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L-Asparaginase (ASNase) is a vital component of the first line treatment of acute

lymphoblastic leukemia (ALL), an aggressive type of blood cancer expected to afflict over

53,000 people worldwide by 2020. More recently, ASNase has also been shown to have

potential for preventing metastasis from solid tumors. The ASNase treatment is, however,

characterized by a plethora of potential side effects, ranging from immune reactions to

severe toxicity. Consequently, in accordance with Quality-by-Design (QbD) principles,

ingenious new products tailored to minimize adverse reactions while increasing patient

survival have been devised. In the following pages, the reader is invited for a brief

discussion on the most recent developments in this field. Firstly, the review presents an

outline of the recent improvements on the manufacturing and formulation processes,

which can severely influence important aspects of the product quality profile, such

as contamination, aggregation and enzymatic activity. Following, the most recent

advances in protein engineering applied to the development of biobetter ASNases

(i.e., with reduced glutaminase activity, proteolysis resistant and less immunogenic)

using techniques such as site-directed mutagenesis, molecular dynamics, PEGylation,

PASylation and bioconjugation are discussed. Afterwards, the attention is shifted toward

nanomedicine including technologies such as encapsulation and immobilization, which

aim at improving ASNase pharmacokinetics. Besides discussing the results of the most

innovative and representative academic research, the review provides an overview of the

products already available on the market or in the latest stages of development. With this,

the review is intended to provide a solid background for the current product development

and underpin the discussions on the target quality profile of future ASNase-based

pharmaceuticals.
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INTRODUCTION

L-asparaginase as a chemotherapeutic agent represented a
milestone in the field of medicine due to the ratio of acute
lymphoblastic leukemia children patients who achieve complete
remission after treatment incorporating ASNase (93%) and due
to its selectivity against the tumor cells. Its main mechanism
of action is the depletion of the amino acid L-asparagine (L-
Asn) from the bloodstream, which is hydrolyzed into aspartic
acid (ASP) and ammonia (NH3). Since they lack the enzyme
asparagine synthetase (EC 6.3.5.4), tumor cells are unable to
synthesize enough L-asparagine for their maintenance and
accelerated growth, which compromises its cellular functions and
leads to cell death.

The medical use of ASNase is, however, not without risks,
being associated with allergic reactions and several types
of toxicity (Mitchell et al., 1994; Nowak-Göttl et al., 1994;
Rizzari et al., 2000), hence there is a current need for novel
biobetter ASNases in the market. The term biobetter, also called
biosuperior, refers to new drugs designed from existing peptide or
protein-based biopharmaceuticals by improving their properties
such as affinity, selectivity and stability against degradation
(Courtois et al., 2015; Lagassé et al., 2017).

The development of biopharmaceutical products with an
improved quality profile is one of the guiding principles of the
“Quality-by-Design” paradigm. This translates as starting drug
development with an application in mind, which means not only,
defining the clinical condition the new product is supposed to
treat, but also its pharmacokinetics (administration, distribution,
metabolism and excretion), pharmacodynamics (mechanism of
action) and safety (potential toxicity) (Eon-Duval et al., 2012;
Colombo et al., 2018). This is an important paradigm shift
from the traditional approach of discovering new molecules first
and later finding potential applications for them (Rathore and
Winkle, 2009).

The development of production technologies focused on
an economically viable and safe ASNase has both social and
economic importance. In this context, the implementation of the
Quality-by-Design (QbD) philosophy in the product design and
process development of this important chemotherapeutic drug is
the main long-term goal of the present review. However, in the
vast majority of the ASNase production studies available in the
current scientific literature, the focus of process optimization was
yield and recoverymaximization without extensive consideration
on quality aspects of the final product. These results are
fundamental for the economic viability of ASNase production,
but still require more effort on process development aiming at
clinical efficacy and safety. In the following pages, the current
status of ASNase production technology will be reviewed as well
as the most recent advances on product design.

L-ASPARAGINASE

L-asparaginase (EC 3.5.1.1) (ASNase) is an amidohydrolase,
which can hydrolyze both asparagine (L-asparaginase activity)
and glutamine (L-glutaminase side activity) (Chan et al., 2014).
The mechanism of antitumor action is also associated with

the interference on the signaling pathways and inhibition of
expression of oncogenic transcription factors (Avramis and
Tiwari, 2006). ASNase is used as a biopharmaceutical and is
considered one of the most important oncologic drugs, being a
key component of the acute lymphoblastic leukemia (ALL) and
lymphosarcoma treatment (Margolin et al., 2011).

ALL is the most common type of childhood cancer, however
about 4 out of every 10 cases occur in adults (Nguyen et al.,
2018) and, according to the estimative made by Solomon
et al. (2017), in 2020 approximately 53,000 cases are expected
worldwide. Recent studies have also reported the ASNase
contribution to the reduction of cancer metastasis. Further
developments might be expected as a result of the application
of ASNase to reduce cancer invasion, circulation of tumor
cells and metastasis as recently reported for a mouse model
of breast cancer by Knott et al. (2018). These researchers
demonstrated that the amino acid asparagine governs metastasis
partly through regulation of a significant cellular process in the
metastatic cascade named epithelial-to-mesenchymal transition
(EMT), which leads to the expression of mesenchymal properties
facilitating metastasis. Moreover, another study revealed that
when extracellular glutamine levels drop, tumor cells become
dependent on asparagine for proliferation and protein synthesis
(Pavlova et al., 2018). Hence, asparagine and glutamine are
already considered “co-conspirators” for metastasis, as stated by
Luo et al. (2018); in this way, new insights can be scientifically
and rationally employed for this new application of ASNase as a
biopharmaceutical.

Currently, three ASNase preparations are available; the native
asparaginase derived from Escherichia coli, a PEGylated form
of this enzyme (PEG-asparaginase) and a product isolated from
Dickeya chrysanthemi (Erwinia chrysanthemi) (Merck, 2000;
European Medicines Agency, 2015, 2016; Medicines Evaluation
Board, 2015). E. coli produces two types of ASNase (EcA I
and EcA II), that present distinct characteristics. EcA I is a
constitutive enzyme found in the cytoplasm whereas EcA II is
located in the periplasm of the bacteria and has a higher affinity
to L-asparagine (Eca I KM = 3.5mM and Eca II KM = 10–15µM)
(Yun et al., 2007). Only the EcA II is used for clinical application.
ASNase from Dickeya (ErA) and from E. coli (EcA II) have the
same mechanism of action against tumor cells, however their
pharmacokinetics, affinity for the substrate (KM) and immune
system sensitization profile are different. Therefore, the change
to ErA is an important option for patients that present allergic
response to the treatment with E. coli ASNase (EcA II) (the first
choice in the ALL treatment protocol) (El-Naggar et al., 2015).

The therapeutic use of ASNase still faces some challenges
as several types of allergic reactions occur due to its high
immunogenicity as well as clinically important toxicities, such
as pancreatitis, thrombotic events, mucositis, nausea, diarrhea,
vomiting, liver dysfunction, hyperglycemia, dyslipidemia,
neutropenia, coagulopathy, headache, abdominal pain and
central nervous system dysfunctions (Mitchell et al., 1994;
Nowak-Göttl et al., 1994; Rizzari et al., 2000). Furthermore,
ASNase presents low stability in serum and fast plasma clearance
due to the action of human proteases and antibodies (Pieters
et al., 2012). The search for alternative bioprocesses, enzyme
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FIGURE 1 | Comparison between biological reference drug, biosimilar and biobetter in terms of development time, overall cost of production, patent protection, and

commercial value.

engineering, PEGylation and alternative formulations have been
performed in order to solve these problems, as discussed later.

BIOBETTERS AND BIOSIMILARS

Biobetters are manufactured through chemical or molecular
modifications of the originator product by functional changes
that may include increased half-life, reduced toxicity, reduced
immunogenicity, and enhanced pharmacokinetics and/or
pharmacodynamics. This novel category of better biologics
emerged over the last few years and gained industrial attention,
mainly due to their reduced commercial risk, since they
are patentable and worth higher prices due to their clinical
advantages (Courtois et al., 2015; Lagassé et al., 2017).
Biosimilars, on the other hand, are biologicals with equal
efficacy as the originator drug at a reduced price. They are,
however, not entitled to patent protection or data exclusivity
(Kadam et al., 2016; Sandeep et al., 2016). Biosimilars aim to
establish similarity to a known biological. Figure 1 depicts
a general comparison between biosimilars and biobetters in
terms of their properties and economical/regulatory aspects. In
this review the main strategies for the development of ASNase
biobetters will be explored by providing an updated overview
and highlighting the inherent challenges and opportunities.

QUALITY-BY-DESIGN

In order to modernize the chemical manufacturing control
review process, the U.S. Federal Drug and Food Administration
(FDA) published in 2002 the “Pharmaceutical current good

manufacturing practices (CGMPs) for the 21st Century: A Risk-
Based Approach” initiative (FDA, 2004b). The purpose of
this initiative was to motivate the pharmaceutical industry
to continuously innovate the manufacturing process of drug
products and to facilitate the development of new treatments
(FDA, 2004a). The FDA initiative was followed by the adoption
of similar recommendations by the European Medicines Agency
(2018) and by the Japanese Pharmaceutical and Medical Devices
Agency (PMDA, 2013) in conformance with the International
Conference on Harmonization of Technical Requirements for
Registration of Pharmaceuticals for Human Use (ICH, 2005,
2008, 2009, 2012).

While the continuous technological progress could allow
immense gains in both quality and productivity for the
pharmaceutical industry, the regulatory agencies need to keep
close track of production processes in order to safeguard the
public against potentially threatening practices. With the new
recommendations, the FDA sought to resolve the perceived
conflict between continuous process improvement and quality
assurance by encouraging manufacturers to develop a deeper
and science-based understanding of the relation between process
parameters and the characteristics of the final product (Yu,
2008).

Within the new framework, the manufacturers would be
granted more freedom to improve manufacturing processes as
long as solid knowledge of process variables and their effects on
the clinical activity of the final product could be demonstrated.
The data collected during process development as well as
mechanistic models relating variables and outcomes would then
be filed and analyzed by the regulatory agency in order to
justify eventual changes in the production process (Rathore,
2009).
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FIGURE 2 | In the traditional “Quality-by-Testing” (QbT) paradigm (A), the prospective drug product is first identified and a manufacturing process is proposed and

adjusted until the finished product meets quality specifications. Afterwards, the operating parameters are locked, validated and filed with the regulatory agency. The

process is then operated within narrow ranges around the set points, which (ideally) guarantees product consistency. In the “Quality-by-Design” (QbD) paradigm (B),

the first step is the definition of the “Quality Target Product Profile” (QTPP) of the prospective pharmaceutical. Afterwards, using risk assessment tools, the “Critical

Quality Attributes” (CQA) of the product are identified and, based on them, “Critical Process Parameters” (CPP) and “Critical Material Attributes” (CMA) are found using

“Failure Mode Effects and Criticality Analysis” (FMECA), “Sensitivity Analysis” (SA), among other tools. Then, using such statistical tools as “Design of Experiments”

(DoE) and “Multivariate Analysis” (MVA), the impact of the CMA and CPP on the CQA are studied, thus allowing process redesign and the removal of quality

bottlenecks. Using “Process Analytical Technology” (PAT) a control strategy can then be proposed. Since, within the QbD paradigm, the whole research process is

filed with the regulatory agency, the manufacturing process can more easily be improved upon (Rathore, 2014).

Among the recommendations of the FDA initiative, was the
adoption of the “Quality-by-Design” (QbD) approach in the
development of new drug products. The QbD paradigm was
popularized in the early 1990’, particularly in the automobile
industry, by J. M. Juran and advocates a bottom-up approach
for product design, where the customers’ needs form the basis
of process development (Juran, 1992).

Although facing some initial resistance, the adoption of
QbD seems to be gaining track as companies are increasingly
adopting its elements in their drug development pipelines,
with the oral antihyperglycemic Januvia R© (Sitagliptin, Merck
& Co, United States) being the first to be approved within the
new framework (Woodley, 2018). More recently, Gazyva R©

(Obinutuzumab, Roche AG, Switzerland) became the first
biopharmaceutical developed in conformance with QbD
principles to be approved by the FDA for treating chronic
lymphocytic leukemia and follicular lymphoma in 2013 (Luciani
et al., 2015; Sommeregger et al., 2017).

As represented in Figure 2A, in the traditional “Quality-
by-Testing” paradigm, after the prospective drug product is
identified, the process is iteratively redesigned until the finished
product meets specifications. After validation, the manufacturer
locks the control parameters, files process data and operates
within narrow ranges around the set points to guarantee

consistency of the final product. Within the QbD paradigm, on
the other hand, as shown in Figure 2B, all data and process
models developed during the initial research phases are filed with
the regulatory agency thus facilitating the approval of continuous
process improvements (Rathore, 2014).

In the QbD framework, the desired product characteristics
are globally known as its “Quality Target Product Profile” (or
QTPP, Figure 2B) (ICH, 2009), which are typically defined in
conjunction with the biological activity. This is in contrast
with the product “Critical Quality Attributes” (or CQAs), which
are surrogate metrics of the product quality profile that serve
as basis for quantitative process evaluation (Rathore, 2016).
While QTPPs can be described in somewhat loose terms, the
CQAs are by definition quantifiable and normally need to
fall between certain limits to guarantee product conformance,
safety and efficacy (Rathore, 2014). In the spirit of science-
based understanding the drug manufacturing process, CQAs
are selected from a large spectrum of product quality attributes
based on how critical they are for the desired application. It
is important, however, that just a few attributes are selected,
based on the likelihood and severity of them failing to meet
specifications, so that the whole production process development
can be geared toward ensuring the safety and effectiveness of the
final product (Yu, 2008).
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Given that the understanding of the relation between quality
attributes and the desired biological activity (i.e., the QTPP)
forms the basis of proper CQA selection, a broad experimental
practice with the drug product is usually required for QbD-based
process development. This need can, however, be minimized
when a rich literature describing the product is already available.
This is the case for generic and biosimilar products, which
follow in the footsteps of extensive research on the innovator
drug and whose development can be based on wider population
studies (Yu, 2008). The QbD paradigm is, therefore, ideal for the
development of the manufacturing process of biosimilar drugs
(Kenett and Kenett, 2008; Vulto and Jaquez, 2017). The same
principle can, moreover, also be applied for prospecting potential
CQAs in the development of biobetter drugs (Jozala et al., 2016)
and nanopharmaceuticals (Colombo et al., 2018), which is one of
the main focuses of this review.

Aiming at the understanding of product variability and its
sources, process development within the QbD paradigm is
normally associated with statistical models, such as multivariate
analysis (MVA), Design of Experiments (DoE), Monte Carlo
simulations, among others, that relate process parameters and
material attributes to the CQA (Kenett and Kenett, 2008;
Mandenius and Brundin, 2008; Mandenius et al., 2009). A Failure
Mode Effects and Criticality Analysis (FMECA) (ICH, 2005)
followed by a sensitivity analysis (SA) will often provide a
reliable list of the critical material attributes (CMAs) and process
parameters (CPPs), which can then be targeted by a tight and
robust control strategy (Benyahia et al., 2012; Mascia et al., 2013;
Lakerveld et al., 2015). Based on this information, the process can
be designed so that the insertion of potential quality bottlenecks
in the manufacturing process can be avoided by selecting unit
operations that can more reliably deliver the QTPP (Benyahia
et al., 2012; Benyahia, 2018). The benefits of such an integrated
end-to-end approach were clearly demonstrated through the
continuous production of pharmaceuticals (Mascia et al., 2013).

It is not, however, always possible to employ entirely reliable
steps in the production process. For this reason, the FDA’s “21st
century CGMP initiative” strongly advocates employing so-called
Process Analytical Technology (or PAT) to monitor the variables
of the manufacturing process in real time. These methods serve
a 2-fold purpose: (1) to develop a deeper understanding of the
correlation between process variables and CQAs, and, (2) to allow
real time release of a product batch. In alignment with QbD
principles, the FDA believes that reduction of overall processing
time adds to product quality assurance, which can be achieved by
real time decision-making, i.e., real time batch release, based on
process data (FDA, 2004a). Furthermore, the implementation of
PAT can be the basis for advanced process control, another of the
QbD goals.

A variety of ASNase improvements have been recently
studied, aiming at reducing its affinity for glutamine, aggregation
and immunogenicity and decreasing the concentration of
contaminants in the final product as well as increasing its activity,
proteolysis resistance and blood serum half-life (Lopes et al.,
2017). As it will be shown next, these desired characteristics
form the basis of potential innovative products that may soon be
available for the patients in need.

L-ASPARAGINASE MANUFACTURING:
PRODUCTION PROCESS AND
PURIFICATION

A robust bioprocess is central for guaranteeing that the target
quality profile of the final product meets specifications, which
represents one of the biggest obstacles for the development
of biopharmaceuticals, since small alterations in the process
operating parameters, cell line, production methods and
purification steps can affect critical quality attributes (CQAs)
such as structure, activity and contaminant concentration (Sassi
et al., 2015).

ASNase production is divided into upstream and downstream
processing. Upstream processing is the transformation of
substrates into the product. The upstream process development
includes the selection of the cell line, culture media, bioreactor
parameters (i.e., pH, temperature, oxygen supply, etc.), process
selection (submerged/solid state cultivation, batch, fed-batch,
continuous, etc.) and optimization. Downstream processing
includes all steps required for the enzyme purification, such
as initial recovery, purification and polishing. The downstream
process must achieve the removal of host cell protein (HCP),
process and products related impurities, DNA, buffer, antifoam
agents, aggregates, fragments, among others (Jozala et al., 2016;
Lopes et al., 2017). Regarding injectable biopharmaceuticals,
such as ASNase, the manufacturing process must be even more
judicious, since the presence of contaminants, may potentially
lead to detrimental clinical consequences (Zenatti et al., 2018).

Upstream
L-Asparaginase Producing Microorganisms
The selection of the cell line forms the basis of bioprocess
development (medium culture, type of process and its
parameters, purification strategy, etc.) and affects the
characteristic of the enzyme produced, directly influencing
the product quality profile. Plants, animals and microorganisms,
including bacteria, filamentous fungi and yeast, can produce
ASNase. Among them, the microbial enzyme is the most
convenient, due to its consistent profile, stability, relative ease
production and purification, which simplifies modification and
optimization of the manufacturing process, when compared to
the plant and animal alternatives (Lopes et al., 2017).

Several ASNase producing microorganisms have already been
described in the literature, such as Escherichia coli, Dickeya
chrysanthemi (previously known as Erwinia chrysanthemi),
Saccharomyces cerevisiae, Aspergillus sp., Serratia marcescens,
Proteus vulgaris among others, and screening work continues
to find new ones (Rowley and Wriston, 1967; Tosa et al.,
1971; Costa et al., 2016; Doriya and Kumar, 2016; Vimal
and Kumar, 2017; Qeshmi et al., 2018; Vala et al., 2018).
However, as previously mentioned, only the enzymes from E.
coli and D. chrysanthemi are produced on an industrial scale for
pharmaceutical use (Merck, 2000; European Medicines Agency,
2015, 2016; Medicines Evaluation Board, 2015).

Regarding bacteria, members of the Enterobacteriaceae family
are the best producers of ASNase. Eukaryotic microorganisms
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have also been studied for producing enzymes presenting
potentially better compatibility with the human immune system
due to their evolutionarily proximity (Doriya and Kumar, 2016).

Scientific literature reports many studies of ASNases with
improved pharmacokinetics and reduced side effects. More
specifically, studies refers to the search for reduced glutaminase
activity, lower KM values, lower molecular weights, greater
structural diversity and different responses to effector molecules
(Krishnapura et al., 2016). Additionally, extracellularly secreted
ASNases could greatly simplify downstream processing
(Gholamian et al., 2013; Vimal and Kumar, 2017). The first
reports on this field describe the use of the Nessler assay, a time
consuming and laborious method to detect ASNase activity in
culture filtrates based on the release of ammonium by ASNase
enzymatic cleavage, which interacts with the Nessler’s reagent
giving rise to a brown colored compound (Nakahama et al.,
1973). More recently, plate assay became widely used since
it is fast, sensitive, efficient and reproducible for screening
large numbers of microorganisms (Gulati et al., 1997; Mahajan
et al., 2013; Dhale and Mohan-kumari, 2014; Meghavarnam
and Janakiraman, 2015; Doriya and Kumar, 2016; Vaishali and
Bhupendra, 2017). Plate assay screenings are often based on
indicators that change color due to the pH increase that results
from the ammonium released from ASN hydrolysis (Gulati
et al., 1997; Doriya and Kumar, 2016). However, this method has
certain limitations such low sensitivity and the fact that it do not
measure intracellular ASNase activity (Vaishali and Bhupendra,
2017). After the initial screening, other methods are required
for the quantitative evaluation of enzymatic activity such as
the aforementioned Nessler’s reaction (Peterson and Ciegler,
1969); the L-aspartyl-β-hydroxamic acid (AHA) method, wich
evaluates aspartyl β-hydroxamate formation after L-asparagine
hydrolysis in the presence of hydroxylamine (Frohweinm
et al., 1971); circular dichroism spectroscopy (Kudryashova
and Sukhoverkov, 2016); amplex Red method (Karamitros
et al., 2014), among others. The screening methods for finding
enzymes with reduced glutaminase activity are similar to the
plate methods used for ASNase activity detection, i.e., they are
based on pH switch, but use GLN instead of ASN as a substrate.
However, the determination of KM, Kcat, molecular weight and
molecular structure are only possible after purification and
require more complex techniques (Mahajan et al., 2014).

For large-scale processes, the production of
biopharmaceuticals from wild strains is normally avoided,
mainly due to low yield. The use of recombinant DNA
technology has been explored to increase production yield in
enzyme processes (Adrio and Demain, 2010). High secretors
and host strains of bacteria (e.g., E. coli, Bacillus and lactic acid
bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g.,
Pichia pastoris) are used for the homologous and heterologous
expression of recombinant enzymes (Goswami et al., 2015).
Among them, bacterial hosts (e.g., E. coli) are most commonly
used for ASNase production, since they can quickly and easily
overexpress recombinant proteins (Ferrara et al., 2006; Liu et al.,
2013; Costa et al., 2016).

Native E. coliASNases, such as Elspar R© (Merck, 2000) and the
PEGylated form pegaspargase, Oncaspar R© (European Medicines

Agency, 2016) are produced industrially for medical application.
The only recombinant ASNase available on the market so far,
Spectrila R©, is produced in E. coli as a host cell (European
Medicines Agency, 2015). D. chrysanthemi (E. chrysanthemi)
is also used as a host cell for producing the native ASNase,
crisantaspase (Medicines Evaluation Board, 2015). Different
strategies for protein engineering targeting the improvement of
the ASNase therapeutic use are described in a latter section.

Media Composition and Cultivation Strategies
In addition to the microbial species used, ASNase production
yields depend on the cultivation conditions. Thus, the
identification of optimal culture media composition,
temperature, pH, oxygen levels and others cultivation factors
is of paramount importance. Several media compositions
have been tested for ASNase production. In the case of wild
type microorganisms, carbon and nitrogen sources have been
reported as the most influencing factors, as reported in recent
reviews (Kumar and Sobha, 2012; Cachumba et al., 2016;
Lopes et al., 2017). Both submerged and solid state processes
have been reported in the literature (Ashok and Kumar, 2017;
Meghavarnam and Janakiraman, 2017), the later mainly for
filamentous fungi. Nonetheless, only submerged cultivation is
used for industrial production of ASNase for pharmaceutical use
and ASNase from filamentous fungi is exclusively used in the
food industry (Xu et al., 2016).

Another manufacturing alternative that has been studied to
improve ASNase is the use of chemically defined culture media.
According to Macauley-Patrick et al. (2005), in order to produce
large quantities of heterologous proteins, the use of definedmedia
is required so that the physicochemical environment can be
manipulated and the protein expression maximized. It provides
robustness, avoids variations caused by complex components
and favors the downstream steps. Walsh (2010) reported that
the use of a chemically defined culture medium improves the
safety of biological drug production. Defined culture media were
used by Macauley-Patrick et al. (2005) for ASNase production
by recombinant Pichia pastoris and, according to the authors,
the medium was considered ideal for large-scale production of
heterologous proteins in bioreactors.

Alternatively to traditional batch cultivation, fed-batch is a
strategy used to enhance ASNase production (Goswami et al.,
2015), for both native and recombinant strains, since early works
reported that ASNase synthesis can be catabolically repressed, i.e.,
it can be inhibited by glucose (Heinemann and Howard, 1969;
Peterson and Ciegler, 1972). A study of continuous cultivation
for ASNase production by Erwinia aroideae was carried out by
Liu and Zajic (1973) and lower enzyme yields were obtained
compared to batch cultivation, except when the process was
conducted at a dilution rate of 0.1 h−1. Currently, no industrial
ASNase production process is carried out in continuous mode.

Using fed-batch cultivation, successful results have been
reported in the literature. Besides the productivity improvement,
fed-batch cultivation allows the reduction of toxic by-product
formation and simplifies the downstream processing, lowering
overall production costs and reducing the technical effort
required (Johnston et al., 2002). Goswami et al. (2015)
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achieved about 4-fold biomass (7.32 g.L−1 dry cell weight)
and recombinant L-asparaginase II production (95.85U.L−1)
increase, using fed-batch compared to the batch process. Kumar
et al. (2017) evaluated the production and productivity of
a glutaminase-free ASNase from Pectobacterium carotovorum
MTCC 1,428 both in batch and fed-batch process. In the batch
process 17,97U.L−1 and 1497.50U.L−1.h−1 were achieved, while
in the fed-batch process 38.8U.L−1 and 1615.8U.L−1.h−1 for
the production and productivity, respectively, were achieved,
corresponding to an increase of 115.8% in ASNase production
and 7.9% in enzyme productivity (Kumar et al., 2017). The
improved results of fed-batch for productivity justify its
industrial use. Additionally, in a fed-batch process high-density-
cell cultivation (HDC) can be reached, which increases the
volumetric yield. Ferrara et al. (2006) reported the production of
ASNase by recombinant P. pastoris in HDC in a 2 L bioreactor
and the volumetric yield obtained was 85,600U.L−1, global
volumetric productivity was 1,083U.L−1.h−1 (Ferrara et al.,
2006).

The combination of recombinant DNA technology and HDC
in the fed-batch process, allows enzyme production in much
larger quantities than those obtained in traditional processes
(Nakagawa et al., 1995; Roth et al., 2013) and enabled the
reduction of the culture volume from 20,000 to 300 L in the
Medac’s Spectrila R© production process (European Medicines
Agency, 2015; Wacker Biotech, 2016). The application of this
technology to the production of ASNase with the optimization
of the cultivation process and an effective purification strategy
increased the productivity, the yield and the quality of the
ASNase produced, reducing the overall production costs while
contributing to the technical-economic feasibility of the process.

Cultivation Optimization and Control
Before scale-up, the optimization of process variables is required.
Statistical tools are employed to determine the effect of
cultivation parameters on the process performance and outputs
and to suggest/implement effective improvements (Agarwal et al.,
2011). Statistical design of experiments (DoE) enables the study
of several parameters at the same time, as well as of their
interactions, from a minimum number of experiments. DoE
can, therefore, help to understand the relation between process
parameters and the final product quality profile (ICH, 2009).
The screening of the major variables affecting the process can
be carried out using methods such as the Plackett–Burman
experimental design or the Taguchi’s method (Placket and
Brurman, 1946; Rao et al., 2008). Afterwards, in order to find
optimal operating conditions, central composite design and the
response surface methodology can be used (Managamuri et al.,
2017). Other methods, such as model-based optimization are also
popular (Zuo et al., 2014). Mechanistic and black box models
(e.g., artificial neural network) can be used in conjunction with
global, local or multiobjective optimization techniques, both
deterministic (i.e., gradient-based) and non-deterministic (e.g.,
genetic algorithms) (Benyahia et al., 2010).

El-Naggar et al. (2015) evaluated fifteen variables in
glutaminase-free ASNase production by Streptomyces olivaceus
NEAE-119 using the Plackett–Burman experimental design.

Among the variables studied (temperature, pH, incubation time,
inoculum size, inoculum age, agitation speed, dextrose, starch,
L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O,
NaCl, and FeSO4·7H2O), temperature, inoculum age and
agitation speed were the most significant independent variables
affecting enzyme production and were, therefore, targeted for
optimization using the response surface methodology (El-Naggar
et al., 2015). During the Plackett–Burman design experiments (20
runs), the maximum and minimum ASNase activity were 49.874
and 5.181U.mL−1, respectively; after optimization a maximum
of 70.46U.mL−1 was achieved, and the model was validated with
a high degree of accuracy (97.35%). The results obtained by El-
Naggar et al. (2015) highlight the improvements that can be
obtained by process optimization.

In the spirit of QbD, another important point that must
be considered in bioprocess design is process control, which
ensures a consistent quality of the final product (ICH, 2009).
In traditional bioprocesses, real time control considers mainly
the temperature, pH and dissolved oxygen. However, with the
help of Process Analytical Tools (FDA, 2004a), other process
parameters such as cell viability, cell density, substrate, product
and by-product concentrations, dissolved carbon dioxide and
other biomarkers can now be measured in real time. These
Process Analytical Tools deliver crucial real time information
about the process evolution and impacts of process perturbations,
which in turn help monitor cell line variability and enable the
implementation of advanced control strategies that can directly
affect critical process parameters and critical quality attributes
(Craven and Becken, 2015; Lakerveld et al., 2015).

Downstream
Downstream processes present a large number of potentially
critical process parameters that show interactions across unit
operations and have to be investigated before scale-up (Meitz
et al., 2014). Since 60–80% of the total production costs
of biopharmaceuticals is usually associated with downstream
processing, it has become crucial to investigate how to replace
traditional methods with efficient and cost-effective alternative
techniques for recovery and purification of drugs, decreasing
the number of downstream unit operations (Buyel and Fischer,
2014; Tundisi et al., 2017). The integration of downstream
unit operations is widely used for ASNase purification, through
low resolution purification steps, i.e., fractional precipitation,
aqueous biphasic systems, centrifugation and membrane-based
purification (dialysis) (Zhu et al., 2007; Mahajan et al., 2014; El-
Naggar et al., 2016) and high resolution purification steps, i.e.,
chromatographic processes.

Low Resolution Techniques
The first step of the ASNase downstream process is the drug
release from the intracellular media. Most microbial ASNases are
intracellular, few microorganisms are able to secrete it outside
the cell (Amena et al., 2010), in these cases, the consequent
ASNase purification will be harder due to the vast number of
biomolecules released from intracellular media. Depending on
the producer microorganism, the enzyme might be transported
to the periplasmic space, as, for example, in the case of E. coli
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type-II ASNase, facilitating the consequent purification steps,
since only the periplasmic proteins are released depending
on the type and mode of operation of the disruption cell
methods applied (Harms et al., 1991; El-Naggar et al., 2016).
Costa-Silva et al. (2018) evaluated some disruption methods for
ASNase release (produced by bacteria, yeast and filamentous
fungus) using mechanical, chemical and physical methods.
Mechanical methods were the most effective for all microbial
cells used, including sonication and glass bead stirring. However,
mechanical disintegration methods cause temperature increase
(thereby resulting in ASNase denaturation) and, in general, this
disruption mechanism co-releases byproducts such as nucleic
acids, cell fragments and others proteins with the intended
product. Therefore, extracellular ASNase is considered more
advantageous than the intracellular type for the downstream
process, since the enzyme can accumulate in the culture broth
under normal conditions, simplifying the extraction process.
However, periplasmic ASNase production facilitates protein
folding, as there is a more favorable redox potential in the
periplasmic space (El-Naggar et al., 2016). In laboratory scale,
osmotic shock is used to release ASNase from the periplasmic
space (Harms et al., 1991), in the industrial scale, this technology
is, however, not easy to be implemented. In the reports of the
periplasmic ASNase production available in the market, this step
is not well described (European Medicines Agency, 2015, 2016).

Therefore, alternative methods have been developed for
application on an industrial scale that can lead to high
purification factors and purities, compromising the use of
integrated purification steps. For instance, Wagner et al. (1992)
patented a method of extraction of periplasmic ASNase produced
by E. coli through cell flocculation and centrifugation, followed
by resuspension in water and precipitation by a water-miscible
solvent. With the addition of an organic base, the extracted cells,
nucleic acids and ballast proteins are precipitated and removed by
centrifugation. Finally, ASNase is precipitated from the cell-free
solution with acetone.

Yu et al. (2018) studied the purification of recombinant
ASNase from E. coli using crystallization by solvent freezing
technology (SFO) with methanol, 2-methyl-2,4-pentanediol
(MPD), polyethylene glycol (PEG) 6,000 and ethanol as
precipitating agents. Initially, the biomass was disintegrated via
high pressure homogenization (1,000 bar). Cold acetone was
then injected followed by centrifugation. The pellet, referred
as the crude extract, was used for further purification by
crystallization. Specific activity increased from 27 to 135U.mg−1

after purification by crystallization. However, SDS-PAGE showed
that, in addition to an ASNase band at 35 kDa, there were still
other bands, indicating protein contamination in the crystals of
ASNase II demonstrating, therefore, the need to associate other
techniques to crystallization by SFO to obtain pure ASNase.

Santos et al. (2018) proposed the purification of periplasmic
ASNase from E. coli using precipitation with ammonium sulfate
followed by a separation with a polymer/salt based aqueous
biphasic system (ABS). The novelty of this work was the
important role of ionic liquids acting as adjuvants, enhancing the
purification factor of ASNase. The results revealed preferential
partitioning of ASNase to the polymer rich-phase of the system

owing to the hydrophobic effect resulting from van der Waals
interactions between enzyme and polymer. Low amounts of ionic
liquids in the ABS were sufficient to achieve about 90% recovery
of ASNase with high purity.

High Resolution Techniques
Despite major advances in the development of low resolution
separation methods such as precipitation, aqueous biphasic
systems and crystallization, chromatography-based techniques
continue to be the backbone of the biopharmaceutical industry
(Rathore et al., 2018). Chromatography is still widely preferred
thanks to its scalability, robustness, selectivity, high clearance
of impurities and most importantly easy validation compared
to other purification processes (Soares et al., 2012). It includes
different techniques with their own characteristics such as
hydrophobic interaction (HIC), ion exchange (IEX) and gel
filtration (SEC) chromatography. These separations are based on
biomolecules hydrophobicity, charge and size, respectively. As
mentioned before, in order to consolidate a technological process
and turn it economically viable, the number of intrinsic steps
must be reduced. The best efficiency can be achieved through the
synergism between different unit operations involving techniques
that can be scaled in an industrial context (Cortez and Pessoa,
1999; Dux et al., 2006).

Mangamuri et al. (2016) studied the effect of an integrated
downstream process to purify an extracellular ASNase from
Pseudonocardia endophytica VUK-10. By employing a 3-
step downstream protocol involving ammonium sulfate
precipitation, gel filtration chromatography and ion exchange
chromatography, the specific activity of ASNase increased from
7.31 to 702.04U.mg−1 with 61% yield.

Moreover, for recombinant His-tagged ASNases the
immobilized metal ion affinity chromatography (IMAC),
using a Ni+2 -charged resin, is highly recommended. The use
of IMAC proved to be an efficient tool in the purification
of recombinant ASNase I of S. cerevisiae, resulting in high
recoveries (40.50 ± 0.01%) and a purification factor of 17-fold
(Santos et al., 2017).

Regarding the downstream processing of two
biopharmaceutical ASNases currently available on the market:
Oncaspar R© and Erwinase R©, integrated purification platforms
are used. For Oncaspar R©, the purification includes hydrophobic
interaction chromatography, anion and cation exchange
chromatography as well as clearance steps to effectively deplete
product and process related impurities. For the polishing steps,
the active substance is dispensed into sterile containers and
subjected to testing and release. Meanwhile, for Erwinase R© the
extracts are pooled and processed through a series of column
chromatography and other protein purification steps to yield
a drug substance batch (Medicines Evaluation Board, 2015;
European Medicines Agency, 2016).

A challenge to overcome in the use of therapeutic
proteins refers to soluble or insoluble aggregates which, when
administered, may trigger immunogenic reactions (Cromwell
et al., 2006; Eon-Duval et al., 2012). Amajor breakthrough in that
direction was achieved in the development of the recombinant
ASNase Spectrila R© (Medac GmbH, Hamburg, Germany), which
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succeeded in reducing the aggregate content in the final product
from 20.5 to <0.3% (European Medicines Agency, 2015).

PROTEIN ENGINEERING FOR
IMPROVEMENT OF L-ASPARAGINASE
THERAPEUTIC USE

In accordance to QbD tenets, innumerable techniques have
been proposed to overcome ASNase treatment downsides and,
therefore, to develop biobetter ASNases. Protein engineering
using bioinformatics analysis, molecular dynamics, docking
and site-directed mutagenesis is among the most sophisticated
techniques (Mundaganur et al., 2014; Nguyen et al., 2016;
Ardalan et al., 2018). Table 1 summarizes the amino acid
alterations by some of the techniques cited above aiming at
improving ASNase properties.

Reducing Glutaminase Activity
Although the glutaminase activity of ASNase is important for
its activity against asparagine synthetase positive cancer cells
(Chan et al., 2014), most of the side effects of ASNase treatment
previously mentioned have been attributed to it (Warrell et al.,
1982; Kafkewitz and Bendich, 1983). Therefore, from a quality
perspective, a reduction on glutaminase activity is desirable.

Commercial ASNase used in the lymphoblastic leukemia
and lymphosarcoma treatment are from bacterial sources and
are not “glutaminase-free”. The E. coli (EcA II) and E.
chrysanthemi (ErA) ASNases hydrolyzes L-glutamine up to 9%
of total hydrolysis activity (high preference for L-Asn over
L-Gln). Therefore, innumerable approaches to obtain ASNase
with lower glutaminase activity have been investigated, such
as bioprospecting other microbial sources or the modification
of commercial ASNases by site-directed mutagenesis (Loureiro
et al., 2012; Ardalan et al., 2018). Amino acids essential
for biocatalysis in most cases were not altered since they
are obligatory for effective ASNase binding to asparagine.
Alternatively, several amino acids that surround the active
site without directly interacting with the substrate, seemed to
be better residues for targeted substrate specificity alteration
(Offman et al., 2011; Mehta et al., 2014).

Derst et al. (2000) demonstrated that in native Eca II the Asn
248 is involved in hydrogen bonding that influences substrate
binding. By replacing this Asn by Ala, they observed a reduction
in glutaminase activity (Derst et al., 2000). Nevertheless, even
though this residue does not belong to the catalytic site, this
modification also substantially decreased the ASNase activity
(about 12% of ASNase activity retention). Offman et al. (2011)
used site-directed mutagenesis and created the double mutants
N24A/Y250L, which almost eliminated glutaminase activity and
retained ∼=72% of ASNase activity. L-glutamine is larger than
L-asparagine and this feature can be exploited to change the
enzyme activity. The ASNase active-site is partially located at
the monomer-monomer interface, and, consequently, changes
in the tetramer compactness and/or active-site cavity volume
will probably affect the glutaminase activity. The double mutant
N24A/Y250L resulted in higher tetramer compactness with

a smaller active-site cavity volume than the native enzyme,
justifying the decrease of glutaminase activity (Offman et al.,
2011).

Other studies investigated additional site-directed
mutagenesis promoting a substantial decrease of glutaminase
activity (Chan et al., 2014; Mehta et al., 2014). Recently,
Ardalan et al. (2018) applied molecular docking studies,
quantum mechanics and molecular dynamics simulations
to engineer the E. coli ASNase (EcA II) in order to obtain a
mutant without glutaminase activity (Ardalan et al., 2018).
They excluded residues present in the active-site or which are
responsible for substrate binding and selected the residue V27
based on the binding energy (binding energy to L-asparagine:
−0.182 kcal.mol−1 and binding energy to L-glutamine: −0.4758
kcal.mol−1). The V27T (nonpolar to polar amino acid) mutant
showed higher glutaminase free binding energy (from −20.763
to 1.360 kcal.mol−1) and higher stability than the native enzyme,
while retaining ASNase activity. The number of hydrogen-bonds
between ASNase and glutamine were reduced, lowering the
interaction of the substrate with the active-site (Ardalan et al.,
2018). All the studies that completely eliminated the glutaminase
activity affected to some extent the ASNase activity due the
fragility of the network in the active-site.

Increasing in vivo Stability
Commercial ASNases used in lymphoblastic leukemia treatment
are characterized by low in vivo stability resulting in the need
of several administrations. Therefore, a desirable quality for
potential biobetter candidates would be a longer half-life, which
can be achieved by designing protease-resistant ASNases.

Asparagine endopeptidase (AEP) and cathepsin B (CTSB) are
two human lysosomal proteases which contribute to ASNase
short half-life (Patel et al., 2009) and site-directed mutagenesis
has been used to create protease-resistant ASNase. Patel et al.
(2009) identified the residue N24 as the primary cleavage site for
AEP and proposed the change of this residue to G24. ASNase
N24Gmutant was resistant to AEP cleavage but was substantially
less active (relative activity 45%). This residue (N24) is not
directly involved in catalysis but it is responsible for active-site
stabilization (Maggi et al., 2017).

Using molecular dynamics simulations the N24S mutation
was proposed and a new ASNase showing resistance to
proteases derived from leukemia cells was obtained, which
retained all original enzymatic activity (Maggi et al., 2017). The
improved biochemical characteristic of N24S provides a potential
alternative to improving outcome in childhood ALL treatment.

Reducing Immunogenicity
The reduction of immunogenicity is fundamental for the
development of biobetter ASNases, given that the development
of an immune response reduces treatment efficacy and may
lead to potentially dangerous reactions. Therefore, from the
QbD perspective, a reduction in immunogenicity would result
in an improved quality profile. Studies involving bioinformatics
analysis, antigenic peptide prediction, prediction of B-cell
epitopes and site-directed mutagenesis were carried out and
revealed numerous B-cell epitopes on the surface of E. coli
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TABLE 1 | Summary of the amino acid substitutions on several L-asparaginases and the results achieved.

Source Mutations* Results achieved Reference

N248A 0.2% glutaminase activity and 12% L-asparaginase activity Derst et al., 2000

R195A/K196A/H197A Reduction in antigenicity Jianhua et al., 2006

E. coli (Eca II) N178P Retention of 90% L-asparaginase activity at 50◦C (wild-type 71%) Li et al., 2007

N24G AEP resistant-Retention of 45% L-asparaginase activity Patel et al., 2009

N24A/R195S 50% glutaminase activity and ∼=100% L-asparaginase activity Offman et al., 2011

N24A/Y250L ∼=0% glutaminase activity and ∼=72% L-asparaginase activity

Y176S Increase of Vmax/KM for L-aspartic acid beta-hydroxamate Mehta et al., 2014

W66Y Induced significantly more apoptosis in lymphocytes from ALL patients

Y176F Glutaminase activity reduction and ∼=100% L-asparaginase acctivity

Y176S Glutaminase actvity reduction and ∼=100% L-asparaginase activity

K288S/Y176F Glutaminase activity reduction and ∼=100% L-asparaginase activity

K288S/Y176F 10-fold less immunogenic

K139A Retention of 65% L-asparaginase activity at 65◦C (wild-type 40%) Vidya et al., 2014

L207A Retention of 57% L-asparaginase activity at 65◦C (wild-type 40%)

Y176F Increase of Vmax/KM for L-aspartic acid beta-hydroxamate Verma et al., 2014

Q59L 0% glutaminase activity and 80% L-asparaginase activity Chan et al., 2014

N24S Improved thermal stability and proteases resistant Maggi et al., 2017

L23G/K129L/S263C/R291F Non-toxic, more stability and longer half life Mahboobi et al., 2017

V27T Glutaminase activity reduction and more stable Ardalan et al., 2018

Erwinia carotovora R206H Enhanced resistance to trypsin degradation and higher thermal stability Kotzia et al., 2007

Erwinia chrysanthemi N133V Higher thermal stability Kotzia and Labrou, 2009

Pectobacterium carotovorum N96A Decreased glutaminase activity (30%) and increased asparaginase activity (40%) Ln et al., 2011

Pyrococcus furiosus K274E Resistant to proteolytic digestion and no displayed glutaminase activity Bansal et al., 2012

Rhodospirillum rubrum D60K, F61L Improvement of kinetic parameters and enzyme stabilization Pokrovskaya et al., 2015

Helicobacter pylori T16D Deplete the enzyme of both its catalytic activities Maggi et al., 2017

T95E Deplete the enzyme of both its catalytic activities

Q63E Halved glutaminase efficiency

M121C/T169M Without L-glutamine hydrolysis

Saccharomyces cerevisiae T64A, Y78A, T141A, K215A 99.9% loss of activity Costa et al., 2016

*Mutation: Y176S Y = Original amino acid; 176 = Residue position on the ASNase amino acid sequence; S = New introduced amino acid.

ASNase II which are accountable for immunogenicity (Jianhua
et al., 2006; Mehta et al., 2014; Mahboobi et al., 2017). To
overcome this limitation, several ASNase variants have been
created. Alanine-scanning mutagenesis was applied to identify
the residues that are important to the antigenicity and a
sequence change from 195RKH197 to 195AAA197 was proposed,
resulting in reduced enzyme antigenicity (Jianhua et al., 2006).
Mahboobi et al. (2017) used several bioinformatics software
to improve ASNase pharmaceutical profile and obtained one
enzyme variant with four mutations (L23G, K129L, S263C, and
R291F) presenting lower toxicity, higher stability and increased
half-life. Other site-directed mutations performed to different
ASNases are summarized in Table 1.

Perspectives for the Future of
L-Asparaginase Engineering
Rational protein engineering is a very promising approach to
obtain new ASNase proteoforms with improved quality profile,
such as: reduced or eliminated glutaminase activity, resistance
to proteases, long-term stability, improved thermal stability
and decreased immunogenicity. These desirable features of new

ASNase variants could significantly improve the enzyme therapy
of acute lymphoblastic leukemia in the future.

Unfortunately, a new ASNase containing all these
characteristics has not yet been developed. Using genetic
engineering, changes in residues not involved in the catalytic
site, as the introduction of recombinant cysteine residues in
the protein surface, are possible, which could, for example,
improve ASNase PEGylation, and prevent dissociation-induced
loss of activity (Ramirez-paz et al., 2018). Another strategy
with great potential is the use of expression systems capable of
expressing glycosylation patterns similar to those of mammals
or even human-like (Sajitha et al., 2015; Nadeem et al., 2018).
The glycosylation can improve the enzyme’s pharmacokinetics,
solubility, distribution, serum half-life, effector function, and
binding to receptors, and can, therefore, be used to reduce many
of the treatment side effects (Nadeem et al., 2018).

Several techniques can be used to predict the best protein

engineering strategy and the majority of them are based on
bioinformatic tools for modeling and modifying the ASNase
properties such as: genetic algorithm, structure-based multiple
sequence alignment, crystallographic structure analysis and
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molecular dynamics simulations, three-dimensional structure
modeling, molecular docking studies, circular dichroism,
measurements solvent accessibility of the tetramer and protein
internal dynamics, kinetic competition analysis and energy
minimization (kinetics of Asn and Gln catabolism), binding
free energy computation, density functional theory (DFT) and
innumerable prediction studies (antigenic and allergenic
peptide prediction, conformational stability prediction,
hydrogen-bonded turn structures prediction). All of these
emerging approaches involving bioinformatics tools and
functional/structural analysis should be used to exploit the
thoroughgoing potential of this biopharmaceutical.

Seen as the future of genetic engineering and gene therapy, the
CRISPR/Cas9 technique has gained much prominence in the last
years. However, to the best of our knowledge, no applications of it
on the engineering of ASNase have been reported in the scientific
literature. Interestingly, there have been some reported instances
of its use on the elucidation of the genetic markers responsible
for ASNase-therapy resistance in certain ALL cell lineages, which
has led to promising new treatment proposals (Butler et al., 2017;
Ding et al., 2017; Hinze et al., 2018; Montaño et al., 2018).

L-ASPARAGINASE FORMULATION

ASNase pharmaceutical dosage in the market
(intravenous/intramuscular solution) is available in four different
formulations, as described in Table 2. In these pharmaceutical
formulations, excipients have been used to stabilize the enzyme
structure and reduce protein aggregation. Salts (phosphate
buffer), sugars and polyols (sucrose, glucose and mannitol) have
been reported to ensure ASNase stability during freeze-drying
process and to enhance its shelf-life (Ohtake et al., 2011).

Sugars are not effective against shear and interfacial stresses,
but these molecules are suitable to protect against dehydration,
freezing and thermal stress during the lyophilization of Elspar R©,
Erwinase R©, and Spectrila R©. Theories on vitrification and water
replacement are proposed to explain the mechanism by which
sugars are able to stabilize ASNase in the solid state. According
to the vitrification theory, the protein is immobilized in a
rigid, amorphous glassy sugar matrix, preventing molecular
mobility (Ohtake et al., 2011). Otherwise, according to the water
replacement theory, hydrogen bonds between the protein and the
hydroxyl groups of the sugars are formed upon drying replacing
hydrogen bonds between water and the protein, contributing to
protein stabilization (Wlodarczyk et al., 2018).

Salts are present in the current PEGylated formulation
Oncaspar R©, classically in the form of buffers, and may improve
the stability of proteins in solution by increasing the chemical
potential of the system. However, they are not expected to
confer any stability to proteins in the dried state due to their
crystallization (Ohtake et al., 2011).

Immobilization
It is noteworthy that over more than 40 years since the approval
of the first ASNase formulation (Elspar R©) by the Food and Drugs
Administration (FDA) in 1978, the only technological innovation
to emerge was the PEGylated ASNase (Oncaspar R©) in 1994. One

of the most complex problems of the ASNase treatment is the
silent inactivation of the enzyme due to the expression of anti-
asparaginase antibodies (Zalewska-Szewczyk et al., 2007) as well
as due to proteolysis by lysosomal proteases present in leukemic
cells (Patel et al., 2009). An optimized drug delivery system is,
therefore, essential for an ASNase product design within the QbD
framework.

ASNase immobilization in nanostructured materials, i.e., the
enzyme confinement in different types of substrates/supports,
would be an alternative to overcome the drug drawbacks since
it protects enzymes from the action of proteases and expands the
catalytic half-life in vivo (Bosio et al., 2016). Three main forms of
enzymatic immobilization have been described in the literature:
adsorption, covalent bonds and encapsulation. The adsorption
results from the hydrophobic interactions between the enzyme
and the carrier including van der Waals forces, ionic interactions
and hydrogen bonds. These interactions are rather weak and
there are no changes in the native structure of the enzymes (Datta
et al., 2012; Jesionowski et al., 2014). Covalent bonds occur in
the amino acid chain itself in residues such as arginine, lysine,
aspartic acid and histidine. Encapsulation is a distinct method of
enzyme immobilization by inclusion, which is mainly based on
the principle of immobilization without attachment to the carrier
material (Rother and Nidetzky, 2014).

Several materials were already investigated for ASNase
immobilization, such as albumin, poly(DL-alanine) peptides,
dextran, dextran sulfate, chitosan, N,O-carboxymethyl chitosan
colominic acid, glyoxyl-agarose, agarose-glutaraldehyde,
fructose, levan, inulin, alginate, gelatin, silk fibroin, silk sericin,
fatty acids, BSA, phospholipid DPPC PEG, PEG-albumin
chemical, calcium alginate-gelatin, cross-linking, PEG-chitosan
and glycol-chitosan conjugation (Ulu and Ates, 2017).

Vina et al. (2001) reported the immobilization of Erwinia
chrysanthemi ASNase on the polysaccharide levan through
an oxidation reaction with potassium periodate followed by
reductive alkylation. The reaction occurs in Lys residues and N-
terminal amino groups of ASNase at pH 9-9.2, in which the amine
groups are preferably deprotonated. According to the authors, an
increase in the apparent KM of the enzyme was observed with
a small decrease in enzyme activity. The range of pH stability
was, on the other hand, broadened. Immobilized ASNase showed
higher thermal stability and 1-month stability over storage in
aqueous solutions compared to the native enzyme.

Covalent immobilization of ASNase was also performed on
various activated agarose supports followed by crosslinking
with high molecular weight dextran aldehydes. Enzyme activity
decreased with immobilization, however with a significant
increase in half-life (Balcao et al., 2001).

Immobilization in sericin (silk protein) through
glutaraldehyde crosslinking has also been investigated resulting
in higher thermal stability and resistance to degradation by
trypsin. Furthermore, the apparent KM of sericin-conjugates
was 8 times lower than that of non-immobilized ASNase
(Zhang et al., 2004). In another work, ASNase immobilized on
poly(methyl methacrylate) with starch resulted in a decrease
in the apparent KM of around 8-fold compared to the value of
the non-immobilized enzyme. Moreover, after 1-month storage
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TABLE 2 | Current biopharmaceutical formulations for L-Asparaginase (ASNase).

Approved

Biopharmaceuticals

Pharmaceutical form/aspect Route of

administration

Composition References

ASNase amidohydrolase Lyophilized white crystalline powder, water

soluble

(225 IU/mg)

Intravenous/

intramuscular

Mannitol (80mg in 10,000 IU of the

enzyme)

Merck, 2000

ASNase from Dickeya

chrysanthemi (Erwinia

chrysanthemi) (Erwinase® )

Lyophilized white powder, water soluble

(10,000 Units)

Intravenous/

intramuscular

5mg glucose per bottle <1 mmol

sodium (23mg) per dose, i.e.,

essentially sodium-free

Medicines Evaluation Board,

2015

Recombinant ASNase from

Escherichia coli (Spectrila® )

Lyophilized white powder, water soluble

(10,000 Units)

Intravenous Sucrose European Medicines

Agency, 2015

Pegylated ASNase

amidohydrolase

(Oncaspar®)

Clear, colorless, preservative-free, isotonic

sterile solution (3,750 IU/5mL)

Intravenous/

intramuscular

Phosphate buffer (1.20mg

monobasic sodium phosphate,

5.58mg dibasic sodium phosphate,

and 8.50mg sodium chloride per mL

of water for injection)

European Medicines

Agency, 2016

period at 4◦C the immobilized ASNase retained 60% of activity
(Ulu et al., 2016).

Nanoencapsulation
In 2014, the FDA published a Guidance for Industry Considering
Whether an FDA-Regulated Product Involves the Application
of Nanotechnology and, as a result, some FDA-approved
nanomedicines are currently available: antibody–drug
conjugates, liposome-based delivery platforms, and albumin-
bound nanoparticles, all with enhanced permeation and
retention (EPR) effect for extravasation from the circulation and
accumulation at the tumor site. However, for LLA, a non-solid
cancer of the blood and bone marrow, there is no requirement
of EPR effect. In this case, an efficacious nanobiotechnology-
based biopharmaceutical demands, instead, long-circulating
nanoparticles (Blanco et al., 2015).

ASNase encapsulation into nanoparticles and liposomes
has been described in the literature; however, there are no
nanoformulations currently in use in the clinical practice.
The development of nanotechnology-based ASNases is still a
challenging task and some key aspects must be taken into
account. First, the starting material for the nanocarriers such
as polymers, lipids and surfactants should be rationally chosen
considering that a prerequisite for most of the pharmaceutical
products is biodegradability, to ensure later elimination from the
body (Keck and Müller, 2013). Moreover, the material should
also be sterilizable and, particularly for ASNase (which must
be refrigerated for hospital usage), must be stable at lower
temperatures.

Another major issue associated with the ASNase
nanotechnological development is the scale-up process and
its inherent challenges (Paliwal et al., 2014). Several methods
are available at laboratory scale to produce nanostructures for
protein drug delivery, but scale up demands high efficiency,
a fast and continuous process and adequate methods for
thermolabile proteins like ASNase (e.g., cold homogenization
process) (Paliwal et al., 2014; Pachioni-Vasconcelos et al., 2016;
Apolinário et al., 2018). Furthermore, solvent free processes
and reduced shear stress are preferable to avoid ASNase

denaturation and/or aggregation. Lack of control of nanocarrier
size and polydispersity are two common pitfalls for some of
the production methods employed in small scale such as film
hydration (Apolinário et al., 2018). To solve this problem, size
exclusion chromatography can be added as a nanostructure
purification step (Wang et al., 2010).

Control of nanosystems polydispersity is essential. This
parameter describes the heterogeneity of particles regarding to
size or mass and, if subject to even small variations, could
result in dramatic changes in the nanocarriers properties such
as biocompatibility, toxicity and in vivo distribution (Wicki
et al., 2015). In addition, nanocarriers below 100 nm can be
internalized by any cell by endocytosis (Keck and Müller,
2013) and to avoid fast clearance by the kidneys, nanocarriers
should be larger than 8 nm (Dawidczyk et al., 2014). Therefore,
nanosystems should be characterized on a batch-to-batch basis.
Table 3 shows some examples of nanoencapsulation strategies
already studied for ASNase, including the characterization
techniques employed. In this Table, ASNase encapsulation
efficiency (EE%) was expressed as the percentage ratio between
the enzyme concentration in the nanocarriers and the total
enzyme used in the production process.

The ASNase release from the nanocarriers is also challenging
since a balance is required to avoid fast clearance or late
release. Nanosystems should be stable during the biological
distribution and should not be altered under flow and at
physiological temperature. Additionally, the nanocarriers should
not signifficantly bind to blood components, which could lead to
aggregation, nonspecific binding to the endothelium or uptake
by the mononuclear phagocyte system (Dawidczyk et al., 2014).
For the anti-leukemic function through asparagine depletion,
ASNasemust be available in the bloodstream, so a release stimuli-
sensitive trigger is not necessary.

Recently, permeable polymersomes were developed as ASNase
nanobioreactors. These polymersomes lead to L-asparagine
depletion without ASNase release from the nanostructures into
the bloodstream, reducing the enzyme proteolytic degradation
and antibody recognition compared to free protein or PEGylated
conjugates (Blackman et al., 2018). A red blood cell (RBC)
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TABLE 3 | Nanoencapsulation strategies for L-Asparaginase (ASNase).

Nanocarrier Material Technique Characterization Encapsulation efficiency

or activity recovery

References

Nanoparticles

containing

PEG-ASNase

Poly (lactide-co-glycolide)

nanoparticles 50:50 with

molecular mass of 10 kDa

Double emulsification Size and morphology by

Dynamic light scattering

(DLS) and scanning

electronic microscopy (SEM)

77.88% for free ASNase

and 65.1% for pegylated

enzyme

Suri Vasudev et al.,

2011

Nanoparticles Chitosan-tripolyphosphate Ionotropic gelation Size and morphology by

Transmission electronic

microscopy (TEM) and DLS

59.1–70.8% Bahreini et al., 2014

Nanoparticles Poly (lactide-co-glycolide)

nanoparticles 50:50 with

molecular mass of 30 kDa

Double emulsification Size and morphology by

TEM

5% Manuela Gaspar

et al., 1998

Nanoparticles Poli-(3-hydroxybutyrate-co-

3-hydroxyvalerate

Double emulsification Size and morphology by

SEM

23.7% for free ASNase and

27.9% for pegylated

enzyme

Baran et al., 2002

Nanoparticles Poly (lactide-co-glycolide)

nanoparticles 50:50

Double emulsification Size distribution were

examined by laser diffraction

26–70% Wolf et al., 2003

Microparticles Silk sericin protein with

different molecular mass

from 50 to 200kDa

Crosslinking with

glutaraldehyde

Size distribution were

examined by laser diffraction

62.5% of the original activity

of the ASNase

Zhang et al., 2004

Hollow

nanospheres

Alginate-graft-poly (ethylene

glycol) (Alg-g-PEG) and

a-cyclodextrin (a-CD)

Self-assembly Size and morphology by

TEM and DLS

37–80% Ha et al., 2010

Magnetic

nanoparticles

SiO2, Fe3O4, poly(2-vinyl-

4,4-dimethylazlactone)

Formation in alkaline

medium followed by

washing with water until

neutral pH

Size and morphology by

TEM and DLS

107–318 amount of enzyme

(µg.mg−1 nanoparticle)

Mu et al., 2014

Liposomes Egg phosphatidylcholine,

egg phosphatidylinositol,

cholesterol and other lipids

Film hydration with or

without extrusion

Size by TEM DLS 40% for extruded sample

and 80% for non-extruded

sample

Cruz and Gaspar,

1993

Liposomes Phosphatidylcholine,

cholesterol and other lipids

with or without charge

Film hydration Size and morphology by

SEM and DLS, zeta

potential

1.95% neutral lipids and

2.39% for positive lipids and

2.35% for negative ones

Anindita and

Venkatesh, 2012

Liposomes Soybean phospholipid and

cholesterol

Reverse-phase evaporation

method

Size and Morphology by

TEM and DLS, zeta potential

66.47% Wan et al., 2016

Polyion complex

vesicles

(PICsomes)

Polyethylene glycol and

homoionomers

Electrostatic-interaction-

mediated self-assembly in

aqueous media

Size and morphology by

DLS and Cryo-TEM

91% of the PICsomes were

loaded with at least one

molecule of ASNase

Sueyoshi et al., 2017

Red Blood Cells

(RBC)

E. coli ASNase loaded into

homologous RBC at a

concentration of 50% and

suspended in saline,

adenine, glucose, mannitol

3-h automated process: I)

the preservative solution is

removed from the packed

RBC by a washing step II)

ASNase is and RBC are put

together in the washed

suspension, III) Dialysis of

this mixture is against a

hypotonic solution and

resealed, IV) Purification of

the product through a final

washing step V) the

preservatives are added

Concentration and activity

of ASNase, extracellular

hemoglobin, osmotic

fragility

— Bailly et al., 2011

Polymersomes Poly (2-hydroxypropyl

methacrylate)

Polymerization-induced

self-assembly

Size and morphology by

DLS and Cryo-TEM

9% Blackman et al., 2018

Polymersomes Poly (ethylene glycol)-poly

(lactic acid)

Film Hydration Size and morphology by

DLS and TEM

5–20% Apolinário et al., 2018

erythrocyte encapsulated ASNase (GRASPA R©) was also
developed as a “cellular microbioreactor,” allowing intracellular
depletion of L-asparagine over a longer period than the native

form of the enzyme while using lower doses. This system is in
phase-III clinical trial (Domenech et al., 2011). More than a
microbioreactor, GRASPA R© is an example of personalized drug
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delivery, since the RBC material is selected to be compatible with
the patient immunologic and hematologic profile (European
Medicines Agence, 2016).

PEGylation
Protein PEGylation is an important technique for the
development of biopharmaceuticals with an improved
quality profile, as prioritized by QbD principles (Turecek
et al., 2016). Although PEGylation was firstly described
in the late 1970s by Franck Davis and his colleagues
(Abuchowski et al., 1977; Hoffman, 2016), new frontiers
for this technology are now emerging, through advances in
PEGylation chemistry and extension to a plethora of novel
protein-based biopharmaceuticals (Ryu et al., 2012; Ginn et al.,
2014; Swierczewska et al., 2015). Protein PEGylation consists
in the attachment of polyethylene glycol (PEG) - an FDA
approved polymer-to a protein-based drug, aiming at improving
circulation half-life by reducing the rate of glomerular filtration
(Ginn et al., 2014; Kolate et al., 2014; Turecek et al., 2016).

PEGylated proteins have arisen in the biopharmaceutical
field as an endeavor to improve the clinical properties of
protein-based biologics in terms of increasing circulation half-
life without affecting the biological activity (Ginn et al.,
2014; Turecek et al., 2016). Not only is the drug half-life
boost witnessed an advantage of PEGylation, but also the
enhancement of therapeutic efficacy of drugs, through several
other beneficial effects, as described in Figure 3 (Harris and
Chess, 2003; Ginn et al., 2014; Swierczewska et al., 2015; Turecek
et al., 2016). PEGylation decreases protein aggregation by
increasing its hydrophilicity, decreasing proteolytic degradation
and recognition by anti-drug antibodies. However, PEGylation
can negatively affect the in vitro activity of protein-based
biologics. This effect can be offset in biological systems by the
longer period of the drug circulation in blood vessels (Turecek
et al., 2016).

Pegaspargase (Oncaspar R©) was one of the first PEGylated
biobetters approved by the FDA in 1994. Later on, in 2006,
the FDA granted approval to pegaspargase (Oncaspar R©) for
the first-line treatment of patients with acute lymphoblastic
leukemia (ALL) as a component of a multi-drug chemotherapy
treatment (Dinndorf et al., 2007). This biobetter is obtained by
widespread covalent bond of succinimidyl-succinate-activated
5 kDa methoxi-PEG to the protein amine groups, which
drastically reduced the immunogenic activity and prolonged
the bloodstream residence time. Since PEGylation is random,
polydispersity is considerable in pegaspargase formulations (i.e.,
69–82 molecules of methoxi-PEG 5 kDa attached to the protein)
(Lopes et al., 2017).

PEGylation on amine groups is considered a first generation
PEGylation process, since it refers to random attachments of PEG
to lysine/N-terminal groups, resulting in a mixture of isomers
with batch-to-batch variation, an undesirable characteristic from
the QbD perspective (Zalipsky, 1995; Harris and Chess, 2003;
Santos et al., 2018). Despite these limitations, Oncaspar R©

received regulatory approval and is still in use as a first-line
treatment of ALL in some countries.

FIGURE 3 | Influence of PEGylation as an engineering technique for biobetter

drug development. Example: native ASNase and the respective

biobetter–PEGylated ASNase (9 PEG chains of 10 KDa).

Pegaspargase has a longer half-life when compared to native
enzymes (Avramis et al., 2002; Dinndorf et al., 2007) (5 and
10 times longer than E. coli and E. chrysanthemi) and lower
levels of hypersensitivity (Ho et al., 1986; Keating et al., 1993;
Panosyan et al., 2004). A major limitation of E. coli ASNase is
hypersensitivity, reported in 15–73% of adults and children. In
addition, a single injection of pegaspargase can be given instead
of the inconvenient administration of multiple doses of native
ASNase (Avramis et al., 2002; Douer et al., 2006). The lower
immunogenic profile of pegaspargase was proven in vivo, since
it was shown to reduce antibody formation in animal models
compared with the native drug (Dinndorf et al., 2007; Lopes
et al., 2017). The SS linker in the PEG derivative contains an
ester group, which has limited stability in vivo due to hydrolysis
by endogenous esterases, nevertheless PEGylated ASNase still
exhibits a higher residence time in the bloodstream (Carter and
Meyerhoff, 1985).

Emerging biobetters, such as PEGylated drugs, require
pharmacoeconomic analyses in order to understand overall
treatment costs compared to the originator biologics (Oderda,
2002; Sassi et al., 2015). Pharmacoeconomic analyses of native
pegaspargase vs. E. coli ASNase are still scarce in the literature,
nonetheless in the past years, some studies addressing this
important issue were published (Rees, 1985; Peters et al.,
1995; Kurre et al., 2002). A study from the Children’s Cancer
Group (CCG), designed to collect medical and nonmedical
cost information, compared pegaspargase and the native E.
coli ASNase treatment of patients with standard-risk ALL from
payer and societal perspectives and showed that the costs of
the two therapies were similar from the payer perspective,
with pegaspargase costing 1.8% more than E. coli ASNase.
Additionally, the fewer medical care visits and side effects with
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FIGURE 4 | Pharmaceutical issues about L-Asparaginase development as a biopharmaceutical.

pegaspargase were found to counterbalance the supplementary
cost (patients treated with pegaspargase incurred total medical
and nonmedical costs of $13,261 during induction, compared to
$14,989 for E. coli ASNase). In conclusion, pegaspargase should
not be excluded from a treatment protocol solely because of its
high acquisition costs, since the treatment costs are similar to E.
coli ASNase (Rees, 1985).

Current Trends in the Development of
Novel Biobetter L-Asparaginases
Studies considering other kinds of bioconjugates have been
reported aiming at the improvement of the ASNase quality profile
(i.e., its pharmacokinetic and immunological properties) and the
production of novel biobetter ASNases. Tabandeh and Aminlari
(2009) investigated ASNase conjugation with oxidized inulin and
improved pharmacokinetic and physicochemical characteristics
were observed, such as resistance to trypsin digestion and higher
thermal stability, longer half-life, better reusability after repeated
freezing and wider optimum pH range than that of native
ASNase. Furthermore, bioconjugation resulted in the decrease
of antibody (IgG) titer and immunogenicity after repeated
injections of rabbits when compared to the native ASNase.
Zhang et al. (2005) prepared silk fibroin-ASNase bioconjugates
that presented reduced immunogenicity and antigenicity, good
residual activity (nearly 80%), increased thermal and storage
stability, resistance to trypsin digestion and longer half-life (63 h)
compared to the native enzyme (33 h). However, none of these
new bioconjugates have undergone clinical trials yet.

In 2017, an Irish biopharmaceutical company has entered into
a license agreement on the PASylation R© Technology to develop
a longer-acting ASNase. The PASylation is based on polypeptides
composed of Pro, Ala and, alternatively, Ser (PAS), which, under
physiological conditions, lack an ordered structure and form a
random coil with surprisingly similar biophysical properties as
PEG. Furthermore, due to the chemically inert methyl (Ala) and
trimethylene (Pro) side groups, these polypeptides lack any side
chain reactivity (Ahmadpour and Hosseinimehr, 2018; Gebauer
and Skerra, 2018).

Two novel PEGylated ASNases are being developed: PEG-
crisantaspase (Asparec R©) and Calaspargase Pegol, as second-
generation PEGylated drugs. In 2018, phase II and III clinical
trials of PEG-crisantaspase were started and, as reported
previously, their aim is to administer this biopharmaceutical
as a second line therapy in cases of hypersensitivity to the E.
coli ASNase. Recently, the FDA accepted the Biologics License
Application (BLA) for a novel biobetter ASNase: Calaspargase
Pegol. In this case, the SS linker of the reactive PEG employed
for ASNase PEGylationwas replaced by a succinimidyl carbamate
linker, creating a more stable bioconjugate. In Figure 4, some
of the pharmaceutical issues of ASNase are summarized, while
the recombinant and PEGylated ASNase currently undergoing
clinical trials are summarized in Table 4.

CONCLUDING REMARKS

Since its initial discovery as a drug in the early 1950’ by J. G. Kidd
and collaborators, ASNase has become one of the cornerstones of
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TABLE 4 | Current clinical trials of new recombinant and pegylated L-asparaginase.

Phase Study Status Country

RECOMBINANT L-ASPARAGINASE

Phase II PK, PD, Safety and Immunogenicity of Spectrila in

Adults With Acute B-cell Lymphoblastic Leukemia

Not yet

recruiting

Estimated Study Completion on July

31, 2021

Brazil

Trial of Oncaspar® and Three Doses of

Pegylated Recombinant Asparaginase in Adult

Patients With Newly Diagnosed Acute

Lymphoblastic Leukemia

Terminated Actual Study Completion Date on

May 2013

Germany

Efficacy and Safety of Recombinant Asparaginase in

Infants (<1 Year) With Previously Untreated Acute

Lymphoblastic Leukemia

Completed Actual Study Completion Date on

February 2011

Germany

Phase III Comparative Efficacy and Safety of Two

Asparaginase Preparations in Children With

Previously Untreated Acute Lymphoblastic

Leukemia

Completed Actual Study Completion Date on

October 2012

Netherlands

PEGYLATED L-ASPARAGINASE

Phase II Randomized Study of Intravenous Calaspargase

Pegol (SC-PEG Asparaginase) and Intravenous

Oncaspar in Children and Adolescents With Acute

Lymphoblastic Leukemia or Lymphoblastic

Lymphoma

Active, not

recruiting

Last Update Posted on September

27, 2017

United States

A Dose Escalation Phase I Study of Asparec®

(mPEG-R-Crisantaspase) Administered as

Intravenous (IV) Infusion in Patients With Relapsed

or Refractory Hematological Malignancies

Completed Estimated Study Completion on

February 2015

France

Not yet recruiting: The study has not started recruiting participants.

Recruiting: The study is currently recruiting participants.

Enrolling by invitation: The study is selecting its participants from a population, or group of people, decided on by the researchers in advance. These studies are not open to everyone

who meets the eligibility criteria but only to people in that particular population, who are specifically invited to participate.

Active, not recruiting: The study is ongoing, and participants are receiving an intervention or being examined, but potential participants are not currently being recruited or enrolled.

Suspended: The study has stopped early but may start again.

Terminated: The study has stopped early and will not start again. Participants are no longer being examined or treated.

Completed: The study has ended normally, and participants are no longer being examined or treated (that is, the last participant’s last visit has occurred).

Withdrawn: The study stopped early, before enrolling its first participant.

Unknown: A study on ClinicalTrials.gov whose last known status was recruiting; not yet recruiting; or active, not recruiting but that has passed its completion date, and the status has

not been last verified within the past 2 years.

chemotherapeutic treatments, especially of acute lymphoblastic
leukemia (ALL) (Kidd, 1953). Recent studies also point toward
its potential for the treatment of solid tumors (Knott et al., 2018).
Despite of the groundbreaking medical innovation of the first
ASNase therapy and its success in extending the lives of millions
of people over the last decades, most of the products currently in
the market lack desirable pharmaceutical characteristics. Those
include, but are not limited to, an extended blood serum half-life
as well as reduced immunogenicity and toxicity.

The development of improved ASNases is not an easy task,
given the microbiological source of the enzyme, which can result
in immunogenicity. In addition to that, serum proteases may
degrade the enzyme causing further loss of activity and increased
immunogenicity due to additional exposition of epitopes after
cleavage. To face those challenges, researchers have nowadays a
wide array of biomolecular and biochemical tools at their disposal
to aid in the improvement of ASNase, tailoring the enzyme for its
application.

The development of biobetter ASNases starts at the process
development. This is in line with the classical QbD maxim
“to begin process development with the end (the product) in

mind” (Juran, 1992). Following this idea, several research groups
have looked into new microbiological sources of ASNases, with
special focus on the eukaryotic ones such as Saccharomyces
cerevisiae, Aspergillus sp. and Proteus vulgaris, which might
deliver ASNases with reduced immunogenic potential. In
accordance to the same guiding principle, genetically engineered
and/or chemically modified ASNases have also been investigated,
with special attention to site-directed mutation, PEGylation and
nanoencapsulation. As J. M. Juran so wisely put it: “the product
is the process” and some of the product’s immunogenicity results
from the presence of contaminating biomolecules and protein
aggregates, both of which should be removed in the purification
steps. Therefore, novel purification strategies are also worth
investigating.

Thus, as demonstrated in this review, drawing inspiration
from QbD principles, new technologies have been applied
to improve the ASNase quality profile. However, there
is a need for a deeper understanding of the mechanisms
involved in the treatment with ASNase in order to
create new and effective strategies to improve this
biopharmaceutical.
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