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The specialization of cartilage cells, or chondrogenic differentiation, is an intricate and

meticulously regulated process that plays a vital role in both bone formation and cartilage

regeneration. Understanding the molecular regulation of this process might help to

identify key regulatory factors that can serve as potential therapeutic targets, or that

might improve the development of qualitative and robust skeletal tissue engineering

approaches. However, each gene involved in this process is influenced by a myriad

of feedback mechanisms that keep its expression in a desirable range, making the

prediction of what will happen if one of these genes defaults or is targeted with drugs,

challenging. Computer modeling provides a tool to simulate this intricate interplay from a

network perspective. This paper aims to give an overview of the current methodologies

employed to analyze cell differentiation in the context of skeletal tissue engineering in

general and osteochondral differentiation in particular. In network modeling, a network

can either be derived from mechanisms and pathways that have been reported in

the literature (knowledge-based approach) or it can be inferred directly from the data

(data-driven approach). Combinatory approaches allow further optimization of the

network. Once a network is established, several modeling technologies are available to

interpret dynamically the relationships that have been put forward in the network graph

(implication of the activation or inhibition of certain pathways on the evolution of the

system over time) and to simulate the possible outcomes of the established network such

as a given cell state. This review provides for each of the aforementioned steps (building,

optimizing, and modeling the network) a brief theoretical perspective, followed by a

concise overview of published works, focusing solely on applications related to cell fate

decisions, cartilage differentiation and growth plate biology. Particular attention is paid

to an in-house developed example of gene regulatory network modeling of growth plate
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chondrocyte differentiation as all the aforementioned steps can be illustrated. In summary,

this paper discusses and explores a series of tools that form a first step toward a

rigorous and systems-level modeling of osteochondral differentiation in the context of

regenerative medicine.

Keywords: in silico modeling, gene regulatory network, network inference, chondrocyte, differentiation,

regenerative medicine

INTRODUCTION

In the growing world of regenerative medicine, the ability
to robustly control cell differentiation processes becomes
increasingly important. This also applies to regeneration of
osteochondral tissues since controlling cell fate decision and
differentiation of chondrocytes might have great benefits for both
bone defects and cartilage degenerative diseases.

Most of the mammalian skeleton is composed of bone
that is formed through endochondral bone formation starting
from a cartilaginous template. During development, recruited
mesenchymal stem cells undergo condensation. Then, with the
influence of a number of factors, the cells start to differentiate
into chondrocytes and secrete cartilage matrix rich in type
II, IX, and XI collagen. This stage in the chondrogenic
differentiation cascade is marked by the expression of the
transcription factor SOX9 (Lefrebvre and de Crombrugghe,
1998; Hata et al., 2017). The chondrogenic cells continue to
proliferate in a columnar structure and at a certain stage they
exit the cell cycle to undergo hypertrophy at the center of
the condensation (primary ossification center). This event is
associated with secretion of type X collagen (O’Keefe et al., 1994),
mineralization of the extracellular matrix (ECM) and expression
ofmolecularmarkers such as the transcription factor RUNX2, the
matrix metalloproteinase MMP13 and the vascular endothelial
growth factor VEGF. Although it is commonly accepted that
hypertrophic cells tend to undergo apoptosis and be replaced
by osteoblasts (bone forming cells), it is now confirmed that
a certain percentage transdifferentiates into osteoblasts (Yang
et al., 2014). The ensuing vascular invasion, degradation of the
mineralized matrix and the production of bone matrix together
achieve the bone formation. The same processes also occur at
the articular end of the bone (the secondary ossification center),
such that a zone of chondrocytes persists only between the
primary and secondary ossification centers, called the growth
plate. The growth plate has a columnar organizationwith zones of
proliferating chondrocytes, hypertrophic chondrocytes, and bone
formation (Long and Ornitz, 2013).

At the adult stage, the only hyaline (stable) cartilage found
in long bones, in skeletal homeostasis, is at the joint surface.
These chondrocytes do not undergo hypertrophy but remain in a
stable phenotype characterized by a low rate of proliferation and
the production of ECM rich in Col-II and Aggrecan. However,
some degenerative diseases such as osteoarthritis have been
associated with dysregulation of the stable cartilage where both
the chondrocyte’s rate of proliferation and its switch toward
hypertrophy are modified leading to abnormal ossification of the
joints.

A variety of possible treatment strategies are currently
under investigation, both curative and restorative, with amongst
them the use of drugs to inhibit the abnormal switch toward
hypertrophy or the use of cartilage-engineered constructs to
replace affected osteochondral tissues and promote regeneration.
Indeed, tissue-engineered (TE) constructs are being developed to
treat large tissue defects where spontaneous healing has failed.

Lenas et al. (2009a) presented the paradigm of “developmental
engineering” arguing that a better understanding of the
developmental skeletal tissue formation process and a better
control of the developmentally-inspired in vitro process
of chondrogenic differentiation will help to develop more
qualitative and robust bone and cartilage TE constructs. In both
aforementioned treatment strategies (drugs and TE), the ability
to precisely control the cell differentiation and the switch from
one genetic program (SOX9) to another (RUNX2) is implied.

Computer models provide a formal framework to study the
dynamics of genetic programs within a cell. Computational
biology is the field where informatics, engineering and biology
meet to enhance the understanding of biological systems and,
notably, their underlying regulatory networks (RN). Computer
modeling can be used to interpret experimental findings, to
help in the design of new experiments and to identify potential
therapeutic targets. The importance of systems biology in
the field of tissue engineering and regenerative medicine has
increased over the last years (e.g., Sengers et al., 2008; Lenas et al.,
2009b; Geris et al., 2010; Rajagopalan et al., 2013; Carlier et al.,
2014; Geris, 2014;McNamara et al., 2015; Smeets, 2016). A variety
of modeling technologies is being used, covering processes at
different spatial and temporal scales (genes/protein, cell, tissue,
organs, systems, . . . ). One family of models, the (gene) regulatory
network (G)RN models, may be of particular interest when it
comes to deciphering signaling and the cell response implied in
cell fate decision. Indeed, the human intuition is limited in its
capacity to deal with the complex interplay present in signaling
networks whereas a growing arsenal of in silico models shows
how formal computer language can help to tackle these issues.
The works of Aldridge et al. (2009), Saez-Rodriguez et al. (2009),
Woolf et al. (2005), or Xia et al. (2006) are a non-exhaustive list of
examples where in silicomodels were successfully used to unravel
biological complexity and give new biological insights.

In this review we aim to provide an overview of the different
methods that can be employed to generate such (G)RN models
(see overview Figure 1). The first step is the generation of a
network graph, which can be either derived from mechanisms
and pathways that have been reported in the literature
(knowledge-based approach) or it can be inferred directly
from the data (data-driven approach). Combinatory approaches
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allow further optimization of the network. This network
graph provides a static (unchanging) picture of the biological
process under study. Once a network is established, several
modeling technologies are available to interpret dynamically the
relationships that have been put forward in the network graph.
A dynamic analysis amounts to simulating the evolution over
time of the different network elements under specific conditions
and to studying the possible outcomes (stable states) of the
established network. We will start this review with the modeling
part and subsequently discuss the network part. In each case, we
will start by presenting the general principles and some of the
computational methods currently available, followed by a non-
exhaustive overview of the studies that already made use of those
computational modeling approaches to study cell fate decision,
mostly focusing on applications of chondrocyte differentiation
and growth plate dynamics. Finally, we will discuss different
strategies where knowledge-derived modeling approaches and
data-based approaches can be used together to complement each
other. This combination strategy will be illustrated by a case study
focusing on a model of chondrocyte differentiation in the growth
plate.

Here, we focus on regulatory networks at the intracellular
level where e.g., the ECM and mechanical forces are represented
by the intracellular signals they generate which activate the
corresponding pathways in the regulatory network. Providing an
overview of existing models at other spatio-temporal scales that
can take these factors (ECM, mechanics etc.) into account in a
more explicit manner, is beyond the scope of this paper. We refer
the readers to review papers on the subject ofmultiscalemodeling
of skeletal tissue engineering and regeneration processes (Glimm
et al., 2012; Julkunen et al., 2013; Geris, 2014; Yousefi et al.,
2015). This review ultimately should provide biologists with
the necessary vocabulary and information to understand the
requirements and accomplishment of (G)RN models.

IN SILICO KNOWLEDGE-BASED
MODELING OF REGULATORY NETWORKS
TO STUDY CELL FATE DECISION

Mechanistic network-based models start from a static network
and use knowledge and mechanisms gleaned from decades of
biomedical experimental research to bring this static network
toward a dynamic mathematical model. A mathematical model
describes a system, for instance a biological system, using
mathematical concepts. A model is composed of a set of variables
and a set of equations. The variables are quantities with a value
that can change according to the equations that establish rules
between the variables. The equations are built using an ensemble
of parameters with a given (fixed) value; they determine how
variables evolve in simulations. It is not easy to determine the
most appropriate in silico technology amongst all of the available
in silico modeling methods; which is why several teams tackled
this issue by proposing different kinds of classifications. Some of
these classifications are based on the mathematical methodology,
others are based on biological issues. Janes and Lauffenburger
(2006) proposed a decision tree to classify and help to choose

the methods best suited for answering a particular question
according to various criteria. After a general introduction,
the following sections will present some of these methods
by classifying them into commonly accepted mathematical
subgroups. This classification into subgroups is summarized in
the lower part of Figure 1, adapted from Morris et al. (2010),
showing the different mechanistic modeling approaches which
are described in the text below starting with the distinction
between quantitative and qualitative models.

General Principles and Formalism of
Knowledge-Based Modeling
Quantitative Models (Differential Equations)
Usually biologists build regulatory pathway maps as a static
representation of the knowledge they get from experiments
while the goal of systems biology is to turn them into dynamic
models. It means that the model should be “executable” through
simulation instead of being a simple map. A common way to
study a system’s behavior in a quantitative way is by using
differential equations (Box 1). In systems biology, the ordinary
differential equations (ODE) describe changes over time whereas
the partial differential equations (PDE) describe changes in space
and time (Wolkenhauer et al., 2005). In order to capture the
concentration changes of molecules over time and describe the
interaction between variables, the differential equations rely on
the law of mass action and its derivations such as the Hill
equation. For RN, these mathematical formulations state that the
expression level of a gene at time t+1 depends on the weighted
expression levels of other genes at time t, making them perfectly
suited to represent changes in levels of gene expression over
time. The same formalism can be used to simulate changes in
protein activity or protein concentration levels over time due to
interactions with other proteins. The mathematical equations,
describing these evolutions over time, contain parameters that
are related to the network topology (i.e., the way the biological
components are connected to each other) and to the strength
of regulation (Liu et al., 2012). For instance when time-varying
ODEs are used to represent biochemical reactions and a network
of protein interactions, parameters typically are dissociation
constants, kinetic rate constants, reaction order, etc. It is possible
to add further terms/parameters that indicate the influence of
additional substances (Schlitt and Brazma, 2007) if the purpose is,
for instance, to simulate drug therapies. For a formal description
of how to use ODEs in order to build a GRN model (see Klipp
et al., 2005; Wolkenhauer et al., 2005).

A simple way to introduce a spatial component
when time-varying ODE equations are used, is through
compartmentalization. The same variables occurring at different
locations within the cell are simulated as distinct variables. For
instance, in kinetic models, the same proteins present in different
cell compartments (organelles) are simulated as distinct variables
and membrane diffusion or speed of translocation are the
additional parameters associated with the compartmentalization
(Janes and Lauffenburger, 2006).This is interesting, for instance,
in the case of proteomic models where molecules can translocate
from one organelle to another. When translocation occurs, there
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FIGURE 1 | Description of modeling formalisms. Starting from a static network graph obtained from experimental data, various modeling approaches can be used to

simulate the evolution over time of the network components. Quantitative models describe the evolution of species over time with ordinary differential equations (ODE)

and can introduce spatial resolution with partial differential equations. Qualitative models (limited here to logical models) describe the evolution of species in terms of

logical statements. Discrete logic can specify two or more levels for each modeled species (only two for Boolean logic). Various methods of describing discrete or

Boolean logical models with piece-wise continuous equations or logic-based ODEs have been successfully implemented to represent biochemical signaling networks.

Modified from Morris et al. (2010).

Box 1 | De�nitions of modeling types—in the context of systems biology

applications.

Deterministic: A deterministic model is a model that will give the same

output each time it is run with the same starting conditions.

Stochastic: By opposition to deterministic, in a stochastic model, one and

the same initial state can lead to many different trajectories. This randomness

is often used to represent biological uncertainty.

Differential equation: an equation relating a variable and its derivative(s).

Ordinary differential equation: In systems biology an ODE most

commonly describes the evolution of a variable over time in function of other

variables.

Partial differential equation: PDEs in systems biology typically describe

the evolution of a variable with respect to time and space.

Multifactorial data: In GRN context, this is data obtained by slightly

perturbing all genes simultaneously. It can typically be expression profiles

coming from different patients or biological replicates. Multifactorial data are

the most common data source as they are easier to obtain than knockout

or time series-data.

could be an import/export mechanism generating a time delay
that could have a significant influence on the behavior of the
system, which can be captured by appropriate mathematical
formulations (Wolkenhauer et al., 2005).

Important to remark is that ODE models depend on
numerical parameters and initial conditions that are often
difficult to measure (Wolkenhauer et al., 2005). That is why
modelers usually perform sensitivity analyses. It means that one
tries to assess how much a result can change when varying
one or several of the parameters. For robust systems, the

exact value of a particular parameter may not be essential.
Robustness with respect to parameter values seems to be a
typical property of most models capturing biological behavior,
also termed “sloppiness” as explained in Gutenkunst et al. (2007).
Studying the robustness of the system allows determining for
which parameters an accurate value is necessary to obtain reliable
model predictions and for which parameters that is not the
case.

When there is a discrepancy between the experimental
observations and the simulation results from models built on
curated knowledge such as published protein interactions, the
model can be used to suggest possible unknown interactions
between the model variables that could help to better explain
the experimental data. In that case, the hypothetic interactions
proposed can be tested experimentally, which constitutes the
iterative process that governs systems biology (McNamara
et al., 2015). Following this approach, differential equation
based models have been proven able to lead to new testable
hypotheses. For instance, von Dassow et al. (2000) developed
a differential equation system of developmental processes in
Drosophila including 48 parameters (half-lives of messenger
RNAs and proteins, binding ranges, etc.). The initial model
described all known interactions, but the addition of at least
two new hypothetical interactions was needed to ensure the
results were fitting the experimental observations reported in the
literature.

Qualitative Models
Qualitative models do not aim to provide exact values of
concentrations of network components. They rather aim to
capture the overall qualitative behavior of networks. In logical
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models, variable values are the result of logical relationships
(AND, OR, NOT gates) with other variables. Logical modeling
was first applied to model GRNs by Stuart Kauffman (Kauffman,
1969, 1994; Glass and Kauffman, 1973). In Kauffman’s approach,
variables are evaluated using logical combinations of other
variables and each variable can take only a discrete number
of values (0 or 1 for Boolean models). René Thomas, another
pioneer in logical models in systems biology, further refined
the logical formalism by introducing multivalued variables
and logical parameters equivalent to the kinetic parameters
from differential equations (Thomas and Kaufman, 2001). This
enabled him to introduce asynchronous updating of the system,
which was later extended using temporal logic (Bernot et al.,
2004). Indeed, logical systems can be updated in a synchronous
way where all variables are updated at the same time during each
transition, or in an asynchronous way where values of variables
are updated one after the other. The ensemble of successive
states through which a system passes during a simulation is
called a trajectory and it can vary according to the initial state
and the chosen updating strategy. Tracing all the trajectories
across the ensemble of states allows to build a state-transition
graph (Le Novère, 2015). With logical models, systems biologists
usually study the stable states of the system, meaning that they
try to identify in which stable state the system tends to settle.
A stable state can be a fixed point or a discrete number of
states in between which the system oscillates (e.g., for circadian
rhythms the baseline behavior is a cyclic one). A system can
settle in different stable states according to the initial condition
from where it leaves. The ensemble of initial states leading the
system to settle in the same stable state, is called the basin of
attraction of the corresponding stable state (Mojtahedi et al.,
2016). In regulatory networks theory, a system is characterized by
its specific stable states. The study of the nature of the stable states
and of their basin of attraction can give insight about cell states
and cell state reachability, with application in cell fate decision
and differentiation. Indeed, the size of a basin of attraction,
meaning the number of initial states leading to a stable state,
may give an estimate of how likely it is for a cell to reach this
state (Abou-Jaoudé et al., 2016). For explicit cases of application
see sections Current Computational Models as Predictive Tools
for Cell Differentiation and Intracellular Regulatory Network
Models of Growth Plate Cells.

Upstream regulators of one specific biological entity
(gene/protein) and the ways they regulate it, may vary between
different possibilities over time, depending on, for instance,
external inputs and the concentrations of the regulators
themselves. This behavior cannot be captured by the standard
Boolean networks described in the previous paragraph.
Probabilistic Boolean networks have been introduced in order to
capture this uncertainty in the regulatory logic. In practice, the
same initial state can lead to many different trajectories due to
the stochastic nature of the model (Box 1). This is achieved by
introducing several possible mathematical regulation functions
(logical combinations of other biological entities) with different
probabilities for each entity. At each time step, an entity is
updated following one of its different regulation functions
chosen randomly (Karlebach and Shamir, 2008). Another

probabilistic approach is the Bayesian network but the dynamic
aspects are not considered in these models since they often take
the form of a directed acyclic graph (Liu et al., 2012). Karlebach
and Shamir (2008) proposed dynamic Bayesian networks as a
way to counter the lack of dynamic resolution of regular Bayesian
networks.

Another good way to analyze model dynamics is through the
use of Petri Nets since in that representation, nodes are not
biological entities but places (= conditions) or transitions (=
events) while directed arcs connect input places to transitions
and transitions to output places. The number of transitions to
reach a specific state can hence be assessed easily. This approach
shows good results of prediction for some systems as illustrated
in Steggles et al. (2007). It has the advantage of having an easy
graphical representation, which makes this formalism a good
common ground for biologists and mathematicians/modelers
alike.

Whereas, differential equation based models of GRNs and
signaling pathways suffer from the lack of kinetic information
(LeNovère, 2015), qualitativemodels require a smaller amount of
data (Karlebach and Shamir, 2008) and qualitative experimental
observations might even be sufficient. Qualitative models
constitute a good starting point when some interactions of the
network remain unknown and it is easy to analyze variants
of the same network (Ay and Arnosti, 2011). Indeed, despite
the growing amount of biological knowledge about various
biological phenomenon, it is not rare that the exact mechanisms
remain not fully understood or even controversial. With missing
detailed information it is often difficult to develop a mechanistic
quantitative model. However, the missing information might
not be detrimental to build a qualitative model which catches
the wanted behavior, or, alternatively, allows to test different
biological scenarios for their potential to capture the wanted
behavior. Moreover, once a model explains an actual cell
behavior, it becomes possible to study this system under various
stress or perturbed conditions to give new predictions.

Fuzzy Logic and Alternative Classifications
Certain model approaches are situated between the previously
discussed categories of quantitative and qualitative. Fuzzy logic
is one of those model approaches that technically might
be considered to be qualitative but allows to include more
complexity, making it closer to semi-quantitative approaches.
When the behavior that needs to be captured is too complex
to capture with discrete logical models, fuzzy logic models
allow to introduce continuous regulation as well as provide
the capacity to handle a “graded truth.” While Boolean logic
takes into account only the values of 0 or 1 to describe
the variables state (or additional discrete values in a multi-
value discrete model), fuzzy logic accepts any value between
0 and 1. The main idea underlying fuzzy logic is that both
subjective/abstract and objective knowledge can be integrated
to solve a problem (Mendel, 1995). Indeed, the fuzzy logic can
integrate intermediate values and even words, such as “low” and
“high” concentrations (subjective knowledge) as suggested by
Zadeh (1996). This is of particular relevance to the modeling
of biological networks since in this field, the information is
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sometimes subjective and imprecise, and it becomes difficult
to use clear mathematical or logical values to express it.
Additionally, it enables very naturally to model uncertainty in
signaling networks. Aldridge et al. (2009) provide a good example
of adaptation of fuzzy logic to cellular signaling network analysis.
In that study the authors investigate the relationship between 2
signaling pathways that may account for the previously known
influence of the protein MK2 in cancer cell survival whilst the
exact mechanism was not yet fully deciphered. The fuzzy logic
approach enabled them to incorporate qualitative (abstract) data
drawn from literature such as “low,” “medium,” “high” state of
variables and still produce quantitative predictions. They even
used a time variable influencing the output state of some proteins
with a “low” value for time referring to early signaling responses
(0–2 h) and a “high” value referring to late signaling events
(2–24 h).

Application to Cell Fate Decision and
Osteochondral Differentiation
The various formalisms described above have been applied
frequently for prediction of pluripotent and stem cell fate
decision with application in regenerative medicine (Pir and
Le Novère, 2016). This section gives an overview of different
published models, focusing on (stem) cell fate decision in general
and on chondrocyte differentiation and growth plate dynamics in
particular.

Current Computational Models as Predictive Tools for

Cell Differentiation
The model of Schittler et al. (2010) is a good example
of a quantitative model predicting osteochondral cell fate
decision. Indeed, they use a GRN, mathematically implemented
with differential equations, for both single cell scenarios
and cell population scenarios to investigate an osteochondral
differentiation system. They modeled the switch mechanisms
between three stable states, being the progenitor, osteogenic and
chondrogenic states.

Since activation and loss of specific genetic programs governs
cell fate decisions, logical GRN models may also be a tool of
choice for studying and predicting cell differentiation. Indeed, in
this formalism, nodes or variables represent genes or the activity
of transcription factors (TF), and connections between the
nodes represent regulatory interactions (activation or inhibition)
between them. During simulation the model can reach some
stable states (cf. section Qualitative Models), which can be
considered to equate to a specific (mature) cell types (Glass and
Kauffman, 1973). This corroboration between stable state of the
network and cell phenotype is the major hypothesis at the basis
of all possible cases of application of regulatory network studies.

Herberg and Roeder (2015) reviewed qualitative (Boolean)
GRN modeling methods to study embryonic stem cells
differentiation where the analysis of the landscape of states
and transitions between states gave great insight into the
dynamics governing cell fate decisions. The usefulness of random
Boolean networks in representing cell type convergence was
even extended by Bodaker et al. (2013) with a study showing
tissue-like regeneration in multi-cellular organisms. Indeed, in

that paper, each cell constituting the multi-cellular organism was
represented by a random Boolean network at the intracellular
level and the study was based on the fact that the function of cells,
and so their differentiation, can be altered following the influence
of external signals from a neighboring population of cells on
their individual intracellular networks. This approach opens
perspectives on how to integrate the influence of neighboring
cells and extracellular signals in Boolean networks, which are
typically used to study cells in isolation. Other examples of
network models enabling predictive analysis of mesenchymal
stem cell differentiation into chondrocytes and osteoblasts under
various biochemical conditions can be found in Woolf et al.
(2005), who used Bayesian networks as modeling technology.

Intracellular Regulatory Network Models of Growth

Plate Cells
To date, very few in silico skeletal models have focused on the
growth plate—especially at the intracellular level. Kerkhofs and
coworkers implemented a series of models on the genetic switch
between the chondrocyte’s proliferative and hypertrophic state
within the growth plate (Kerkhofs et al., 2012, 2016; Kerkhofs,
2015; Kerkhofs and Geris, 2015), The control of this switch was
studied both in the context of regenerative medicine and tissue
engineering, and in the context of degenerative cartilage diseases
(Melas et al., 2014). The model that we originally developed
(Kerkhofs et al., 2012) was an additive, multi-valued, Boolean
model representing the genetic switch from a SOX9 positive
stable state to a RUNX2 positive stable state, being the hallmark
of the proliferative and the hypertrophic state of the chondrocyte,
respectively (see section Qualitative Models for formal definition
of stable states). Given that lack of human data, the network
used in the Kerkhofs models was built mostly using mouse
data (Figure 2). This network model gave a first in silico insight
into the genetic regulation underlying chondrocyte phenotypes
within the growth plate andwas successful in capturing the effects
of knockouts in the main regulatory pathways of the growth plate
regulation described in the literature. In subsequent studies, the
model was improved by adding (1) a quantitative resolution and
(2) temporal priority classes that are absent in classic Boolean
models. Adding quantitative resolution, meaning that each node
can have any value ranging between 0 and 1, was handled through
the implementation of an additive framework. In an additive
approach, the value of each variable (= protein activity or gene
expression level) is updated by a weighted sum of the values
of upstream variables. The temporal resolution of the reactions
was managed by incorporating priority classes to account for
different reaction kinetics. All reactions related to slow processes
such as mRNA or protein production, were referred to as slow
reactions (lower priority) and those related to fast processes such
as protein activity, were referred to as fast reactions (higher
priority). For each node of the network, a fast (“protein activity”)
and slow (“gene expression”) variable was defined with the total
activity of any given node being the product of the fast and slow
variable. When performing the model (asynchronous) updating,
high priority interactions are taken into account first, before
taking into account the lower priority interactions, reflecting
the time difference between these categories of processes in
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cellular systems. This approach enabled to capture dynamics and
behaviors more complex than those found with classic Boolean
models. For instance, in Kerkhofs and Geris (2015) we showed
that the model was able to simulate dose response studies where
different levels of stimuli in proliferative chondrocytes gave rise
to qualitatively different responses. The framework was used
furthermore to perform an analysis of the stable states and
a stable state perturbation analysis, assessing the influence of
specific factors of the network thanks to in silico over-activation
or KO.We also investigated the relevance of the modeling results
in osteoarthritis as abnormal chondrocyte hypertrophy plays a
role in this disease (Kerkhofs et al., 2016). The perturbation study
may point out potential key biological factors to be targeted
experimentally to either promote the differentiation or to inhibit
it.

The Kerkhofs models were implemented in a general
computational software package called MATLAB (The
Mathworks). In order to make the models easily accessible
to the wider audience of non-modeling specialists, the interface
is of great importance. Scholma et al. (2014) and Schivo
et al. (2016) implemented the Kerkhofs models into a timed
automata framework, called ANIMO. This modeling framework
is available as a plug-in of Cytoscape and has been conceived
particularly around its intuitive end user interface to facilitate
use by a wider audience, including biologists.

DATA DRIVEN MODELING-NETWORK
INFERENCE

The preceding section described methods used to generate
model predictions, once a network has been established. This
section will focus on establishing such networks. There are
two main classes of approaches. In one approach (knowledge-
based, literature-curated), networks are built using mechanisms
described in the literature and aggregated in (pathway) databases
such as the network used in the Kerkhofs models described
above. In the other approach (data-driven), networks are inferred
directly from experimental data. The difficulty with the latter
approach is to find/perform experiments with a sufficiently high
information-content, typically requiring a standard condition
with sufficient and sufficiently strong perturbations of that
standard condition. This section will focus on the inference
process and its challenges.

General Principles of Network Inference
The Inverse Problem and Adaptation to Network

Inference
In inverse problems, one aims to infer the parameters describing
the system, given actual observations. In order to solve an
inverse problem different methods can be used, depending on the
exact nature of the question to be answered. Generally, inverse
problems deal with an optimization problem since one needs to
minimize a functional error between real values (data) and the
simulated values (Tarantola, 2006; Liu et al., 2012).

Network inference can be considered as an inverse problem
where the network parameters, being the absence, presence and

direction of regulatory interactions, are derived directly from
experimental data (Villaverde and Banga, 2013). With the huge
progresses in the field of molecular biology these past few years,
we currently dispose of large amounts of quantitative data such
as mRNA levels, protein levels, phosphorylation states, etc. to use
for model inference. However, it also raises the question of the
identifiability of the network’s parameters i.e., the ability to find
an unambiguous set of parameters determined by the available
data set, as, in many cases, several sets of parameters might fit the
same data set.

Concise Overview of Methods for Network Inference
The development of a myriad of methods, formalisms and
software tools helps to tackle the problem of inferring a network
frommicroarray expression data as well as fromRNA Sequencing
data, protein-DNA binding data (ChIP-seq), CpG methylation,
promoter sequence detection and proteomics data. Here we
review a number of these methods following the categorization
in four parts as found in Marbach et al. (2012) and Le Novère
(2015). These categories are (1) the statistical methods, (2)
probabilistic methods, (3) information theoretic methods, and
(4) methods based on ODEs. Most of them propose, as an output,
a ranked list of regulatory interactions from the one most likely
to be a true interaction to the least likely one. Those interactions
can represent protein interactions or associations, in the case of
signaling network, but also interactions between transcription
factors (TF) and genes in the case of gene networks. These
interactions might be direct or indirect relationships. Details
on the mathematics of the different methods for gene network
inference can be found in Supplemental Data 1.

Most of these methods can work with multifactorial data
(Box 1) and data of different types such as steady state and/or
time series data. This is useful when considering the range
of available data that often comes from experiments of one
or multiple factor perturbations. Hence, combining different
inference methods together (hybrid methods) might help to
widen the scope of the type of data that can be taken into account.
Moreover, the rationale behind GRN inference is to decipher
the underlying existing regulatory network solely from perturbed
gene expression data. Therefore, it is important to make sure
that the biological material used to generate the data actually
reliably reflects the biological system under investigation. This
means that single-cell RNA-seq data is possibly the best way to
ensure that the expression data does not capture the behavior
of several heterogeneous systems but only that of the system of
interest (Griffiths et al., 2018). For chondrocyte in the growth
plate, the use of single-cell RNA-seq allowed the identification
of regulatory molecular cascades important for the different
stages of chondrocytes during development (Li et al., 2016).
Nevertheless, single-cell data is not always available and inference
from micro-array data or general RNA-seq data has been proven
to perform well.

Strengths and Weaknesses of Inference Methods and

the Ensemble Approach
The amount of inference methods has been increasing in
recent years (Marbach et al., 2009). De Smet and Marchal
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FIGURE 2 | The model’s chondrocyte gene network. Every box represents a gene, its protein or in some cases a complex of them. The interactions are represented

by red and black lines if they are inhibitory and stimulatory, respectively. Blue boxes denote growth factors, green boxes are transcription factors, yellow boxes do not

belong to either category. Reproduced from Kerkhofs and Geris (2015).

(2010) argue that direct integration of inference tools in daily
laboratory practice by biologists is still limited, because the
choice of the inference is not always obvious. Hence, the
authors propose a new classification of the inference tools based
on their nature, i.e., supervised/unsupervised, integrative or
not, direct inference or based or pre-module construction etc.,
which gives new insights in the strength and weakness of each
methods. Several studies tend to highlight the advantages and
weaknesses of various methods for specific applications, but
some studies aim to compare multiple methods. Since 2006,
a big consortium called “the Dialogue on Reverse-Engineering
Assessment and Methods (DREAM) challenge” tries to develop
an objective assessment of reverse engineering methods for
biological networks (Stolovitzky et al., 2007; Saez-Rodriguez
et al., 2016). During the yearly DREAM challenges, scientists
of the field from all around the world are invited to use the
inference method of their choice to a given data set following
specific guidelines. In that way, the organizers can apply blinded
cross-comparisons of the results with standard metrics and
they are able to identify the specific strengths and weakness
of each method. Such assessment will help systems biologists
to choose the inference method best suited to the question
they aim to answer, given the type of data they have at their
disposal. Additionally, it provides teams trying to develop new
inference methods with a more formal assessment process,

a new way to test their own algorithm (Stolovitzky et al.,
2007).

In later DREAM Challenges (Marbach et al., 2012), revealed
that no single inference method performs optimally across
diverse datasets but predictions frommultiple inference methods
combined do. Indeed, they have estimated the performance of a
consensus network constructed as an average network ofmultiple
inference methods and they showed it was performing better
than other methods taken individually. The consensus network
is then the result of a voting approach in which the top ranked
interactions predicted by all methods, meaning the most likely
to exist according to all methods, are maintained in a new
network. In combining predictions made by disparate methods,
the intersection of their predictions complements their strengths
and their weaknesses. Voting was shown to be an effective
strategy for network inference, but it should be said that rather
than finding the “best” network, it serves to find the “least bad”
one (Marbach et al., 2012; Kerkhofs, 2015).

Finally, inference algorithms offer a systematic way to
infer regulatory networks directly from data without the need
to curate literature manually, a process that inadvertently
introduces curator-bias. Increasing performance of the published
algorithms, improvement in the field of machine learning
and consensus approaches gathering several methods, together
enhance the reliability, and accuracy of such inferred regulatory
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networks. This enables to produce a static map which can further
be used as a starting point for computational simulations thanks
to the modeling approaches described in section 2. Indeed,
in silico simulations of such regulatory networks might give
meaningful insight in the understanding of biological processes.
Molinelli et al. (2013) provide a good example of a regulatory
network inference process givingmeaningful biological insight in
the field of cancer. In their study, the authors first perform a large
screening of experimental perturbations for high throughput
measurement of proteomic changes (e.g., reverse phase protein
arrays or mass spectrometry) and phenotypic changes (e.g., cell
viability or apoptosis). They use this data as input to infer
a network model of signaling in a RAF inhibitor resistant
melanoma cell line (SKMEL-133). The constructed network
enabled the authors to retrieve known pathways such as
PI3K/Akt or MAPK pathways as well as new interactions that
are consistent with known protein functions. Finally, from the
network, they perform simulations of different in silico single
or pairwise perturbations of nodes that were experimentally
targeted or not in the input data. Their model is predictive of both
the proteomic and phenotypic responses to drug combinations.
Additionally, it successfully predicts the phenotypic response
profiles of SKMEL-133 cells to novel drug targets, for instance, in
silico simulations predicted that PLK1 inhibition was decreasing
cell viability, which was validated in vitro with 99% of the
cells eliminated with a 15 nM concentration of PLK1 inhibitor.
Overall, this study uses the typical pipeline of in vitro/in
silico integration to obtain new biological insights. Similar
methodology could be of great interest to be applied to cell fate
decision and osteochondral differentiation in order to identify
the underlying regulatory networks involved and the key factors
to target in order to modulate those processes. Therefore, some
examples of network inference in this context are developed in
the next sections.

Application to Cell Fate Decision and
Osteochondral Differentiation
Inference of a Growth Plate Network Following a

Consensus Approach
As a first illustration of inference methods and the consensus
approach for osteochondral system, we return to the growth plate

model described in section Intracellular Regulatory Network
Models of Growth Plate Cells. We describe the inference process
that we have followed, in a previous study, to build a data-driven
network in order to validate the literature-curated one (Kerkhofs,
2015). The inference was executed using measurements from
the mouse growth plate exclusively, as the topology of the
literature-derived network from Kerkhofs et al. (2016) was
derived mostly from studies performed in mice. An overview
of the micro-array data can be found in Table 1. As can be
seen, not all studies have divided the growth plate in the same
zones, but the proposed network should be valid throughout
the entirety of the growth plate. All the published experimental
data were generated with Affymetrix Mouse 430.2 microarrays.
All samples were normalized using the Guanine Cytosine
Robust Multi-Array Analysis (Wu and Irizarry, 2004; Wu et al.,
2004).

Only transcription factors were chosen as input nodes
for inference because their mechanism of action is more
directly measured, it is less influenced by post-translational
modifications and TFs are typically represented by one
measurement on the microarray. No proteomic data was
exploited. Selecting only the TFs from the prior network
to do the inference also helped to reduce the size of the
optimization problem. As a result, the network was inferred
between the following 13 genes: Gli2, Tcf7, Runx2, Sox9,
MEF2C, STAT1, ATF2, NFκB, CCND1, Dlx5, Ets1, δ-EF1, HIF-
α2. The subnetwork from the literature-derived model that
includes the components used for the inference is shown in
Figure 3.

The inference methods used in the consensus approach
are recapitulated in Table 2 and described in full in
Supplemental Data 1. Each single method provided its own
ranked list of inferred interactions. With the voting approach,
a consensus network was inferred by providing a sorted list of
inferred interactions according to their average rank over all the
methods. To be noted also that the consensus network was built
as undirected because most of the individual methods produce
undirected networks. Undirected means that when a regulatory
interaction is inferred, it only suggests that the interaction exists
between two components but it does not presuppose which one
of the components acts on the other.

TABLE 1 | Summary of literature sources for microarray data on the growth plate.

Origin Samples Study design Reference

Primary growth plate

chondrocytes

12 Cells treated with dexamethasone or control, 6 h or 24 h

in culture, 3 replicates

James et al., 2007

Growth plate 8 Resting, proliferating, maturing and hypertrophic zone, 2

replicates each

Isshiki et al., 2011

Primary growth plate

chondrocytes

15 Control and 4 individual inhibitors,24 h in culture, 3

replicates each

Ulici et al., 2010

Growth plate 12 Resting/proliferating, maturing/hypertrophic and

mineralising zone, 4 replicates each

James et al., 2010

Explant culture 18 Treatment with CNP or control, 6 days in culture,

Resting/proliferating, maturing/hypertrophic and

mineralising zone, 3 replicates each

Agoston et al., 2007

The first column lists the origin of the sample. The second column indicates the amount of samples. The third column briefly summarizes the treatment and the amount of replicates.

The final column indicates the reference for the samples.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 November 2018 | Volume 6 | Article 165

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lesage et al. Computational Modeling for Osteochondral Diseases and Regeneration

FIGURE 3 | Overview of the subnetwork of factors selected for inference. The

regulatory interactions are those present in the literature derived model

(Kerkhofs et al., 2016). Only the nodes are considered as input for the

ensemble inference. Red and black arrows indicate inhibition and activation,

respectively.

TABLE 2 | Summary of inference methods applied to microarray data.

Category Methods

Statistical methods Correlation (Pearson and Spearman), TIGRESS

(Haury et al., 2012), GENIE3 (Huynh-Thu et al.,

2010)

Information-theoretic

methods

Mutual information, CLR (Faith et al., 2007),

ARACNE (Margolin et al., 2006), MRNETB (Meyer

et al., 2010)

Probabilistic methods Bayesian (Friedman et al., 2000), GGM (Werhli et al.,

2006)

Ode-based methods Inferelator (Bonneau et al., 2006; Greenfield et al.,

2013)

The methods are divided into four categories, though the match can be somewhat

arbitrary and some methods are more hybrid-like.

Inference Methods Applied to Cell Fate Decisions
Rapid advances in high-throughput–omics techniques over the
last decade have opened a myriad of possibilities for study
of biological phenomena. Inferring regulatory networks is an
essential part of the general omics analyses pipeline. In Griffiths
et al. (2018) the authors reviewed RNA-seq data analysis pipelines
to study the developmental process in general and cell fate
decisions in particular and discussed the remaining challenges
such as the issue in distinguishing small biologically meaningful
variations from technical artifacts. Despite this difficulty, Li et al.
(2017) were able to infer a network model for growth plate
chondrocytes based on 5 human patient samples. Furthermore,
Li et al. (2016) succeeded in deriving a regulatory network of
mouse growth plate development based on single-cell RNA-seq
data. The authors developed a systematic pipeline enabling the
identification of genes and signaling pathways involved in this
developmental process and suggest the pipeline could be used to
investigate other developmental processes.

Other inference examples include Chen et al. (2015), who
proposed a tool to infer a transcriptional regulatory network from
single-cell transcriptional data in order to identify operational
interactions corresponding to specific cell fate determination.
Importantly, the authors intended to build a Boolean network
model out of it, highlighting the importance of having an
“executable” model for simulation and not a simple static map
(see Figure 1). Finally, Weinreb et al. (2018) developed an

inference algorithm and applied it to predict cell state decision
from hematopoietic progenitor cells, illustrating the range of
application possibilities for regenerative medicine.

If genomic and transcriptomic data can serve for GRN
inference, proteomic data might be of interest to infer protein
signaling networks. Melas et al. (2014) integrated phospho-
proteomic and cytokine release data to build a mechanistic model
of signal transduction in the adult chondrocyte. They inferred
regulatory protein interactions directly from the data in order to
identify previously reported as well as new key players involved
in chondrocyte homeostasis. This could be very beneficial to
find important biological factors with a potential for cartilage
regeneration.

COMBINING KNOWLEDGE-DERIVED
MODEL WITH NETWORK INFERENCE:
CASE STUDY APPLIED TO
CHONDROCYTE DIFFERENTIATION

General Principles
It should be kept in mind that both knowledge-driven and data-
driven approaches can be relevant depending on the type of
questions the model is supposed to answer and should be chosen
wisely in a problem-centric approach (Janes and Lauffenburger,
2006). An alternative can be to mix both of them as was
done for instance in Melas et al. (2011) where the authors
developed a curated knowledge-derived topology linking external
stimuli to signaling pathways, and subsequently used data-driven
approaches to link signaling pathways to cellular responses.
Following this approach, they produced an extended network
that was shown to perform better in predicting qualitative cellular
responses to specific cues than a purely data-derived model.

It is not only possible to link together literature-derived
and data-based networks but one method can benefit from
the insights gained with the other (Figure 4). There are
two reciprocal benefits: (1) literature-derived models can
gain from data-based optimization and (2) network inference
algorithms can see their performance considerably increased by
incorporating prior knowledge in the inference process.

With respect to the first benefit, one should bear in mind
that molecular regulatory network models not only serve as a
descriptor, but also as a predictor of the cell response. One of the
limits of logical models is their lack of accuracy in yielding useful
predictions and new insights, In Saez-Rodriguez et al. (2009),
the authors explain how to turn network models into predictive
logical models that are rigorously calibrated against experimental
data. By training a general literature-derived network against cell
specific data, they succeeded in identifying interactions that did
not seem to be functional in the specific cell type under study.
Additionally, they could propose new interactions not present
in the initial generic model although being supported by other
sources from literature.

As for the second benefit, there are indeed techniques that
aim at inferring regulatory network from experimental data
whilst incorporating curated knowledge as a prior within the
algorithm in order to increase performance. For instance, for
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FIGURE 4 | Strategies to combine knowledge-derived and data-based

modeling. When deriving a network graph from experimental results, different

routes can be followed, either a mechanistic one (using available knowledge)

or a data-driven one. Combining both strategies allows to obtain an optimized

network graph. Knowledge-derived networks can be fitted against

experimental data to optimize network parameters. Knowledge-derived

networks can serve as prior knowledge within some inference algorithms in

order to improve inference performance. Finally, data-driven networks can be

used to validate or complement (add or remove interactions) a

knowledge-derived one and vice versa.

the constructions of a predictive model of signal transduction in
chondrocytes, Melas et al. (2014) combined the proteomic data
with a priori knowledge of the proteins’ connectivity. This is also
the case in the “Inferelator” algorithm (Bonneau et al., 2006)
which infers transcription factor—gene interactions.

Having the most reliable network possible is important
since the dynamic of the resulting model will settle down
into equilibrium states strictly complying with the topology
of the regulatory interactions. Hence, the topology will define
the outcome of the simulation. To illustrate the interactions
as depicted in Figure 4 (compare, validate, optimize, prior
knowledge), we will return one more time to our growth plate
example discussed in the previous sections.

Case Study: Chondrocyte Differentiation in
the Growth Plate
Comparing Different Networks
In a direct approach, the interactions with the highest combined
rank in the consensus-inferred network can be compared to the
interactions present in the knowledge-derived network. By doing
so, we found most of the interactions present in both networks
(Kerkhofs, 2015), which can be interpreted as a corroboration
of the knowledge-derived network. Additionally, we noticed that
some interactions inferred with a high rank were not present
in the literature-derived topology (for instance MEF2C-HIF-2a).
This can be considered as a suggestion for complementing the
knowledge-derived network.

Besides this direct comparison as mentioned in the previous
paragraph, classical measures of performance can be used
to assess rigorously the match between the micro-array
data inferred network (discussed in section Data Driven
Modeling—Network Inference) and the literature-derived
network (discussed section in silico Knowledge-Based Modeling
of Regulatory Networks to Study Cell Fate Decision). These
measures include the receiver operating characteristic (ROC)
curve, the Precision Recall (PR) curve and their respective area
under the curve (AUROC and AUPR), see Supplemental Data 1

for detailed definitions. They are based on the comparison
between an inference algorithm and a gold standard and they are
commonly used in the context of GRN inference (Marbach et al.,
2012). In the chondrocyte network study (Kerkhofs, 2015), the
main objective was to assess to what extent the topology inferred
from micro-array data corresponds to the knowledge-based
topology manually curated from the literature. Practically,
the inferred network and the literature-derived network were
compared while regarding the literature-derived network as a
pseudo-gold standard.

In parallel, the inferred network was also compared to
another network topology derived from an online database
named STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins). The STRING network is not the result of a
mathematical inference, instead, the STRING tool generates
networks for which the connections represent functional
associations (both direct and indirect) predicted from screening
large databases containing protein-protein interactions gathered
from genomic context predictions, text-mining from PubMed
and co-expression data. The STRING network presented here
was generated by querying the STRING tool, giving as an input
the 13 proteins and the total number of interactions of the
network depicted in Figure 3. Each interaction included in the
obtained STRING network is annotated with a bibliographic
or experimental reference to the study that enabled adding the
interaction to the network. For a detailed description about
the tool, we refer the readers to Szklarczyk et al. (2017). The
aforementioned inferred network was tested against the STRING
topology to assess whether the inferred network was better at
fitting the literature-based model than at fitting the automatically
produced STRING topology. In other words, it was tested to
assess whether the manual literature curation and topology
creation was superior to an automatic one in the cell specific
context of a growth plate chondrocyte.

When comparing the ROC curves of the inferred network
with respect to either the knowledge-based or the STRING
derived model, it can be appreciated that the performance
is better with the knowledge-based network (Figures 5A,C).
Indeed, the concavity of the curve points toward a good
correspondence between the inferred interactions and the ones
in the knowledge-based network, whereas a line with a 45◦

slope through the origin, as is the case when comparing with
the STRING topology, indicates a random performance. This
is quantitatively confirmed by the higher AUROC value of the
inferred vs. the knowledge-based network curve (0.69) compared
to the inferred vs. STRING network curve (0.44). It means
the literature-derived network depicted in Figure 2 was able
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FIGURE 5 | Receiver Operating Characteristic (ROC) and Precision Recall (PR) curves for inferred consensus network with respect to knowledge-based network and

STRING network. The ROC plots the True Prediction Rate (TPR) against the False Prediction Rate (FPR) for each (cumulative) interaction inferred. The PR curve plots

the precision vs. the recall for each (cumulative) interaction inferred. (A) ROC curve for the inferred consensus network compared to the literature-derived topology. (B)

PR curve for the inferred consensus network compared to literature-derived topology. (C) ROC curve for the inferred consensus topology compared to the STRING

network. (D) PR curve for the inferred consensus topology compared to the STRING network.

to explain correctly an important part of the experimental
behavior at the transcriptomic level. The superior behavior of
the literature-derived network over the STRING network could
be due to the latter including indirect interactions whereas the
former mostly sticks to direct interactions. Another significant
difference between the two networks was that most of the
interactions included in the knowledge-derived network were
derived from experiments on growth plate chondrocytes or a
closely related cell type (Kerkhofs and Geris, 2015). In contrast,
interactions from a wide variety of contexts, often from cancer
cells, served to build the STRING database and the subsequent
network. When comparing the precision-recall curves and the
AUPR values (Figures 5B,D), it was clear that the knowledge-
based network again outperformed the STRING network at least
for the first few guesses (perfect PR being a straight line passing
through the upper right corner with AUPR of 1). Overall, this
section illustrates the fact that tools which automatically generate
networks from public database curation may serve as a good
starting point for regulatory network construction but also that
this strategy is still missing the cell type and biological context
specificity. This is particularly important for biological processes
that are studied by smaller communities and for which less
context-specific information is available in the public databases

(which is the case for growth plate biology when compared
with cancer biology). Indeed, automatic database curation with
software tools may offer a systematic and more objective way
to build networks from published information but it is very
likely much improved by “manual” construction/adaptation of
the network for specific biological questions.

Chondrocyte Network Inference With Integration of

Prior Network
A number of inference algorithms permit the inclusion of
known interactions as input to the inference process. The input
knowledge usually takes the form of a matrix containing as many
lines and columns as the number of factors, where the value
at each location in the matrix indicates the presence/absence,
direction and strength of the interaction between the factors
depicted in that particular row and column. For a detailed
explanation on the implementation of prior knowledge, see
Supplemental Data 1. This use of prior knowledge will increase
the probability of finding models that have a bigger similarity
with the prior network. Of course, to keep the benefit of the
data-inference from experimental data, a balance must be struck
between forcing compliance with the prior network and fitting
the data.
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For the chondrocyte differentiation network the
incorporation of prior knowledge was investigated through the
sole use of the Inferelator algorithm as described in Greenfield
et al. (2013). This method tunes influence of prior knowledge
on the outcome through an adjustable parameter g. Since part
of the literature-derived network was used as prior knowledge,
the effect of the parameter g on the correspondence between
the inferred and the literature-derived network (AUROC) was
investigated, together with the error between experimental data
and simulated values (SSR, see Supplemental Data 2). It was
a way to identify which g-value was producing a model that
matched the prior information without sacrificing compatibility
with the microarray data.

In Kerkhofs (2015), we did a screening of different values
for the parameter g in order to select a value so that the
adherence to the prior network was not too strict. Therefore,
the algorithm could infer new interactions explaining the
experimental data while taking into account the prior knowledge
about chondrocyte biology in the growth plate. Table 3 reports
the 11 regulatory interactions with the highest incidence in the
inference process. Similarly to the consensus inference (section
Inference of a Growth Plate Network Following a Consensus
Approach), the integration of prior knowledge identified some
high-ranking inferred interactions that were absent from the
prior knowledge-based network such as the activation of Tcf by
MEF2C (MEF2C→ Tcf7), Tcf7→ HIF-2α, and HIF-2α → δ-
EF1. Some of these predicted interactions were in fact already
described in literature such asMEF2C forming an enhanceosome
with Tcf7 and other factors to upregulate the Runx2 activity in
a synergistic way (Kawane et al., 2014). Therefore, the network
may benefit from being supplemented with these interactions.
However, for other predicted interactions, only weak evidence
was present in the literature. Hence, the inference may provide
an indication for subsequent experimental investigation into
the veracity of those predicted interactions. Highlighting such
interesting new interactions may make the model more accurate
with respect to the data and possibly reinforces its predictability.
Finally, the knowledge-based topology might also be improved
through the exclusion of regulatory interactions that do not score
well in the data-based analysis.

This illustration of network inference on the one hand shows
how data-driven approaches may automatically, and relatively
quickly, exploit experimental datasets to build interconnected
network of gene and protein interactions. However, using these
networks to propose further experiments is not straightforward
since the output remains a static map. On the other hand, manual
curation of networks created through a bottom-up approach is a
very fastidious and time-consuming process, but these networks
easily allow dynamic analyses and simulations that suggest new
wet lab experiments. Hence, there is a necessity to develop
methods that allow combining both approaches into a single
framework having the best of both worlds as suggested by Poirel
et al. (2013).

In the context of osteochondral regenerative medicine, the
ultimate goal of reconstructing such network of regulation is to
obtain a predictive model in order to gain understanding into the
signaling or regulatory mechanism controlling cellular behavior

TABLE 3 | Inferred interactions with inferelator and prior knowledge (g = 5).

Source Target StoT TtoS Pearson StoTorig TtoSorig

MEF2C Runx2 0.97 0.91 0.69 1 1

δ-EF1 Ets1 0.16 0.88 −0.38 0 1

CCND1 Atf2 0.02 0.91 0.61 0 1

Sox9 Runx2 0 0.90 −0.30 −1 −1

Dlx5 MEF2C 0.02 0.84 0.32 0 1

MEF2C Tcf7 0.77 0 0.59 0 0

HIF-2α Tcf7 0.14 0.51 0.62 0 0

HIF-2α δ-EF1 0.56 0 0.39 0 0

NF-κB Sox9 0.55 0 0.40 1 0

HIF-2α NF-κB 0 0.53 0.04 0 1

HIF-2α MEF2C 0 0.44 0.54 0 0

Selection of the first ranked interactions. StoT is the fraction of times where a directed

interaction from the source (1st column) to target (2nd column) is found in the bootstrap

procedure. TtoS is the fraction of cases where a reverse directed interaction is found.

The fifth column gives the Pearson correlation in the microarray dataset. StoTorig is the

directed interaction from the source to target in the literature-derived network (Figure 2).

TtoSorig is the reverse interaction. 0 indicates no interaction, 1 is an activation and −1 is

an inhibition.

and/or physiology of degenerative diseases. It might enable the
identification of key factors for therapeutic targeting ensuring
reliable cellular differentiation for tissue engineering applications
or to propose potential disease-modifying therapies in the
context of cartilage degenerative disease such as osteoarthritis
(Hopkins, 2008). Application of such a methodology to the
growth plate system already suggested new interactions and
some factors as key regulators in the phenotypical transition of
chondrocytes. For instance, in the inference previously presented
(Kerkhofs, 2015), one of the highly ranked inferred interactions
that was not present in the prior network, was NFkB-MEF2C
with a negative correlation. MEF2C knockdown was shown to
increase NFkB activity in endothelial cells (Xu et al., 2015) but
no mRNA measurement was performed. This could constitute
a suggestion of experimental design for validation of the in
silico result. Finally, dynamic simulations associated with this
growth plate network showed that in silico knock-out of NFkB
was decreasing the reachability of the hypertrophic state in the
optimized model, i.e., making it less likely for a cell to be in
that state. The factors that were absolutely required to reach
the hypertrophic state, as in their absence no Runx2+ stable
state was found, were Ras, Ihh, Gli2, and FGF. The activation of
Smad7 in the model was the most expedient way to remove the
Sox9+ (proliferative) phenotype. Hence, according to the model,
inhibiting Smad7 could be a strategy to decrease initiation of
hypertrophic differentiation; or activation of Ras, Gli2, or FGF
pathwaysmight help to promote hypertrophy in order to produce
sustainable bone TE constructs.

CONCLUSION

As new computational tools become available, an increasing
number of biological systems is investigated computationally
with increasing effectiveness. Computational approaches have
already shown their relevance in the field of regenerative
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medicine with models of bioreactor studies and biomaterial
design. However, this relevance also holds for the models
focusing on the intracellular level, through the use of GRN
models to understand the cellular decision-making processes,
e.g., in the context of cell differentiation. Understanding and
controlling these processes is a necessary step to increase
quality and robustness of TE constructs. For the specific case
of osteochondral tissue engineering, only few cell signaling or
signal-response models have been reported in the literature up to
date. We have reviewed our own published work on computer
modeling of differentiation of growth plate chondrocytes to
illustrate the potential of in silico approaches in designing proper
culture strategies to control the transition of these chondrocytes
from a proliferative to a hypertrophic phenotype and find
those (potentially druggable) targets. Such targets would allow
preventing a switch from the proliferative to the hypertrophic
phenotype in the case of cartilage degenerative diseases such as
osteoarthritis. Correcting aberrant cellular behavior with drugs
requires knowledge about multiple interacting signaling proteins,
which necessitates the use of computer tools (Kumar et al., 2006;
Hopkins, 2008; Voit, 2012).

The last section of this paper illustrate the benefits that
network inference from experimental data could bring to
predictive computational models. The main obstacle currently
preventing the expansion of in silico approaches is the lack
of informative and quantitative experimental data. Indeed,
modelers face the difficulty of obtaining data with a sufficiently
high information content, such as perturbation data from human
samples, to build and validate their models.

In silico modeling does not aim to replace traditional
experimental methods but provides an additional tool to
interpret the results obtained in those experiments and to
suggest new informative experiments, as an integral part

of the experimental research cycle. The objective of the
models described in this review is to bring a higher level of
understanding, increase time efficiency of experimentation and
decrease costs in the process of therapy development.
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