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INTRODUCTION

Glioblastoma (GBM), or grade IV glioma, is an extremely aggressive tumor that infiltrates
through the brain leaving the patient with a median survival time from 12 to 15 months (Ostrom
et al., 2013). Individual aspects of the microenvironment features play a critical role on GBM cell
dynamics and treatment resistance (Bellail et al., 2004; Zamecnik, 2005; Calabrese et al., 2007).
Because of GBM’s aggressive and invasive behavior, inhibition of GBMmigration is envisaged as an
important therapeutic objective (Bravo-Cordero et al., 2012; Wells et al., 2013). However, current
models fail to account for the complex brain microenvironment. The demand of preclinical models
that can faithfully mimic the clinical scenario may bridge the discrepancy between preclinical and
clinical data and aid to develop treatments that are more effective.

The extracellular matrix (ECM) of the GBM microenvironment is constitutively composed of
the polysaccharide hyaluronic acid (HA), and in a distinctive minor degree of tenascin-C, collagen
IV and V, fibronectin, and laminin (Giese and Westphal, 1996; Rape et al., 2014). Also, typically
with high glioma grade, the HA’s cellular receptor CD44 is overexpressed, suggesting that CD44-
enriched cells invade more efficiently the brain parenchyma (Bellail et al., 2004). GBM malignancy
is furthermore promoted through interactions with the other aforementioned ECM components
through different biochemical pathways (Sarkar et al., 2006; Lathia et al., 2012), which trigger an
increase of the concentration of the non-cellular components (Bellail et al., 2004; Lathia et al., 2012).
This increased density of the tumor ECM consequently increases the mechanical stiffness of the
microenvironment (Ananthanarayanan et al., 2011; Wiranowska and Rojiani, 2011; Pathak and
Kumar, 2012; Pedron and Harley, 2013; Kim and Kumar, 2014; Umesh et al., 2014; Heffernan et al.,
2015).

In our opinion, to gain further insights into tumor invasiveness, heterogeneity and treatment
resistance, we have to look more deeply at how cell behavior is influenced by matrix stiffness (a
process known as mechanotaxis or durotaxis) (Lo et al., 2000; Cortese et al., 2009; Palamà et al.,
2012, 2016).

WHAT IS THE INFLUENCE OF THE 3D SCAFFOLD MECHANICAL
PROPERTIES?

Notably, 2D platforms do not adequately mimic the in vivo tumor environment. Recent
work has focused on 3D scaffolds and matrix influence on cells with different materials and
cells, as reported in Table 1. However, inconsistencies on how 3D scaffold stiffness affect cell
proliferation and influence drug delivery and treatment resistance have been reported in literature
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(Wang et al., 2014, 2016; Heffernan et al., 2015; Pedron et al.,
2015; Lv et al., 2016; Palamà et al., 2017). In order to tune
the mechanical properties of different materials, the most
common methods are (1) altering the crosslink density and (2)
changing the base polymer concentration which both influence
different parameters, such as the ECM architecture, stiffness,
pore size, diffusion of soluble factors of the scaffolds, and ligand
density. A 3D culture platform that aims to mimic the native
GBM microenvironment has also the additional requirement
of containing HA. Pure HA lacks mechanical strength and the
ability to promote cell adhesion due to its anionic properties
(Wang et al., 2012). Moreover, it does not allow control over
mechanical stiffness. These downsides have been partly overcome
by using synthetic ECM polymers (Lutolf and Hubbell, 2005;
Seliktar, 2012). One semi-synthetic material, predominantly
used to independently tune the stiffness of the scaffold, is
HA-based hydrogel functionalized to favor cell adhesion. For

TABLE 1 | A summary of various scaffolds used for glioblastoma responses.

Scaffolds Stiffness value range Porosity Cells Behavior References

Chitosan/hyaluronic acid Tunable between kPa

to MPa

77.31µm with 87.09%

porosity; pore diameters

between 134 to 179µm

U-118MG; GBM6 tumors;

U87MG

Tumor spheroid formation (Florczyk et al., 2013; Cha

et al., 2016; Kievit et al.,

2016; Wang et al., 2016;

Erickson et al., 2018)

Hyaluronic

acid-methacrylate hydrogel

Ranging from 50Pa to

35 kPa

Mesh sizes ranging from

50 to 150 nm

Human U373-MG and

U87-MG; rat C6 glioma

GBM cell morphology and

motility are regulated by

stiffness. Different GBM

invasiveness C6 > U87-MG

> U373-MG

(Ananthanarayanan et al.,

2011)

Gelatin methacrylate

hydrogel

Ranging from 5 to 55 kPa Micron scale larger U87-MG Biophysical regulation of

GBM cell activity is not

direct or clear

(Pedron and Harley, 2013)

Poly(ethylene-glycol)

(PEG)-based hydrogels

Ranging from 1 to 26 kPa – U87-MG Tumor spheroid formation (Pedron et al., 2013; Wang

et al., 2014)

Polyacrylamide hydrogels Ranging from 0.2 to 50

kPa

– Patient derived GBM cells

(JK2, SJH1, WK1, RN1

and PR1)

Different migratory capacity.

No detected association

between cell morphology

and migratory capacity

(Grundy et al., 2016)

Temperature responsive

poly(N-isopropylacrylamide-

co-Jeffamine M-1000

acrylamide)

Tunable between 153 and

1,240Pa

– Patient-derived GSC cell

lines

On soft scaffolds

(153–325Pa), GSCs did not

cluster into large

neurosphere

(Heffernan et al., 2017)

Chitosan-alginate scaffold

coated with hyaluronic acid

– – U-87MG Tumor spheroid formation (Kievit et al., 2016)

GBM patient tissue derived

ECM

78.09 ± 29.22Pa Porous and fibrous

structure

Patient-derived GBM cells GBM cells exhibited

heterogeneous morphology

and altered the invasion

routes in a

microenvironment-adaptive

manner

(Koh et al., 2018)

Gelatin/alginate/fibrinogen

hydrogel

– – GSC cell lines GSC did not maintain their

characteristics of cancer

stem cells but showed

differentiation potential

(Xingliang et al., 2016)

Collagen based hydrogel Tunable stiffness Tunable between 30 and

100µm

U87, U251 and HS683

cell lines; primary glioma

cells (OSU-2); patient

derived GBM stem cells

Enhancement the

malignancy of the glioma

cells; spheroid formations

(Rao et al., 2013; Cha et al.,

2016; Lv et al., 2016; Jia

et al., 2018)

example, Ananthanarayanan studied HA gels of varying stiffness
embedded with GBM spheroids and corroborated that their
invasive capacity and morphological patterns were similar to
what was seen in vivo in human brain slices, in opposition
to glioma cells cultured in 2D and 3D collagen contexts
(Ananthanarayanan et al., 2011). Differences were theorized to
be related to the variation of expression of CD44. This was
confirmed by Harley and co-workers, who identified CD44 as
a key driver of glioma malignancy with cells encapsulated in
gelatin and PEG-based hydrogels grafted with a HA hydrogel
network (Pedron et al., 2013). Analogous observations were
made by Erikson using porous chitosan–hyaluronic acid scaffolds
of different stiffness, obtained varying the chitosan content. With
a higher polymer content, the pore walls were thicker, with
reduced interconnections between pores as well as the pore size
(Erickson et al., 2018). Stiffness was shown to influence the
morphology of the cell aggregates as well as the expression of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 September 2018 | Volume 6 | Article 131

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Palamà et al. Microenvironmental Rigidity of 3D Scaffolds

drug resistance, hypoxia, and invasion-related genes (Mih et al.,
2011; Zustiak et al., 2016; Erickson et al., 2018).

TYPE OF CELLS USED IN THE IN VITRO

MODELS

A further critical key parameter is the choice of the cells used
(Zustiak et al., 2014). Typically, commercially available human
tumor cell lines are used, but they neglect predicting clinical
outcomes due to different genetic aberrations. Glioblastoma
stem-like cells (GSC) can mimic the tumor of origin being
tumor cells with stem cell properties (Saha et al., 2008).
However, they require isolating stem cells from each tumor
patient and expansion to an adequate number within a clinically
acceptable time. Aggregated cultures would recapitulate better
the GBM microenvironment, allowing cell–cell contacts and
collective migration. Non-adherent cultures lack the cell–matrix
interactions present in the tumor stroma, whereas complex

spherical cancer models (i.e. non-adherent cancer cell line-
derived spheroids, or spheroids derived from primary tumor

dissociation) can promote cell–cell interactions. The use of
patient-derived cells cultured as neurospheres is a significant

advance respect to glioma cell lines (Rao et al., 2013; Cha
et al., 2016) however they do not accurately reproduce the

original tumor composition due to heterogeneity loss and lack
of an adhesive matrix. A solution could be represented by
GBM organoids (Hubert et al., 2016), although these require
months for generation, thus becoming useless in aid of patient
treatment and not necessarily being an improvement to the
patient outcomes (Oh et al., 2014), whereas neurosphere cultures
can be established within only few weeks.

INFLUENCE OF COMPOUNDING STIMULI
ON THE SCAFFOLDS

Diverging results have also been implicated with the matrix
metalloprotease (MMP) secretion. For example, an increase of
MMP-9 production in hyaluronic acid-based hydrogels with

increasing stiffness was reported by Pedron’s group while Wang
and colleagues described an opposite behavior (Pedron et al.,

2013, 2015; Wang et al., 2014). The reason, in our opinion, is

related to the difficulty to discriminate the role of stiffness or
of the biochemical stimuli on cell invasion. In fact, only a few

works report a selected degree of decoupling of the mechanical

properties, porosity, and/or biochemical cues. The interference
of other compounding stimuli in the design of functional cell
culture substrates should be minimized if not isolated. Changes
in the ligand density and the pore size of the matrix may
obstruct migration of cells and alter solute diffusion (Shu et al.,
2002). For example, Cha used a different molecular weight of

HA to simply coat the collagen I fibers without modifications
and crosslinking (Cha et al., 2016). Using a higher molecular
weight and 3D structure of the polymer may have induced
different cell responses. Rao reported a high degree of thiolation,
which may have altered the bioactivity of the substrate (Rao
et al., 2013). Kumar and co-workers managed to decouple the
effects by assembling hydrogel networks of collagen I and agarose
and increasing the stiffness by increasing the concentration of
non-adhesive agarose while keeping collagen I levels constant
(Ulrich et al., 2010). However, increasing the concentration of
agarose may result in smaller pores that restricted migration
on stiffer hydrogels. Moreover, the presence of the agarose
interfering with collagen fiber deformation and bundling may
have thereby restricted local ability of tumor cells to stiffen their
microenvironment (Kilian and Mrksich, 2012; Rape et al., 2015).

In conclusion there is still no existing artificial GBM
microenvironment which can replace an in vivo model. It is
essential to ask if it is worth to increase the complexity of
the ECM microenvironment and to define which parameters
are at least required to achieve a physiologically relevant
model ex vivo. We think that tuning matrix stiffness will
be pivotal at both a preclinical and clinical level, to move
forward this field of investigation of cell behavior during
tumorigenesis thereby providing an important tool to target
and investigate the more effective therapy at different stages
of cancer progression. To unravel the tumor invasiveness and
to demonstrate their clinical value, a fully comprehensive
analysis approach has to be achieved. This invites further
study and highlights the importance of conducting parallel
measurements using spheroid cell lines in highly multi-
structured conditions as well as comparisons with patient
outcomes.
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