in central metabolic pathways—dfp is
essential for coenzymeA synthesis, zwf expresses the first enzyme
of the pentose phosphate pathway, and gadA regulates glutamate
levels. Disruption of such central metabolic pathways appears
to be deleterious to butanol tolerance across all time points.
Conversely, inhibition of wzc exhibited the highest growth on
day 1 and was always one of the top three strains throughout
the experiment. Growth curves for this strain demonstrated
significant improvement over the control on all days of the
experiment (Figure 3B). Interestingly, we observed that Wzc-i
also demonstrated a ∼9-fold increase in chromosomal mutation
rates (Supplementary Figure S5).

Intriguing time-dependent impacts on growth were observed
from perturbations of transport and motility genes. Strain AcrA-
a exhibited detrimental growth on day one, but improved growth
later in the experiment, while strain AcrA-i. exhibited reduced
growth only on day 10. TolC-a and Fiu-i showed improved
growth at the beginning of the experiment but had no significant
impact by day 10. Tar-i helped growth on day 1 but actually
resulted in lower growth later in the experiment. Activation
of ompF also resulted in diminished growth in the beginning,
but this could be explained by the aforementioned diminished
growth in the absence of n-butanol.

Very strong growth impacts were observed by a few
perturbations of DNA and RNA processes. This is best
demonstrated by activation of dinB and recA, which both
exhibited improved growth, while inhibition of these genes
decreased growth. Perturbations of mutS exhibited the opposite
effect, with inhibition improving growth and activation
decreasing growth. TopA-i and Frr-i exhibited time-dependent
phenotype switching as many of the transport gene perturbations
did, both slightly improving growth in the beginning while
resulting in diminished growth at later time points. The complex
phenotypic responses of these perturbation strains highlight the
transitory impacts of CRISPR perturbations on overall growth.

Relative to other perturbations, those impacting redox
pathways exhibited less of an impact on growth phenotypes. The
exception to this is activation of marA, which grew to the fourth
and second highest OD on the days 5 and ten. Interestingly
inhibition of marA also improved growth on day 1. MarA
has been demonstrated to be significantly upregulated during
n-butanol exposure (Rutherford et al., 2010), so while results
pertaining to MarA-a are as expected, MarA-i improved growth
are intriguing.

Finally, perturbation of the uncharacterized genes yehS and
yjjZ point to the untapped potential for improved n-butanol
tolerance and need for further investigation. Our previous work

analyzing the transcriptome of E. coli adapted to n-butanol
revealed that yjjZ, an uncharacterized gene suggested to express a
small RNA, was significantly downregulated during exposure to
n-butanol (Erickson et al., 2017). In accordance with this, strain
YjjZ-i grew to the second highest levels on day one. However, this
perturbation appears to have provided no benefit in the later part
of the experiment. Conversely, strain YehS-i exhibited improved
growth on days 5 and 10.

Overall, we noted that all strains adapted to n-butanol
exposure over time; the average maximum ODs increased (0.65
± 0.15 and 0.73± 0.19 on day 1 and 10, respectively). The impact
of gene expression perturbations appears to be significantly time-
sensitive, with many exhibiting benefits only in the short-term
that were lost in the long-term. Supporting this observation is
the fact that the control strain became one of the best strains over
time; the control strain grew to the fifth lowest levels on day 1 but
13 highest on day 10.

In addition to testing bacterial tolerance to n-butanol in
microplates, we also tested the tolerance of some of the best
performing strains in larger batch cultures. This was done to
demonstrate the feasibility of translating these results to larger
volumes that would be required when applying these gene
expression perturbations in an industrial setting. We found that
of the five best performing strains in n-butanol on day 10 of
the experiment, all but strain MutS-i maintained statistically
significant improved growth over the control strain in 15mL
batch cultures (Supplementary Figure S6). Additionally, RT-
qPCR of these cultures revealed that each of them (with the
possible exception of Wzc-i) maintained gene perturbations after
10 days of n-butanol exposure, as well as after the re-exposure
(Supplementary Figure S7).

Impact of CRISPR Perturbations on E. coli

Lag Times and Growth Rates During
n-Butanol Exposure
We also characterized the perturbations’ impacts on lag times and
growth rates on day 1 (Figure 4A), day 5 (Figure 4B), and day 10
(Figure 4C). These results could point to interesting differences
in growth between the perturbation strains upon exposure to
n-butanol stress.

Interestingly, while growth was generally improved by
perturbations relative to the control on day 1, the opposite was
true for lag times, which were generally extended: Twenty six
strains exhibited significant increases in lag times (Figure 4A).
Across the entire experiment, only four strains (Zwf-i, TopA-i,
Tar-i, and Frr-i) consistently demonstrated increased lag times
(Figures 4B,C). The best performing strain, DinB-a, began to
exhibit decreased lag times at later time points.

Many of the strains growing to the lowest levels also grew
the slowest. Six of the 10 worst growing strains on day 1 (Dfp-
i, OmpF-a, AcrA-a, FliA-i, AmpC-i, and Zwf-i), six of the 10
worst growing strains on day 5 (GadA-i, Frr-i, Dfp-i, MarA-
i, DinB-i, and RecA-i), and the worst growing strain (RecA-
i) on day 10 all grew significantly slower on their respective
days. Conversely, many of the best growing strains also grew
the fastest. This includes six of the best ten growing strains
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on day 1 (YjjZ-i, Frr-i, TolC-a, Wzc-i, RecA-a, and DinB-
a), 4 on day 5 (YehS-i, DinB-a, YbjG-i, and Wzc-i), and
6 on day 10 (DinB-a, YbjG-i, RecA-a, YehS-i, Wzc-i, and
AcrA-a).

Of note is the impact of gene expression activations over time.
While lag times were relatively similar between both inhibition
and activation constructs, gene activations appeared to grow
particularly faster over time. On day one, three activations
improved growth rates while another three decreased growth
rates. No gene activation slowed growth on days 5 and ten, while
all gene activations aside from MarA-a and TolC-a significantly
increased growth rates on day 10.

Impact of CRISPR Perturbations on E. coli

Growth During n-Hexane Exposure
One of the strong benefits of CRISPR gene perturbations is that
it is relatively easy to test under diverse conditions, as everything
is expressed from stable plasmids. We therefore performed the
same growth assays of our CRISPR strains during exposure to
a different biofuel, n-hexane, to demonstrate the power of this
approach to identify gene targets under diverse conditions. We
again quantified growth during the first, fifth, and tenth day
of exposure to 10% vol/vol n-hexane (Figure 5). Due to the
high-volatility of n-hexane, OD measurements were obscured
during the initial few hours of growth, rendering lag time and
growth rate calculations unreliable. MaximumODswere still able
to be measured in later hours of the experiment, allowing for
determination of normalized growths (Figure 5A).

Perturbations related to nucleic acid processes resulted
in diverse responses across time points. This is most aptly
demonstrated by strains DinB-i and DinB-a, which were the 2nd
best and 2nd worst growers on day 1, respectively. DinB-i growth
stayed virtually constant over the experiment. Conversely, DinB-
a growth steadily improved, and eventually exhibited the third
highest growth. Strains FliA-i, RecA-a, and TopA-i also showed
transitory improvements in growth that only emerged on days
1 or five. The impact of mutS inhibition also appeared to be
time-sensitive, having little impact on the first day but growing
to the 2nd and 3rd lowest levels on day 5 and 10, respectively.
Collectively, controlling the expression of nucleic acid processes
appears to be highly time sensitive.

Metabolic perturbations resulted in a less pronounced impact
on growth in n-hexane than they showed in n-butanol. Only
inhibition of dfp on day 1 exhibited diminished growth but
was able to recover on latter days. Inhibition of gadA and zwf
appeared to provide a short-term benefit, but this too was lost by
the final day of the experiment. This suggests that manipulation
of metabolic pathways has less potential for optimization of
n-hexane tolerance.

Conversely, perturbation of redox pathways elicited greater
growth changes in n-hexane than was observed in n-butanol.
Inhibition of both marA and soxS improved growth on day one,
while activation ofmarA resulted in the third-lowest growth. This
trend was notably reversed on days 5 and ten, with activation
of these genes significantly improving growth. Indeed, these two
strains were the best growing strains by the final day of the

experiment, with the inhibited strains improving very little over
time.

Another interesting result is the inhibition of sodB, which
grew to the 2nd and 4th highest levels on day 5 and 10,
respectively. A potential explanation for this phenomenon could
be the degradation of n-hexane into n-hexanol in E. coli related
to oxide levels, catalyzed by sodB’s gene product - superoxide
dismutase. Alcohols are typically more toxic than alkanes due to
their higher polarity (Sardessai and Bhosle, 2002), and reduced
sodB expression could disrupt conversion into this more toxic
chemical.

Most perturbations of transport-related genes had little
impact on growth, with the prominent exception of acrA
inhibition. This strain exhibited the highest optical densities after
the first day of n-hexane exposure, but every replicate died by
the fifth day of the experiment (Figure 5B). The AcrAB-TolC
efflux pump is known to export solvents such as hexanes from
inside E. coli (Takatsuka et al., 2010). The eventual death caused
by acrA inhibition demonstrates that engineered transcriptome
changes are sufficient to mimic total gene knockout phenotypes.
The established connection between this efflux pump and n-
hexane tolerance explains the higher ODs upon activation of
acrA on day 5, but runs counter to tolC perturbation results
wherein activation never significantly impacted ODs, and whose
inhibition also increased ODs on day 1.

Finally, inhibition of the uncharacterized genes yehS and yjjZ
during exposure to n-hexane resulted in similar phenotypes as
observed in n-butanol—both perturbations improved growth on
day one, with yjjZ demonstrating the third highest growth. As
perturbation of these genes was again able to improve biofuel
tolerance, our data indicate that these genes are highly promising
candidates for future research.

Gene Knockout Phenotypes Corroborate
CRISPR Perturbation Results
To corroborate our CRISPR perturbation results, we examined
the growth of fifteen gene knockouts in the presence of
0.5% n-butanol (Figure 6A) and 10.0% n-hexane (Figure 6C)
exposure. This included three genes related to DNA/RNA
processes (dinB, mutS, and recA), the metabolism gene wzc, the
unknown genes yehS and yjjZ, five redox-related genes (marA,
sodB, soxS, ybjG, and ydhY), and four transport or motility-
related genes (acrA, tolC, fiu, and tar).

We first examined the growth of these knockout strains in the
absence of biofuel stress (Supplementary Figure S8). Removal of
both uncharacterized genes yehS and yjjZ resulted in significant
increase in normalized growth, as did removal of ydhY. A slight
reduction in growth was observed by soxS removal. None of
these four knockouts resulted in significant shifts in growth in
a CRISPR knockdown context. Also of note was a reduction in
growth rates and increase in lag time caused by knockout of recA.

During exposure to biofuels, nine knockouts exhibited
significant increases in growth over the wildtype during n-
butanol exposure. Of these, seven (1mutS, 1wzc, 1yjjZ, 1sodB,
1ybjG, 1acrA, and 1fiu) exhibited similar phenotypes as the
corresponding CRISPR perturbations. While 1dinB improved
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growth, activation of dinB gene expression also resulted in
improved growth. In a similar vein,1marA resulted in improved
growth.

Interestingly, 1yjjZ actually exhibited the slowest growth rate
in n-butanol (Figure 6B). This runs contrary to the CRISPR
perturbation results, where its inhibition resulted in the fastest
growth rate of all strains on day 1 (Figure 4A), and was not
observed in the absence of biofuel stress. Of the remaining gene
knockouts, nine exhibited significant increases in growth rates
relative to the control, five of which (1acrA, 1marA, 1wzc,
1dinB, and 1mutS) also exhibited increased growth over the
control. Only three of these strains (MutS-i, Tar-i, and YehS-
i) actually exhibited an increased growth rate in the CRISPR
perturbation context. The remaining four strains (1yehS, 1tolC,
1soxS, and 1tar) were four of the five worst growing strains
(Figure 6D).

Six strains exhibited increased lag times in n-butanol (1recA,
1mutS, 1yehS, 1dinB, 1marA, and 1tolC), and no strain
exhibited decreased lag time. While CRISPR inhibitions of each
of these strains also exhibited increased lag times on day 1, it
should be noted that most CRISPR perturbation strains increased
lag times over the control. This trend was broadly recapitulated
in gene knockouts, suggesting that an underlying phenomenon is
indeed causing these genetic manipulations to increase lag times
during n-butanol exposure.

Growth in n-hexane was improved by five knockouts (1dinB,
1mutS, 1marA, 1ybjG, and 1acrA), of which all but MutS-
i and YbjG-i improved growth in the CRISPR perturbation
context (Figure 6C). None of these knockouts improved growth
in the absence of biofuel stress. The strongest improvements in
n-hexane tolerance were again related to redox-related genes,
as 1marA and 1ybjG were the top two growing strains
(Figure 6D). The large improvements in growth observed from
SodB-i only emerged in later time points and could be why1sodB
showed no significant differences from the control.

CRISPR Perturbations Retain Growth
Impacts Despite a Hyper-Mutator
Phenotype
One frequent criticism of CRISPR perturbation strategies is the
potential for mutations to arise that inactivate the system. As
bacteria are continually exposed to stressful conditions, they
inevitably accumulate mutations; a mutation in the CRISPR
expression system, such as a deletion in the sgRNA, could
deactivate the perturbation. This is especially concerning if the
perturbation is detrimental at any point during growth, which
we have demonstrated is frequently the case. To address these
concerns, we designed a system that biases the sgRNA plasmid
toward hyper-mutation rates to illustrate how mutation rates can
affect the efficacy of CRISPR perturbation strategies.

We accomplished this by incorporating an error-prone
version of Polymerase 1 (Pol1) with greatly diminished fidelity
into our CRISPR perturbation strains on the plasmid expressing
dCas9 (Figure 7A, see Methods). We transformed each CRISPR
construct into a strain of E. coli with temperature-sensitive
wild-type Pol1 that fails to express at temperatures above

30◦C, causing this error-prone version of Pol1 to overtake its
functionality. Pol1 initiates replication of ColE1 plasmids, while
having no role in replicating plasmids using the pSC101 ori that
drives dCas9 and dCas9-ω expression. Thus, the sgRNA plasmid
is significantly more prone to accumulating mutations in this
system. Previous work designing this error-prone Pol1 estimated
that in vivo mutation rates are increased ∼80,000-fold above
basal levels for at least 3 kb beyond the ColE1 ori (Camps et al.,
2003), with only 3 to 5-fold increases in mutation rates of the
chromosome at large.We confirmed that integration of the error-
prone Pol1 into our bacteria increased chromosomal mutation
rates∼3-fold (Figure 7B), in line with these published results.

By incorporating error-prone Pol1 into our CRISPR
perturbation system, we could simulate how prolonged
mutation might impact the efficacy of our perturbations toward
engineering biofuel tolerance. We implemented this system
into each of our CRISPR perturbation strains, and again tested
their impacts on growth during biofuel exposure. We focused
on n-butanol stress due to the aforementioned difficulty of
quantifying growth rates and lag times in n-hexane. n-Butanol
was doubled to 1% vol/vol to increase the selective pressure
driving mutations. As the majority of impacts in n-butanol
emerged by day 5 of the experiment, we limited the experiment
to 5 days of exposure, quantifying growth phenotypes on the first
and last day (Figure 7C and Supplementary Figure S9). Finally,
we included ampicillin selection to ensure that the sgRNA
plasmids were not lost completely due to mutations, thereby
biasing mutations solely toward the portion of the plasmid
responsible for expressing the sgRNA.

Of immediate note is the failure of six strains to grow
at this higher concentration of n-butanol. That these strains
were unable to recover by day 5 suggests that even the hyper-
mutation rates of this system were not sufficient to recover the
detrimental phenotype, and suggest short-term stability of the
CRISPR perturbation system even when causing reduced fitness.
These strains harbored inhibition constructs targeting the genes
ampC, gadA, dfp, zwf, topA, and frr. Each strain was one of the
10 worst growing strains on day 1 (Dfp-i, AmpC-i, GadA-i, and
Zwf-i), day 5 (Dfp-i, Zwf-i, TopA-i, Frr-i, and GadA-i), or day
10 (Dfp-i, GadA-i, and Zwf-i) at lower n-butanol concentrations
in the absence of the hyper-mutator phenotype, suggesting that
this is a result of doubling butanol levels. Half of these genes
weremetabolism-related (dfp, gadA, and zwf ). Two of these other
genes, topA and frr, are essential for growth, and their inhibition
likely synergized with the toxic effects of butanol to induce cell
death. The final gene, ampC, is an inherent periplasmic beta-
lactamase, and to our knowledge has never been linked to biofuel
tolerance. The death of these six strains suggests that expression
of these genes should strongly be considered when optimizing
n-butanol tolerance.

The control strain was the top performing strain on day
1 and second best on day 2, indicating perturbations were
largely detrimental at this increased n-butanol concentration.
We plotted the growth curves of the top and bottom three
perturbation strains on each day, excluding the six strains that
died during growth (Figure 7D). RecA-a growth curves strikingly
show a significantly faster growth rate and reduced lag time
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(confirmed in Supplementary Figure S9), despite not reaching
higher concentrations at the end of each day.

Overall, most detrimental perturbations did not reach control
level growth after 5 days of exposure (Figure 7E). This
suggests that despite the hypermutator phenotype, detrimental
phenotypes remained detrimental. To ensure that this was not
a result of the failure of the hyper-mutator phenotype, we
sequenced 16 individual colonies of the moderately detrimental
OmpF-a perturbation.We observed fourmutations in the sgRNA
plasmid, none of which were located in the actual sgRNA coding
sequence. This led us to estimate a mutation rate of 8.36 ∗

10−6 mutations per nucleotide per generation, or a ∼2,600-
fold increase in mutation rates above basal levels (see Methods).
While this estimate is significantly lower than the 80,000-fold
increase reported for the error-prone Pol1 system, we can
confidently report a large increase in mutation rates. Collectively,
this data demonstrates that CRISPR perturbations are stable even
in a hyper-mutator strain.

DISCUSSION

This study applies recent advances in synthetic biology to harness
the untapped potential of altering gene expression states in
biofuel applications. We explored 31 unique CRISPR inhibitions
and activations of a diverse set of bacterial genes and quantified
their impacts on E. coli growth during exposure to two common
biofuels, n-butanol and n-hexane. We identified a number of
strong gene candidates whose expression could be engineered to
enhance biofuel tolerance such as RecA-a, YjjZ-i, and Wzc-i.

A number of these perturbations’ growth impacts were
time-sensitive, suggesting that they could be implemented into
temporal gene circuits to improve biofuel production capacity.
This possibility is gaining popularity due to the relatively facile
ability to integrate CRISPR perturbations into such circuits
(Cress et al., 2016; Wiktor et al., 2016). Indeed, as efforts to
improve biofuel tolerance have stalled, the need for genetic
circuits to manipulate transcription at particular time points
has been recognized yet relatively unexplored (Dunlop et al.,
2010). The complex impacts of perturbations of transport and
motility genes we observed during n-butanol exposure could
explain why previous attempts to improve E. coli n-butanol
tolerance by heterologously expressed efflux pumps have not
been successful (Dunlop et al., 2011), as the fitness impact of these
genes appears to depend on time. Furthermore, the extended
lag times we observed from CRISPR activated strains during
n-butanol exposure suggest that greater tolerance can be made
by waiting to activate gene expression until after bacteria have
adjusted to butanol exposure. Finally, the apparent improvement
of growth caused by acrA and tolC inhibition during the early
stages of n-hexane exposure suggests that temporal manipulation
of the AcrAB-TolC efflux pump could offer an interesting
strategy to improve bacterial tolerance to alkanes. The need
to optimize expression in a time-sensitive manner is becoming
more apparent, and CRISPR perturbation can make such genetic
circuits attainable. This study presents the first evidence toward
this goal.

This study also presents evidence that particular pathways
are more appealing for CRISPR perturbation to optimize
bacterial tolerance to biofuels. For instance, manipulation of
central metabolic pathways produced particularly pronounced
effects on n-butanol tolerance, such as improved growth during
wzc inhibition. Wzc is involved in colanic acid biosynthesis
(Stevenson et al., 1996), and these results suggest that diverting
metabolic flux from colanic acid could improve growth in n-
butanol. The heightened mutation rate of this strain could
additionally explain its consistent improvement in n-butanol
tolerance. In a similar vein, the responsiveness of E. coli to redox
perturbations in n-hexane suggests a potential area of focus for
improving n-hexane tolerance.

Engineering gene expression has long been a goal for
biotechnology application. However, previous approaches for
accomplishing this includingmanipulation of promoter elements
(Bordoy et al., 2016) or riboswitches (Berens et al., 2015) have
each suffered from their own unique drawbacks that have made
them difficult to implement in practice. Perhaps the most notable
limitation is the reliance upon stable alteration of genomes.
CRISPR perturbations, on the other hand, can be implemented
without direct manipulation of the bacterium’s genome via
plasmids or extracellular delivery of the CRISPR machinery.
This can also be much easier to engineer in practice than direct
mutations of the genome, which has frequently proven difficult in
a number of promising biofuel producing microorganisms (Hsu
et al., 2014). Here we have shown that simple knockdowns can
be sufficient to impart significant growth phenotypes that mimic
total gene removal.

Furthermore, multiplexing sgRNAs to target one gene
multiple times or multiple genes at the same time is exceedingly
simplified by the introduction of numerous unique sgRNAs
simultaneously and is gaining significant attention (Zalatan et al.,
2014; Cress et al., 2015a). Combining the best perturbations
presented in this study could conceivably be done to raise
tolerance levels even further. On the other hand, we observed
a trend over time during n-butanol and n-hexane exposure in
which the control strain appeared to become one of the more
tolerant strains by day 10 of the experiment. This could suggest
that CRISPR gene expression perturbations slightly impeded the
strains’ adaptive potential in the long-term. This is supported
by previous work that has noted how epigenetic epistatic
interactions might constrain adaptation (Park and Lehner, 2013;
Chou et al., 2014; Otoupal et al., 2017, 2018), and could imply
a tendency for perturbations to be detrimental to improving
butanol tolerance in the long-term. This would again support the
notion that genetic circuits that induce perturbations only after
adaptation occurs is a promising path toward enhanced bacterial
biofuel tolerance.

We also demonstrated that despite artificially amplifying
sgRNA mutation rates ∼2,600-fold, CRISPR perturbations
induced similar growth phenotypes. We showed that no
mutations arose inactivating the perturbation after 5 days,
suggesting that spontaneous mutations inactivating the system
are less likely than might be initially predicted. CRISPR
perturbations appear to be able to be maintained stably for
prolonged periods without loss of functionality, which is further

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 September 2018 | Volume 6 | Article 122

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Otoupal and Chatterjee CRISPRi/a Insights Into Biofuel Tolerance

supported by RT-qPCR results after 11 days of n-butanol
exposure. As such perturbations begin to be applied toward
biotechnology purposes, such long-term stability will be essential
to maintain the desired phenotype. Our data suggest that loss of
sgRNA functionality, even if detrimental, is unlikely in the short
to medium term.

It should be noted that a few of the gene knockouts failed
to replicate CRISPR perturbation results. This is particularly
apparent in exploration of dinB and marA. While our dinB
activation results are consistent with previous work showing
that dinB overexpression improved long-term adaptive potential
toward n-butanol (Zhu et al., 2015), a knockout of the gene
also improved growth. Furthermore, both marA knockout and
activation resulted in improved growth n-butanol. The rapid
over-expression of marA immediately after n-butanol exposure
has been previously reported (Rutherford et al., 2010). However,
it has also been demonstrated that total knockout of marA’s
repressor, marR, resulted in diminished growth in n-butanol
(Luhe et al., 2012). A potential explanation for these conflicting
methods of improved n-butanol tolerance could stem from the
fact that the marRAB operon is known to exhibit stochastic
pulsing behavior (Garcia-Bernardo and Dunlop, 2013). The fact
that these knockouts demonstrated such counterintuitive results
indicates that their influence on n-butanol tolerance may be
more nuanced than a simple “on-off” response. These genes
are promising candidates for further study for biofuel tolerance,
particularly in a potential genetic circuit context.

Going forward, we envision that this hyper-mutation system
could be employed toward the directed evolution of novel sgRNA
targets, improving fitness without requiring a priori knowledge.
Over long periods, detrimental mutations to the sgRNA would
be selected against, while the rare beneficial mutations that
redirect CRISPR perturbations to new targets would be selected
for in a manner highly analogous to traditional directed
evolution approaches (Alper and Stephanopoulos, 2007). Various
alterations could be made to our hyper-mutator system to make
this approach more viable. For instance, it has been reported that
mutagenesis from error-prone Pol1 is strongest during stationary
phase, and suggested thatmutations are concentrated in locations

closest to the origin of replication (∼700 bp) (Camps et al., 2003;
Alexander et al., 2014). Removal of extraneous DNA segments
would increase the likelihood of targetedmutations toward the 20
nt target sequence of the sgRNA. It may be beneficial to express
the sgRNA in its native, two component fashion where tracrRNA
is expressed separately from the target sequence: expressing
the tracrRNA on a separate plasmid would ensure its structure
is not lost by mutation. Growth in a bioreactor to maintain
steady-state conditions would ensure maximum mutation rate,
and would likely impart a more consistent selective pressure
to obtain beneficial mutations. This would also allow for a
controlled increase of butanol concentration, as the constant
butanol concentration used in this study likely limited further
selection.
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