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Existing computational approaches have not yet resulted in effective and efficient

computer-aided tools that are used in pathologists’ daily practice. Focusing on a

computer-based qualification for breast cancer diagnosis, the present study proposes

two deep learning architectures to efficiently and effectively detect and classify

mitosis in a histopathological tissue sample. The first method consists of two parts,

entailing a preprocessing of the digital histological image and a free-handcrafted-feature

Convolutional Neural Network (CNN) used for binary classification. Results show that

the methodology proposed can achieve 95% accuracy in testing, with an F1-score of

94.35%. This result is higher than the results using classical image processing techniques

and also higher than the approaches combining CCNs with handcrafted features. The

second approach is an end-to-end methodology using semantic segmentation. Results

showed that this algorithm can achieve an accuracy higher than 95% in testing and an

average Dice index of 0.6, higher than the existing results using CNNs (0.9 F1-score).

Additionally, due to the semantic properties of the deep learning approach, an end-to-end

deep learning framework is viable to perform both tasks: detection and classification of

mitosis. The results show the potential of deep learning in the analysis of Whole Slide

Images (WSI) and its integration to computer-aided systems. The extension of this work to

whole slide images is also addressed in the last sections; as well as, some computational

key points that are useful when constructing a computer-aided-system inspired by the

proposed technology.

Keywords: deep learning, CNN, semantic segmentation, mitosis detection, mitosis segmentation, whole slide

imaging, digital pathology, computational pathology

1. INTRODUCTION

Recent estimations by the World Health Organization positioned breast cancer in the top 5
killing types of cancer in the world (DeSantis et al., 2015; World Health Organization, 2018).
Only in the U.S, nearly 330 080 new cases of breast cancer (invasive and non-invasive) and
40 920 deaths were reported in 2018 (Breastcancer.org U.S., 2018). Due to the remarkable
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technological advances in breast cancer imaging, mammography
is currently the non-invasive reference screening technique
for early detection of breast cancer. Nevertheless, histological
examination of tissue specimens remains the gold standard
for diagnosis and accurate evaluation of breast diseases
(Owens and Ashcroft, 1987).

In order to objectively classify the tumor and determine the
treatment strategy for patients with breast cancer, pathologists
often use the Nottingham Histology Score (NHS), also referred
to as the Scarff-Bloom-Richardson grading system (Bloom and
Richardson, 1957). NHS assigns a score from 1 to 3 to the tissue
sample in three categories: (i) presence of glandular/tubular
structures; (ii) nuclear pleomorphism; and (iii) mitotic count.
The sum of all these scores will determine the cancer grading
and its related severity. Due to their different stages and forms,
mitotic counting is one of the most challenging and time-
consuming tasks for pathologists. The present article focuses
on this particular challenge, one of the key features for an
accurate diagnosis.

1.1. Digital Pathology
Digital systems were introduced to the histopathological
examination in order to deal with the huge and complex
amount of information obtained from tissue specimens. Digital
images were originally generated by mounting a camera on the
microscope. The static images captured only reflected a small
region of the glass slide, and the reconstruction of the whole
glass slide was not frequently attempted due to its complexity
and time-consuming characteristics. However, precision in the
development of mechanical systems has made possible the
construction of devices such as whole slide digital scanners. The
high-resolution images so generated, allow pathologists to view,
manage, and analyze the digitized tissue on a computer monitor,
in a similar manner as under an optical microscope.

Whole slide imaging (WSI) technology, also initially referred
to as virtual microscopy, have proven to be useful in a wide variety
of applications in pathology (e.g., image archiving, telepathology,
image analysis). In essence, a WSI scanner operation principle
consists in moving the glass slide a small distance every time
a picture is taken, in order to capture the entire tissue sample.
Every WSI scanner has six components: (a) a microscope with
lens objectives, (b) light source (bright field and/or fluorescent),
(c) robotics to load and move glass slides around, (d) one or
more digital cameras for capture, (e) a computer, and (f) software
to manipulate, manage, and view digital slides (Pantanowitz
et al., 2015). The hardware and software used for these six
components will determine the key features to analyze when
choosing a scanner. The Digital Imaging and Communications
in Medicine (DICOM) standard was adopted to storeWSI digital
slides into commercially available PACS (Picture Archiving
and Communication System) and facilitate the transition to
digital pathology in clinics and laboratories. Due to the WSI
dimension and size, a pyramidal approach for data organization
and access was proposed by the DICOM Standards Committee,
Working Group 26 (2010). In Pantanowitz et al. (2015), Farahani
et al. compared 11 WSI scanners from different manufacturers
regarding imaging modality, slide capacity, scan speed, image

magnification, image resolution, digital slide format, multi-layer
support, and special features their hardware and software may
offer. This study showed that robotics and hardware used in a
WSI scanner are currently state-of-the-art and almost standard
in every device. Software, on the other hand, has some ground
for further development.

1.2. Computational Pathology
Computational pathology is a termwhich refers to the integration
of WSI technology and image analysis tools, in order to
perform tasks that were too cumbersome or even impossible
to undertake manually. Image processing algorithms have
evolved yielding enough precision to be considered in clinical
applications. A few examples mentioned in Pantanowitz et al.
(2015) include morphological analysis to quantitatively measure
histologic structures (Kong et al., 2013); automated selection
of regions of interest such as areas of most active proliferative
rate (Lu et al., 2014); and automated grading of tumors
(Ho et al., 2014). Moreover, educational activities have also
benefited from the development of computational pathology.
Virtual tutoring, online medical examinations, performance
improvement programs, and even interactive illustrations in
articles and books are being implemented thanks to this
technology (Pantanowitz et al., 2015).

In order to validate a WSI scanner for clinical use, several
tests are conducted following the guidelines developed by the
College of American Pathologists (CAP). On average, reported
discrepancies between digital slides and glass slides are in the
range of 1 to 5%. However, even glass-to-glass slide comparative
studies can yield discrepancies due to observer variability and
increasing case difficulty (Pantanowitz et al., 2015).

Although several studies in the medical community have
reported using WSI scanners to perform the analysis of tissue
samples, pathologists remain reluctant to adopt this technology
in their daily practice. Lack of training, limiting technology,
shortcomings to scan all materials, cost of equipment, and
regulatory barriers have been pointed as the principal issues
(Pantanowitz et al., 2015). In fact, it was until early in 2017 that
the first WSI scanner protocol was approved by the FDA (ESMO,
2017). Therefore, WSI technology has now the full potential
to enhance the practice of pathology by introducing new tools
which help pathologists provide a more accurate diagnosis, based
on quantitative information.

2. LITERATURE REVIEW

Microscopy has evolved remarkably over the years by
incorporating imaging processing techniques. In the last decade,
it has also benefited from the integration of artificial intelligence
(AI) algorithms which have been shown to improve diagnostic
accuracy and provide quantitative metrics useful for pathologists.
In fact, in 2018, researchers at Google AI Healthcare reported
the integration of modern AI into a standard microscope
to detect metastatic breast cancer in sentinel lymph nodes
and prostate cancer in prostatectomy specimens (Chen et al.,
2018). Efforts made in this field are frequently driven by the
need to overcome financial and workflow barriers encounter
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when using whole slide imaging scanners (e.g., prices of
WSI scanners, IT infrastructure, operating personnel, among
other). However, due to the advantages the latter technology
poses, several researchers have been studying different
alternatives to integrate AI and image processing algorithms
with WSI.

2.1. Detection and Classification of Cell
Nuclei in Histological Images
Operator-bias in cancer grading is undoubtedly one of the
most important problems of cancer diagnosis and grading. In
particular, nuclei analysis is the most cumbersome task for
pathologists due to its different properties and representations
in a digital image. Regarding breast cancer and mitosis
analysis, the image processing algorithms studied in the
literature are categorized into two different groups: segmentation
and classification.

Detection and segmentation of mitosis have been extensively
studied in the literature. In Paul and Mukherjee (2015), the
authors suggested two different subcategories for segmentation
algorithms: region based cell segmentation and boundary
based cell segmentation. Among region-based approaches, Yang
et al. proposed a novel marker-controlled watershed algorithm
which can effectively segment clustered cells with fewer over-
segmentation Yang et al. (2006). Nedzved et al. also applied
morphological operations, and combined them with thinning
algorithms to segment cells in histological images Nedzved et al.
(2000). In order to improve robustness, different nuclear models
using different morphological features were proposed and
validated by Lin et al. (2007). Moreover, in Paul and Mukherjee
(2015), authors proposed a segmentation controlled by the
relative entropy between cells and background using opening and
closing morphological operations. Similarly, Chowdhury et al.
applied entropy thresholding to detect and segment monocyte
cells in order to track them using bipartite graph matching
algorithms (Chowdhury et al., 2010). Contextual information
from objects in an image was also reported as a methodology
for detection and segmentation of cell nuclei. Seyedhosseini
et al. introduced a framework called multi-class multi-scale
series contextual model, which uses contextual information
from multiple objects and at different scales for learning
discriminative models in a supervised setting Seyedhosseini and
Tasdizen (2013). Following the model of extracting information
from several scales, Al-Kofahi et al. proposed an automatic
segmentation algorithm using graph-based binarization and
multi-scale Laplacian-of-Gaussian filtering (Al-Kofahi et al.,
2010). On the other hand, regarding the second subcategory, level
set methods are quite popular in the literature for boundary-
based segmentation (Mukherjee et al., 2004; Nath et al., 2006;
Dzyubachyk et al., 2008). Active contour was also reported in
Lee et al. (1999) for automated segmentation of breast cancer
nuclei. To sum up, most region-based methodologies assume a
similarity in the size or region properties of different cells which
is not the case for mitosis in breast cancer. Meanwhile, boundary-
based algorithms are strongly dependent on the initial conditions
and stopping criteria. Either way, all algorithms rely on prior

knowledge for detection and segmentation which does not allow
the development of fully automated systems.

Literature for cell nuclei classification is as extended as the
one reported for segmentation. Sertel et al. proposed pixel level
likelihood functions and component-wise two-step thresholding
for mitosis counting in digitized images. They reach an average
sensitivity of 81.1 and 12.2% of false positive detections (Sertel
et al., 2009). Unsupervised clustering algorithms were also
studied by Roullier et al. In Roullier et al. (2011), authors
proposed a graph-basedmulti-resolution approach which yielded
a good sensitivity (≥ 70%) for Grade 1 and Grade 3 breast
cancer in WSI. Similarly, Weyn et al. proposed a k-nearest
neighbor classification approach combined with wavelets features
for multiscale image analysis of isolated nuclei in invasive
breast cancer tissue. Authors achieved a recognition score of
76%; however, the presence of false negative cases restricted
its immediate practical use (Weyn et al., 1998). Other machine
learning approaches were also considered in the literature. Irshad
et al. evaluated different classifiers (decision tree, linear kernel
SVM and non-linear kernel SVM) using color and texture
features (e.g., blue ratio, Haralick, HMAX, and SIFT), and
reached 76% in f-score (Irshad et al., 2013). Tao et al. also studied
SVMs using 59 parameters combining geometric properties and
intensity information. Results showed an 89.2% in accuracy using
a specific subset of features (Tao et al., 2007). An ensemble
of cascade adaboosts (Tek, 2013) was also reported to yield a
significant improvement in mitosis classification. However, this
method fails to demonstrate its robustness as region features
used in the study may have significant variations among various
datasets. Genetic algorithms for mitosis classification were
proposed by Nateghi et al. (2014). The authors used genetic
optimization algorithms to eliminate potential non-mitosis from
the histological image. Then, texture features were computed
from the remaining potential cell nuclei and classify using
SVMs. Results were promising (78.47% f-score); however, they
did not make a considerable improvement in the machine-
learning category for mitosis classification. Taking a step further,
the authors in Dalle et al. (2008) proposed the first complete
grading system of breast cancer using histological images. In
particular, for mitosis detection, they proposed two Gaussian
models for classification using geometric and intensity features.
The results obtained were promising; however, the system’s
scores tend to be slightly lower than pathologist’s scores. With
the development of artificial intelligence algorithms for image
analysis, a few studies were conducted regarding the mitosis
classification task. In Cireşan et al. (2013), authors proposed
a deep max-pooling convolutional neural network approach
for mitosis classification which achieved 0.72 f-score. Recently,
Saha et al. improve the performance of convolutional neural
networks (CNN) by adding additional information from hand-
crafted features (Saha et al., 2018). Results showed a promising
0.9 f-score which demonstrated the out-performance of deep-
neural-network approaches over classical machine-learning ones.
Araujo et al. also contributed to the study of CNN by proposing
a methodology which uses the features obtained from the
convolutional layers as inputs of a support vector machine
(SVM) classifier. This method achieved an 83.3% accuracy and
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95.6% sensitivity (Araújo et al., 2017). Although these last results
suggest there are better ways to address the mitosis challenges
in histological imaging, the lack of available ground-truth data
is still a major issue to fully incorporate deep learning into
the biomedical imaging domain. Albarqouni et al. evaluated
a method combining crowd-sourcing for data annotation and
convolutional neural networks for classification. However, this
proposal needs further research as the results reported do
not exceed 0.8 in f-score (Albarqouni et al., 2016). To sum
up, Table 1 summarizes and categorizes the methodologies
exposed in the last paragraphs according to the image analysis
algorithms employed.

2.2. Challenges in Mitosis Detection and
Classification
Since the development of WSI scanners, many researchers
contribute with state-of-the-art methodologies to improve and
integrate this technology in clinical procedures. In the academic
field, a few challenges have been organized to get the attention
of the scientific community and to address one of the most
important issues concerning this technology: access to public
datasets for validation of proposed algorithms. Although its
importance, there have been only a few of these events organized
in the past 6 years.

MITOS (Mitosis Detection in Breast Cancer) Roux et al. (2013)
was the first contest organized using WSI. It was presented
at the International Conference on Pattern Recognition in
2012 (ICPR 2012). The dataset released was of relatively small
size (5 WSI, 10 annotated HPFs per slide) and it did not
account for the inter-subject variability in tissue appearance
and staining. However, the methodologies presented helped
expand the literature with promising results (0.782 f-score)
(Cireşan et al., 2013). To address the issues of the MITOS
dataset, the AMIDA (Assessment of Mitosis Detection Algorithms)
contest was released in 2013 and presented in the conference
organized by the Medical Image Computing and Computer
Assisted Intervention Society (MICCAI 2013). The dataset
consisted of 23 subjects (12 for training and 11 for testing),
with more than one thousand annotated mitotic figures by
multiple observers. The top-performing method achieved a 0.611
f-score, and an error rate that is comparable to the inter-
observer agreement among pathologists (Veta et al., 2015). At
ICPR 2014, theMITOS-ATYPIA-2014 contest was released, being
organized as a follow-up and extension of the MITOS 2012
contest. The major improvements were the first nuclear atypia
scoring annotations (at different nitude of magHigh Power
Fields) and annotations provided by two senior pathologists
(at 20x) and three junior pathologists (at 40x) (Roux et al.,
2014). In 2015, the INEB (Institute of Biomedical Engineering)
organized a grand challenge for its International Symposium
in Applied Bioimaging (Bioimaging 2015). The objective of the
competition was to classify WSI of tissue samples into four
different categories: normal tissue, benign lesion, carcinoma in
situ and invasive carcinoma. This implies that besides the analysis
of nuclei, the methodologies proposed should also be able to
retrieve information about the overall tissue organization. Results

published in Araújo et al. (2017) showed the contribution of
this challenge to the integration of deep learning algorithms
into CAD systems for cancer diagnosis. Recently, in 2018, four
different challenges concerning nuclei analysis in WSI were
released. The BACH (Breast Cancer Histology Image) challenge
was presented in the International Conference on Image Analysis
and Recognition (ICIAR 2018) and it extended the Bioimaging
2015 challenge by incorporating a pixel-wise labeling task. Final
results showed an 88% accuracy for the nuclei classification and
a 66% accuracy in the pixel-wise labeling of WSI (Aresta et al.,
2018). The remaining challenges were organized by MICCAI.
MoNuSeg (Kumar et al., 2017), presented at MICCAI 2018,
aimed at segmenting nuclei from WSI of different patients and
multiple organs. A 0.6907 aggregated Jaccard index (AJI) was
reported by the winning team. Meanwhile, in MICCAI CPM
(2018b) the competition focuses on images extracted from a set
of Glioblastoma and Lower Grade Glioma whole slide tissue
images. Preliminary results in this challenge showed a 0.85 on the
average of the dice coefficients. Finally, the challenge presented in
MICCAI CPM (2018a) evaluates the performance of automated
classification algorithms when information from two types of
imaging data (i.e., radiology images and pathology images) is
used. Whole slides images correspond to two subtypes of lower
grade glioma tumor cases: Oligodendroglioma and Astrocytoma.
No preliminary results have been reported.

3. METHODOLOGY

We build upon two methodologies (i.e., AlexNet and U-Net) a
framework to compare both neural networks and define which
is more suitable for biomedical applications, especially when
dealing with Whole Slide Images and mitosis detection.

3.1. Dataset
Images used to evaluate the proposed methodologies were
gathered from two public datasets corresponding to the ICPR-
2012 contest (Roux et al., 2013), and the MITOS-ATYPIA-
2014 challenge (Roux et al., 2014). Both datasets contain
images corresponding to 10 High Power Fields (HPF) at 40x
magnification, selected from Whole Slide Images (WSIs) by
experienced pathologists. Two scanners were used to digitize the
tissue samples: Aperio Scanscope XT with 1pixel = 0.2456µm
resolution; and Hamamatsu Nanozoomer 2.0-HT with 1pixel =
0.2273µm resolution. The datasets combined added up to 2177
frames which are further processed to obtain the input patches
for both neural networks. To build the masks for the U-Net,
a manual segmentation of each mitosis and non-mitosis in
the MITOS-ATYPIA 2014 dataset was necessary, due to the
lack of ground truth for region segmentation. In addition,
data augmentation was only needed for the AlexNet, as CNNs
require large datasets to train. This was implemented by rotating
the patches in four different angles (0◦, 45◦, 90◦, 180◦), and
incorporating data from a third dataset (AMIDA13) reported in
Saha et al. (2018). Patch sizes were dependent on the network
configuration, and, in the case of the AlexNet, the 71 × 71-pixel
size correspond to the largest mitosis found in both datasets.
Table 2 summarizes the distribution of the data for both neural
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TABLE 1 | Summary of the literature review.

Tasks Categories Methods proposed

Mitosis detection/segmentation Region-based algorithms Marker control watershed (Yang et al., 2006), Morphology (Nedzved et al., 2000; Lin

et al., 2007), Entropy thresholding (Chowdhury et al., 2010), Contextual model

(Seyedhosseini and Tasdizen, 2013), Graph binarization (Al-Kofahi et al., 2010).

Boundary-based algorithms Level sets (Mukherjee et al., 2004; Nath et al., 2006; Dzyubachyk et al., 2008), Active

contours (Lee et al., 1999).

Mitosis classification Image processing and analysis Pixel level likelihood (Sertel et al., 2009), Unsupervised clustering (Roullier et al.,

2011), Wavelets (Weyn et al., 1998), Textural features (Irshad et al., 2013), Adaboosts

(Tek, 2013).

Machine learning REMSS (Paul and Mukherjee, 2015), SVM (Tao et al., 2007), Genetic algorithms

(Nateghi et al., 2014), AggNet (Albarqouni et al., 2016), Deep learning

(Ciresan et al., 2012).

TABLE 2 | Summary of the datasets used in the AlexNet and U-Net.

Neural

network

Patch size Mitosis Non-mitosis Dataset

AlexNet 71× 71 5850 7563 ICPR2012 &

MITOS-ATYPIA2014

& AMIDA13

U-Net 128× 128
327 0 ICPR2012

946 3585 MITOS-ATYPIA2014

networks. The total number of patches differs as we used data
augmentation for the AlexNet dataset.

3.2. Color Normalization
Hematoxylin-and-eosin (H&E) staining is widely used in the
histopathological analysis. However, despite more advanced
and automatized staining devices (if existing) this staining still
remains highly dependent on staining providers, concentration,
chemical reactivity, storage conditions, and timing. These factors,
combined with the fact that light transmission depends on
tissue thickness as well as on mechanical and optical properties
of the scanners, generate one of the most common problems
when using automated image processing algorithms: the color
variability (Ben Cheikh, 2017). In (Hoffman et al., 2014),
Hoffman et al., reported a comparison between several color
normalization methods which conceptually resembles Reinhard’s
statistical methodology reported in Reinhard et al. (2001). Based
on the latter, the RGB channels of each frame in the dataset were
transformed into the Lab color space, in order to modify its color
characteristics following Equation (1).

I(i)n = (I(i)s − µ
(i)
s )

σ
(i)
t

σ
(i)
s

+ µ
(i)
t , i ∈ {L, a, b} (1)

I
(i)
n , I

(i)
s correspond to the normalized and the source RGB

frame transform to the Lab color space. In addition, σ
(i)
s,t and

σ
(i)
s,t correspond to the standard deviation and mean value

computed over all the pixels of the source’s and target’s Lab
channel i respectively. The target image corresponds to the
mean image of all the dataset. After normalization, the frame is

TABLE 3 | Metrics used to evaluate the performance of the algorithms.

Neural network Evaluation metric Dataset used

AlexNet Accuracy Train/test

Sensitivity Test

Specificity Test

F1-score Test

U-Net Accuracy Train/test

Dice index Train/test

returned to the RGB color space, where each channel showed
a separable color distribution when evaluating its histogram.
This normalization was performed on the original frames before
generating the patches.

3.3. Blue Ratio Computation
H&E staining presents certain characteristics which allow the
automatic detection of potential mitosis inside the High Power
Field (HPF). In fact, the Hematoxylin stains the cell nuclei in a
blue-purple shade, while Eosin stains cytoplasm and stroma in
various shades from reddish to a pinkish color, and collagen in a
pale pink shade. Due to its particular blue color shade observed
in the RGB image, it was reported in Irshad et al. (2013), Ben
Cheikh (2017), and Saha et al. (2018) that the blue ratio image
highlights nuclei as it enhances the blue color layer following the
transformation in Equation (2).

IBR =
255× B

(1+ R+ G)(1+ R+ G+ B)
(2)

R,G, and B are the red, green and blue channels respectively.
After the generation of the blue ratio image, segmentation and
a morphological opening operation were applied. The objective
is to retain the potential mitosis present in the HPF for further
analysis. The threshold and the radius of the opening operation
were obtained empirically by validating them in the ICPR-2012
dataset. Testing was also performed using the MITOS-ATYPIA-
2014 dataset. Using the potential candidates selected from the
blue ratio image, 71 × 71-pixel patches were extracted from
the original HPF. These patches were augmented afterward by
rotation to increase the input data for training and testing the
AlexNet. Regarding the U-Net, the blue ratio image was added as
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a fourth layer (i.e., R, G, B, BR) to theHPF. Then, patches of 128×
128 pixels, centered at the centroid of a mitotic/non-mitotic cell,
were extracted from each frame and its corresponding labeled
mask was also generated.

3.4. Deep Learning Architectures
Convolutional Neural Networks (CNN) have proven to
outperform classic machine learning techniques regarding
image processing applications. Previously, it was reported that
statistics from textural features and color features are frequently
used along with different classic classifiers and CNN. In our
study, the performance of the CNN proposed in Krizhevsky
et al. (2012) (currently known as AlexNet) was evaluated. The
input layer was modified in order to allow the CNN to work
with color-normalized patches of 71 × 71 pixels. The network
was also fine-tuned in order to obtain a binary classification
(mitosis and non-mitosis) rather than a 1000-class classification
as originally proposed for the ImageNet dataset. No handcrafted
features were added to the computation and the training was
performed using stochastic gradient descent, a batch size of
128 and 100 epochs. Finally, all patches generated from the
BR image were divided into three datasets in the following
proportions: 70% for training, 20% for validation, and 10%
for testing.

A second deep learning approach (so far unreported in
the literature for this application) using the U-net, was also
implemented. This 23-layer network, initially reported in
Ronneberger et al. (2015), was trained for 100 epochs using

stochastic gradient descent, unitary batch size, Adam’s optimizer,
and a binary cross-entropy loss function. As it was detailed
in Table 2, the patches used for the U-Net were unbalanced;
therefore, we chose 898 samples (701 non-mitotic patches and
197 mitotic patches) for testing and the remaining 2884 non-
mitotic patches were randomly selected tomatch the 1076mitotic
remaining patches. Additionally, these 2152 selected patches
were again randomly divided into 90% for training and 10%
for validation.

To increase the performance in terms of computational time,
both neural networks were trained in a parallel platform using
two Nvidia Quadro M2000 GPUs. Furthermore, the CNN was
implemented using DIGITS interface from Nvidia and the Caffe
framework. Meanwhile, the U-Net was implemented using Keras
and Tensorflow as a backend framework for deep learning.

3.5. Validation Metrics
In order to measure the performance of the proposed
methodologies, five metrics were selected. Table 3 relates the
metrics with its corresponding dataset and neural network.

• Accuracy: TP+TN
TP+TN+FP+FN

• Sensitivity: TP
TP+FN

• Specificity: TN
TN+FP

• F1-score: 2 Precision×Recall
Precision+Recall

FIGURE 1 | Results of the color normalization algorithm and blue ratio image generation for one frame: (A) Original HPF; (B) Blue ratio (BR) image; (C) Mitotic 71× 71

patch generated with the thresholded version of the BR image; (D) Color normalized HPF; (E) Detection of mitosis centroids using the BR image to validate true

positive rate; (F) Non-mitotic 71× 71 patch generated with the thresholded version of the BR image.
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• Dice index: also known as the Sorensen-Dice
coefficient, is defined as |Ŷ∩Y|

|Ŷ|+|Y|
, where Ŷ are the

predicted labeled masks, and Y are the ground
truth masks.

4. RESULTS AND DISCUSSION

4.1. Detection of Potential Mitosis
A critical step in the CNN approach using the AlexNet is
the detection of potential mitosis in the HPF frames. Figure 1
resumes the results for the color normalization algorithm

and blue ratio image computation. The threshold to generate

the binary image from the BR image and the radius of the

structure used for the opening operation were found to be

Th = 30, and Rd = 1, respectively. These parameters

allow achieving a 100% detection of true positive mitosis in

the validation dataset (ICPR2012). Additionally, when tested

in the MITOS-ATYPIA2014 dataset, the true positive rate was
approximately 0.99, meaning only 1 mitosis was not detected
from the whole dataset. Regarding the semantic segmentation
approach, the RBG input was normalized without any further
preprocessing steps.

FIGURE 2 | Results of the AlexNet training. (A) Training and validation loss values, and accuracy for the validation dataset (20% of the total patch dataset). (B)

Learning rate behavior for 100 epochs.
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TABLE 4 | AlexNet: Confusion matrix for the testing patch dataset.

Mitosis Non-mitosis Accuracy/class

Mitosis 551 34 94.19%

Non-mitosis 32 724 95.77%

TABLE 5 | AlexNet: Evaluation metrics in the testing patch dataset.

Accuracy Sensitivity Specificity F1-score

95.08% 94.19% 95.77% 94.35%

4.2. Convolutional Neural Network
(AlexNet)
Figure 2 resumes the results throughout the entire training and
validation as well as the learning rate behavior. After 100 epochs
of training, we observed a descending behavior of the loss value
until epoch 40. At epoch 100, the loss value for the validation
was only 0.1 higher than the one at epoch 40; however, this
steady increase of the loss function indicated that the AlexNet was
starting to overfit at epoch 40. To overcome this issue, we used the
weights saved in epoch 40 to test the performance of the network
in the test dataset. Regarding, the validation dataset and before
the CNN started to overfit, the network showed a performance of
94.35% of accuracy.

The CNN was also evaluated using a testing-patch dataset
which was never considered in training, nor in the validation
process. Table 4 shows the confusion matrix computed with the
testing patch dataset. Additionally, Table 5 shows a resume of the
metrics defined to evaluate the performance of this CNN.

4.3. Semantic Segmentation (U-Net)
Table 6 and Figure 3 resume the performance of the network
after 100 epochs of training. The overall accuracy was 97.98%
in the validation patch dataset, and 97.73% in the testing patch
dataset. Regarding the convergence using Adam optimizer, the
loss value for both training and validation dataset showed a
decreasing behavior. Similarly to the AlexNet, early stopping of
the network was applied around epoch #24 due to the constant
average loss value in the validation dataset and the increasing
behavior afterward. In addition, the Dice coefficient, obtained in
both validation and testing datasets, indicates that nearly 60%
of the predicted mask overlaps with the ground truth which
translates into good network performance. In Figure 4, two RGB
patches, ground truthmasks, and predictedmasks corresponding
to mitosis and non-mitosis are shown. We found that almost
every pixel corresponded to the ground truth classification, with
the exception of the borders which were not well defined in the
predicted masks. Additionally, in certain cases, the classification
is not 100% accurate and a low probability map (i.e., predicted
mask) is produced by the neural network as seen in Figure 5.

4.4. Discussion
The blue ratio has proven to be an efficient algorithm to
detect potential mitosis with excellent accuracy (almost 0%
false negative error). The analysis of the HPF containing the

TABLE 6 | U-Net: Evaluation metrics in training and testing.

Dataset Train Validation Test

Dice index 0.9747 0.6117 0.5842

Accuracy 99.90% 97.98% 97.73%

missed mitosis showed that the error presented when the WSI
was scanned with the Hamamatsu scanner. This may suggest
that the difference in resolution among scanners is likely to
impact the quality of the algorithms used to preprocess the data.
Additionally, commercial scanners perform a series of focusing
actions during the digitalization of a tissue sample. These
changes in the focus—due to fine mechanical slide scanners
limitations—seem also likely to impact the quality of the whole
slide image generated and, implicitly, of the analysis algorithms
used for computation.

Although BR obtained high accuracy, it was computationally
time-consuming due to the generation of false positive cases.
To generate the nearly 13000 patches used in this work,
approximately 2.5 h were needed using a Core i7 processor
computer with 24GB of RAM. To increase performance, both
deep learning approaches were optimized to run in NVIDIA
GPUs. The AlexNet, on a GeForce GTX980M, only took 20 min
and 50 s to train, and 5 s to test nearly 1200 images. Meanwhile,
the U-net, on two Quadro M2000, was trained in approximately
5 h, and testing took 46 s per 128× 128 pixels patch. The second
deep learning algorithm presented in this article, based on the U-
net, represents an approach closer to an end-to-end deep learning
architecture. The complete elimination of handcrafted features
(e.g., BR images) made the solution more robust to color and
textural changes, as observed in the slight increase of accuracy, by
opposition to AlexNet. Compared to the results in the literature,
metrics obtained from both neural networks validate the fact
that handcrafted features might introduce errors and subjectivity
into the classification. To address this issue, we generated ground
truth masks for the testing dataset using a Simple Linear Iterative
Clustering (SLIC) algorithm to create super-pixels in a HPF
frame which correspond to mitotic or non-mitotic clusters of
pixels. Figure 6 shows an example of a non-mitotic cell. Themask
predicted using the SLIC algorithm involves several pink pixels
from the patch which does not correspond to the cell; meanwhile,
the mask generated by the U-Net clearly identifies the region
with predominant blue coloration representing the presence of
a cell, in this case, non-mitosis. Throughout the entire testing
dataset, we found similar cases which strengthen the hypothesis
that hand-crafted features introduce errors in the detection and
classification of the behavior of cellular structures.

The results in the present work outperform all classical
machine learning approaches existing at the moment and
reported in the literature review section. However, for the U-net,
further analysis is needed in order to improve border detection
(increasing of Dice index) and increase the sensitivity close to
100%, essential in biomedical applications. This study presented
two methods to analyze and classify a frame containing 10 HPF,
usually observed by pathologists. Due to the structure of the
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FIGURE 3 | U-Net: Training and validation throughout 100 epochs. (A) Training and validation accuracy of each epoch. (B) Training and validation loss value of each

epoch.

FIGURE 4 | Test results for the U-net. (A) HPF patch #37 with a mitosis. (B) GT mask of the mitosis. (C) Predicted mask for the mitosis class. (D) HPF patch #58

with a non-mitotic cell. (E) GT mask of the non-mitosis. (F) Predicted mask for the non-mitosis class.

networks and its performance, these algorithms can also be
applied directly to the WSI. The direct application to WSI—
which we will study in our future research—will improve the
diagnosis of breast cancer as pathologists only evaluate small
regions of the sample tissues.

5. CONCLUSIONS AND PERSPECTIVES
ON COMPUTATIONAL PATHOLOGY

In this article, we have shown how two different deep
learning approaches (i.e., AlexNet and U-Net) performs

when dealing with the classification and detection of mitosis.
The results suggest that the performance of classical image-
processing methodologies and deep learning approaches,
combined with hand-crafted features, can be noticeably
improved (nearly 7% improvement in accuracy respect
to the last work in Saha et al., 2018). Regarding the
AlexNet, we found that it is possible to adapt the neural
network to work with small patches corresponding to
single mitosis. Although this method has the disadvantage
of using a pre-processing step (i.e., BR computation to detect
potential mitosis), it outperforms the proposed algorithms
in the literature.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 June 2019 | Volume 7 | Article 145

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Jiménez and Racoceanu Deep Learning in Computational Pathology

FIGURE 5 | U-net: Probability maps for both predicted classes in the testing-patch dataset. (A) HPF patch #35 with a mitosis. (B) GT mask of the mitosis. (C)

Predicted mask for the mitosis class. (D) Predicted mask for the non-mitosis class. (E) HPF patch #128 with a non-mitotic cell. (F) GT mask of the non-mitosis. (G)

Predicted mask for the non-mitosis class. (H) Predicted mask for the mitosis class.

FIGURE 6 | Evaluation of SLIC for mitosis selection. (A) HPF patch #75 with a non-mitosis. (B) Mask of the mitosis generated using SLIC. (C) Predicted mask for the

mitosis class using U-Net.

On the other hand, due to the semantic advantage of
the U-Net, we can directly detect (finding the where) and
classify (finding the what) cellular structures in an end-to-
end framework without the need of pre/post-processing steps
(e.g., the AlexNet needs the BR to find potential mitosis and
to obtain context information we might need to follow the
sliding window approach which is not computational-friendly).
This suggests that the U-Net is more suitable and robust to
process WSI allowing a stable and effective transition toward
the full WSI analysis. Although the U-Net does not depend
on the size of the input image, WSI analysis may turn out a
greater challenge due to its size, different cellular patterns and
structures, and artifacts introduce by scanners, staining process
or other human factors. Therefore, future research to validate the

use of deep learning architectures (such as the U-Net in WSI)
is needed.

We have seen that the U-Net is an excellent tool to analyze
histopathological images (validated in HPF so far). Therefore,
we can extend the solution and apply it to different nuclei
detection such as neoplastic nuclei, fibroblast, lymphocyte,
adipose tissue (adipocytes), stroma, or blood vessels. These
nuclei allow pathologists to have a better understanding of the
tumor microenvironment which benefits the patient in terms
of targeted treatment to specific characteristics observed in the
tumor. Additionally, we can also use the U-Net to analyze the
spatial distribution of the tumor microenvironment, in order
to further understand tumor heterogeneity which might, in
turn, provide some insight on why certain types of cancers are
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more resistant than others. Tumor heterogeneity can manifest
as intra-tumor (meaning clones of cells responding differently
to the same treatment), or inter-tumor (meaning, same kind
of tumor behaving differently in different patients). In both
cases, the semantic property of the U-Net allows to have a
pixel-wise understanding of the tissue and therefore give the
pathologists and oncologists useful information to diagnose and
treat their patients.

Finally, in this work, we used images of breast cancer tissues.
However, this can be applied to all types of tissue as the deep
learning architectures can be easily adapted to other inputs.
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