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One of the main obstacles for the implementation of deep convolutional neural networks

(DCNNs) in the clinical pathology workflow is their low capability to overcome variability in

slide preparation and scanner configuration, that leads to changes in tissue appearance.

Some of these variations may not be not included in the training data, which means that

the models have a risk to not generalize well. Addressing such variations and evaluating

them in reproducible scenarios allows understanding of when the models generalize

better, which is crucial for performance improvements and better DCNNmodels. Staining

normalization techniques (often based on color deconvolution and deep learning) and

color augmentation approaches have shown improvements in the generalization of the

classification tasks for several tissue types. Domain-invariant training of DCNN’s is also

a promising technique to address the problem of training a single model for different

domains, since it includes the source domain information to guide the training toward

domain-invariant features, achieving state-of-the-art results in classification tasks. In

this article, deep domain adaptation in convolutional networks (DANN) is applied to

computational pathology and compared with widely used staining normalization and

color augmentation methods in two challenging classification tasks. The classification

tasks rely on two openly accessible datasets, targeting Gleason grading in prostate

cancer, and mitosis classification in breast tissue. The benchmark of the different

techniques and their combination in two DCNN architectures allows us to assess the

generalization abilities and advantages of each method in the considered classification

tasks. The code for reproducing our experiments and preprocessing the data is publicly

available1. Quantitative and qualitative results show that the use of DANN helps model

generalization to external datasets. The combination of several techniques to manage

color heterogeneity suggests that several methods together, such as color augmentation

methods with DANN training, can generalize even further. The results do not show a

single best technique among the considered methods, even when combining them.

However, color augmentation and DANN training obtain most often the best results (alone

or combinedwith color normalization and color augmentation). The statistical significance

of the results and the embeddings visualizations provide useful insights to design DCNN

1https://github.com/sebastianffx/stain_adversarial_learning
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that generalizes to unseen staining appearances. Furthermore, in this work, we release

for the first time code for DANN evaluation in open access datasets for computational

pathology. This work opens the possibility for further research on using DANN models

together with techniques that can overcome the tissue preparation differences across

datasets to tackle limited generalization.

Keywords: staining normalization, adversarial neural networks, digital pathology, color augmentation, color

normalization, domain shift

1. INTRODUCTION

Since its start, one of the main goals of computational pathology
(CP) is to find precise and reproducible methods to quantify
the content of tissue slides and the relationships of this with
the disease stage and patient outcome (Madabhushi, 2009;
Madabhushi et al., 2011; Al-Janabi et al., 2012; Kothari et al.,
2013). During the last decade the methods for analyzing
images in digital pathology have become more precise and
have greatly benefited the CP community, also thanks to the
steady development of deep learning algorithms and particularly
thanks to deep convolutional neural networks (DCNN), Shifting
from handcrafted features toward end–to–end architectures [to
detect cancer in histopathology images at the image patch
level (Veta et al., 2015; Janowczyk andMadabhushi, 2016; Ciompi
et al., 2017) and at the whole-slide-image level (Litjens et al.,
2016; Cruz-Roa et al., 2018)], methods have become more
precise, achieving is some cases for specific tasks classification
performance comparable to pathologists.

Despite the performance improvements of the methods, there
are still technical barriers that prevent the translation of these
advances into better clinical applications. Two of the most typical
chemicals used in pathology to stain tissue slides are Hematoxylin
and Eosin. These chemicals highlight the nuclei with a dark
purple color (Hematoxylin) and the cytoplasm with a light pink
one (Eosin). One of the most important factors preventing the
application of machine learning methods to clinical practice
is related to the heterogeneity of Hematoxylin and Eosin
(H&E) images due to tissue preparation and several parameters
involved in the tissue preparation and digital scanning process
(temperature of the tissue, thickness of the cuts, image sensor
of the digital camera, etc.). Several image processing and
machine learning techniques reported in the literature deal with
color heterogeneity improving classification and segmentation
performance for various tissue types (Van Eycke et al., 2017; Roy
et al., 2018; Tellez et al., 2019). However, this challenging problem
is far from being solved.

Color heterogeneity can affect the performance of themachine
learning algorithms that easily overfit when trained with data
from one center or scanner and fail to generalize to images from
other centers (Kothari et al., 2014; Ciompi et al., 2017). One
example of this problem is shown in Figure 1.

The heterogeneity of colors in H&E images is due to tissue

preparation and is related to the complex set of preparation

phases related to staining procedures, section thickness, and
scanner differences (Leo et al., 2016).

One of the more recurrent problems in the preparation of the
specimen is over- or under-staining. The time and amount of
dye applied to the tissue on the glass make the process prone to
perceptual differences in color and intensity of the tissue in the
digitized slide (Bejnordi et al., 2016; Van Eycke et al., 2017).

The changes in color intensity due to different slice thicknesses
are acknowledged as a source of variation. Few articles have
explored how to overcome this aspect using automatic tools,
presumably because of the complexity of the experimental setups.
Notably, the work of Bug et al. (2017) provides a staining
normalization method based on an end-to-end deep learning
(DL) architecture that takes into account the context of the
tissue to normalize the extracted features. The authors evaluated
their method on lung cancer tissue images varying not only
in terms of H&E concentrations but also in section thickness.
They showed that their method gives a consistent normalization
through the studied protocols and less variance in the output
with respect to the classic methods of Macenko et al. (2009) and
Bejnordi et al. (2016).

Although standardization procedures are often applied in
laboratories and clinical practice, perfect color calibration among
samples is hard to achieve. The scanning parameters that are
hardcoded in the whole slide scanner hardware (that change
according to the vendors, such as Aperio, Philips, Ventana)
result in specific color characteristics in the resulting digital
image, for example, varying in the image sensor and also the
stitching techniques. These parameters are also a part of the
digital pathology pipeline on which pathologists have limited
control. In the work of Leo et al. (2016) the authors evaluate the
stability of features in prostate cancer classification across several
scanner producers. Their results show that only a portion of the
commonly used features in digital pathology are robust to such
scanner differences. Interestingly, the authors show that color
normalization alone cannot solve the problem of inter-scanner
feature instability. Therefore, it is crucial to develop algorithms
that generalize well on heterogeneous datasets for a more robust
deployment of computer-aided diagnostic systems (Kothari et al.,
2013; Leo et al., 2016).

Image processing and machine learning approaches that deal
with color heterogeneity show generalization improvements in
classification and segmentation performance (McCann et al.,
2014; Vahadane et al., 2016; Bentaieb and Hamarneh, 2018;
Ren et al., 2018; Roy et al., 2018; Tellez et al., 2018a,b, 2019).
Such techniques can generally be grouped into three different
types. The first approach (which is probably the most frequently
studied) is staining normalization, meaning that the color
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FIGURE 1 | Test images with different staining conditions can affect the performance of a DCNN model trained with images with a limited set of similar staining and

preparation methods: Gleason pattern 3 (top row) and pattern 4 (bottom row) patches; the internal test set probability (third column) can lead to biased estimates of

the performance of the model. The last column shows how probability drops in the baseline DCNN when predicting the class in patches with different staining.

concentration of all the images in the database is mapped to
match the staining appearance of a target image. This problem
has been thoroughly studied in literature (Macenko et al., 2009;
Li et al., 2015; Ciompi et al., 2017; Van Eycke et al., 2017).
Staining normalization applied with DCNN allowed to improve
classification accuracy by over 20% (Ciompi et al., 2017) in
colorectal cancer tissue classification. In the work of Van Eycke
et al. (2017) a series of steps for color vector extraction is
described. Two main challenges often arise when using staining
normalization techniques. First, as the source images are color-
transformed into the target image color space, the algorithms
using the normalized images are sensitive to the selection of
the image taken as reference (Bentaieb and Hamarneh, 2018).
Second, the time of staining normalization algorithms for
standardizing a batch of images can easily take up to 30 minutes
as noted by Shaban et al. (2018).

The second approach is color augmentation, where many
variations of the original image are created for training by varying
intensity, brightness, contrast, RGB channel values and also
altering them in other color spaces such as the Hue Saturation
Value (HSV) space, or deconvolving the Hematoxylin-Eosin-
DAB (HED) channels and slightly modifying them (Van Eycke
et al., 2018; Bandi et al., 2019; Tellez et al., 2019). The color
augmented images are usually generated at training time and
given as input to the algorithm to cope with possible variations
in the test set. Data augmentation is usually built into the
pipeline of training deep learning models, since such models
usually learn color invariances by processing a large amount of
annotated samples. Color augmentation can lead to excellent
results, such as the ones obtained by the leading teams of the

Camelyon17 challenge (Bandi et al., 2019). These approaches
use deep learning architectures in conjunction with extensive
color augmentation to force their networks to be robust to
color variation.

The third and most recent family of techniques is
inherently related to deep learning architectures. Deep learning
models account for the complexity of learning the staining
transformation in the test set by means of learning a cascade
of non-linear transformations of the training input images.
This learnt information is used to either normalize the image
or to explicitly design a deep learning model architecture
that penalizes or does not take into account the staining
information (Bug et al., 2017; Janowczyk et al., 2017; Ren et al.,
2018). This deep learning-based family of techniques is further
discussed in section 2.4.

As discussed, staining variability and color augmentation
can dramatically affect automatic image analysis algorithms and
several techniques have been proposed to tackle the problem
depending on the image analysis task. Perfect color calibration
among samples is hard to achieve, despite standardization
procedures being applied in clinical practice. In this paper,
we contribute to tackle this challenge by comparing the three
mentioned approaches in intra and inter–center classification
tasks (targeting the classification of mitotic cells in breast
cancer and Gleason pattern classification in prostate cancer).
We thoroughly evaluate the adversarial neural network training
approach first proposed by Lafarge et al. (2017) to learn
domain invariant features, showing that the use of DANNs can
help generalization to external datasets. The combination of
techniques also suggests that by using basic color augmentations

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 August 2019 | Volume 7 | Article 198

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Otálora et al. Staining Invariant Features for DCNN

in addition to techniques such as DANN training and staining
normalization, the models can generalize even further.

2. MATERIALS AND METHODS

2.1. Color-Heterogeneous Datasets
For comparing the generalization capabilities of the approaches,
we used two highly heterogeneous data sets that target
classification tasks. The data sets account for the staining
variability by including images with differing preparation
parameters from several centers. Such parameters result in strong
differences in the visual characteristics of the images.

Most frequently, for the evaluation of algorithms, subsets of
images from the same center are used as a training set and
then validation and testing is done with images of different
patients but with similar image preparation characteristics from
the same center.

In our evaluation, we extend the classical evaluation by
separating internal test data: different patients with similar
preparation parameters, from external test data: different patients
and preparation characteristics. Such an evaluation provide
us with a better approximation of the performance of the
algorithms on images acquired from different centers, i.e., the
generalizability of the networks to such changes.

TABLE 1 | Number of original patches for the TUPAC dataset, due to the high

class imbalance, we use data augmentation only in the mitotic class by creating

rotated and flipped patches.

Partition Mitosis Non-mitosis Total # of cases Center

Train 458 3,842 4,300 8 1

Validation 92 1,196 1,288 4 1

Internal test 533 12,317 12,850 12 1

External test 469 505 974 50 2,3

Total 1,552 17,860 19,412 74 2,3

The first dataset is the Tumor Proliferation Assessment
Challenge (TUPAC), which is built to evaluate algorithmic
performance for mitotic figure detection in breast cancer
tissue (Veta et al., 2019). We refer to this dataset as TUPAC.
The dataset contains 1,522 mitotic figures extracted from high
power fields of 73 breast cancer cases from three pathology labs.
This suits our purpose of evaluating the generalization abilities of
algorithms across inter-center variability. The dataset partition is
the same as in Lafarge et al. (2017). All our DCNN models in
this dataset are trained and validated with eight (458 mitoses)
and four cases (92 mitoses) from the first pathology lab. The
remaining 12 cases (533 mitoses) from the first pathology lab are
used as an internal test set. The 50 examples from the two other
pathology labs (469 mitoses) are used as an external test set. To
create a set of challenging negative samples, an initial CNN is
trained with mitotic patches as positive patches and on random
patch locations as negative ones that do not overlap with mitotic
patches. Once the network is trained, only the false positives and
negative patches with a high probability of beingmitotic are taken
as negative samples, this set of hard-negative mined samples are
kept throughout all the experiments. Our hard-negative mining
differs, and thus, the performance is not directly comparable with
those reported by Lafarge et al. (2017). The cardinality of each
partition is in Table 1, and a few example image locations are
shown in Figure 2 for TCGA-PRAD and example image patches
in Figure 3 for the TUPAC dataset, respectively.

The second dataset is comprised of images from prostate
cancer tissue with Gleason patterns 3 and 4 (GP3, GP4). It
contains image patches from diagnostic slides of the cancer
genome atlas prostate adenocarcinoma dataset (TCGA-PRAD)
and also from the manually annotated prostate tissue microarray
images used in the study of Arvaniti et al. (2018), we refer to
this dataset as TCGA-TMAZ. The TCGA-PRAD images were
recorded in 16 tissue source centers2 that were used for training,
validation and internal test sets.Whereas, the TMA-Zürich where

2https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/

FIGURE 2 | GP3 patch locations extracted (red bounding boxes) from slide TCGA-2A-A8VL (Left) belonging to the training set and the slide TCGA-EJ-7321 (Right)

from the internal test set using the heatmap resulting from Equation (2).
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FIGURE 3 | Mitotic figure examples with an original patch size of 96 × 96

pixels. Staining differences between the internal and the test sets are evident.

These changes are also noticeable in the quantitative results of section 4.

used as an external test set since it contains significant staining
variability as shown in Figure 4.

Since in the TCGA-PRAD dataset there are no Gleason
pattern annotations but only the global labels of the two most
prominent Gleason patterns, we selected only those diagnostic
images with the same primary and secondary Gleason patterns,
i.e., GS = 3 + 3 and GS = 4 + 4. With this consideration,
we are more likely to extract patches from relevant regions.
Furthermore, we employ the heuristic first presented by Rousson
et al. (2018), to build a heatmap that guides patch extraction
from non-annotated Whole Slide Images (WSI) using the
following transformation of the original RGB WSI at the 10X
magnification level:

h1 = tanh
(2(B− R)

G+ 1
+ 0.5

)

+ 0.5;

h2 = tanh
(640− R− G− B

300
+ 0.5

)

+ 0.5 (1)

h = 0.5 tanh(h1h2 − 1.75)+ 0.5 (2)

FIGURE 4 | Example patches from each partition for the Gleason pattern classification task. In this case the external test set differs considerably from the training,

validation, and test partitions.
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By fixing a threshold (0.65) on the resulting heatmap h we
selected a fixed amount of random patches in the WSI from
positive locations in the thresholded image. Example locations
of extracted patches from two WSIs of the train and internal test
sets are illustrated in Figure 2.While there are aminority of patch
locations outside relevant regions, this unsupervised approach to
locate regions of interest allows us to have the right amount of
relevant regions that contains GP3 and GP4 patches.

In contrast to the TUPAC dataset, in this case, we have more
than 3 centers, the total number of source centers for the TCGA-
TMAZ dataset is 34, which makes it challenging to train the
algorithms with a limited amount of images for each center. The
total number of images per partition is reported in Table 2.

We do not have a larger public data set with information on
the different centers, which is a current challenge for evaluation
of the generalization of CP algorithms. In the literature there
are interesting approaches to solve CP classification tasks that
use more than 100 million annotated patches as in Nagpal et al.
(2018). However, it is noteworthy that in this work we did not
use any annotations of regions or private data source. Only the
public annotations of the TUPAC mitotic regions and an open
access dataset with limited annotations are used. The scripts and
filename lists with (x,y) locations of the patches are provided
in order to allow reproducing the same image patches used in
our experiments.

2.2. Staining Normalization
Since all the pixels of the digital H&E images are represented
in RGB space, ideally each pixel should contain a composition
of the color representation of Hematoxylin, Eosin, and
background. Images acquired from the same center and
using the same preparation parameters should share the stain
absorbance coefficients, which can be written as the linear
transformation (omitting background that should be close to 255
for the three channels):

S =

(

HR HG HB

ER EG EB

)

Where the first-row vector corresponds to the RGB components
of hematoxylin and the second one to the components of Eosin.
In staining normalization methods, the aim is to estimate the
individual staining absorbance coefficients of the images S and
quantify the absorbed light C by the tissue when it was scanned,
which is the value in the H&E space of each pixel. The Beer-
Lambert law provides a way to estimate them in the optical
density space, given the original pixel content for the c-channel Ic:

Ic = I0 exp(−Sc · C)

Where c ranges in the RGB channels, S ∈ [0,+∞]3×2 is the
matrix of absorbance coefficients, C ∈ [0,+∞]2 is the vector
of the two staining concentration coefficients and I0 is the
background value. The widely used method of Macenko et al.
(2009) provides an estimation of S by computing a plane using
the two largest singular value decomposition vectors of the image
and then projecting the data into this plane and clipping extreme

TABLE 2 | Number of original patches for the TCGA-TMA dataset.

Partition GP3 GP4 Total #centers

Train 1,184 1,219 2,403 6

Validation 479 658 1,137 4

Internal test 811 510 1,321 6

External test 1,602 2,359 3,961 1

Total 4,076 4,746 8,822 17

values. Using this estimation, the matrix S is fixed to normalize
all the images in the database by multiplying each value of the
concentration of the source images pixelwise. Then, the image
is in the H&E space of the target (template) image. An optional
step is to preprocess the image with brightness standardization
making the obtained coefficients less dependent on the brightness
values. A schematic view of the normalization approach, used in
our experiments, is displayed in Figure 5.

2.3. Color Augmentation
One common strategy used to create new images with color
variations consists of multiplying each of the color channels Ic
(or estimated staining concentrations in the H&E space) of the
original image by a random small constant ac that will scale the
original intensity value and then add a second constant bc that
shifts the color toward higher/lower intensity values:

I′c ← acIc + bc (3)

The range from where the random constants ac and bc are drawn
determines how much variation is allowed in the generation of
the new images. Examples of color augmented patches from the
TUPAC dataset using this strategy in the RGB space are shown
in Figure 6.

While staining normalization methods aim at homogenizing
the appearance of the images, they might fall short at inter-
center generalization because of a non-optimal normalization or
overfitting in the training set due to the small amount of variation
between the samples. Recent studies have shown how by creating
images for training with an expansion of the training set with
duplicate images from a broader color range have a significant
impact at generalization in the inter-center evaluation ofmachine
learning methods. Particularly with deep learning architectures,
studies have shown how color augmentation techniques usually
outperform staining normalization methods (Bejnordi et al.,
2017; Tellez et al., 2019). This might be intuitive in the context
of training deep learning models, where the larger the amount
of data the model is fed with, the more variations the model is
exposed to. Therefore, it is more robust to changes in appearance
in the test set.

2.4. Deep Learning Approaches for
Staining Normalization
Recent approaches based on deep learning models such as
staining normalization stacked autoencoders (Janowczyk et al.,
2017) and U-net-based architectures (Tellez et al., 2019)
allow to capture complex staining transformations and build
normalizers and generators in an end-to-end manner. In the
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FIGURE 5 | Staining normalization scheme. First, a target or template image is selected to extract its staining concentrations. With brightness normalization, the

images are less dependent regarding brightness. Therefore, brightness standardization is done by modifying the luminosity channel in the LAB color space such that

at least 5% of the pixels are white. Then, the staining concentration matrix from the brightness-corrected template image is extracted using the Macenko method

(Macenko et al., 2009). Finally, all the images in the dataset are normalized using the fixed template staining (*indicates pixelwise multiplication with the template).

FIGURE 6 | Examples of random color augmentations for training patches induced by Equation (3).

work of Tellez et al. (2019) the impact of color augmentation
and staining normalization is assessed in three organs regarding
cancer: prostate, breast, and colorectal. The authors propose
a normalization method based on a U-Net architecture that

mapped augmented versions of the image to a normalized
one. This showed significantly better results than standard
augmentation and normalization methods. In Bentaieb and
Hamarneh (2018), the authors explored several ways of training
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a deep adversarial staining transfer model in colon, ovary
and breast cancer datasets showing that a combination of
penalty terms of consistency of the normalized images and
a conditional term that adapts to the task leads to the best
results in classification tasks. The models mentioned above
require the training of an external deep learning model
that normalizes the images. This is used subsequently for
the DCNN model training of the task, thus not using the
source domain information for guiding the training of staining
invariant features.

2.5. Domain Adaptation and Adversarial
Learning
From a data-driven perspective, the disparities between the
digital histopathology image stainings caused by the changes
in preparation methods and scanners make the distribution of
the generated images differ. The training of machine learning
models with only images created from a subset of preparation
methods, scanners or centers creates vulnerable models that
might fail at correctly classifying near out-of-distribution
samples with staining changes. Discriminative learning methods
for classification, such as neural networks or support vector
machines, perform well when training and test data are drawn
from the same distribution. Therefore, when a model is trained
using a set from one distribution and then tested in another, its
performance will be hindered by the dissimilarity between the
training and test distributions. This is a well-known problem in
machine learning called domain adaptation (DA). It is an active
research area in machine learning where many novel frameworks
have been proposed (Crammer et al., 2006; Ben-David et al., 2007;
Tzeng et al., 2017).

In Ben-David et al. (2007), the authors provided a framework
to analyze the contributions of domain adaptation for the
generalization of models by learning features that account for
the domain disparity between training and test set distributions.
The theory of DA suggests that a good representation for cross-
domain transfer is one in which the algorithm cannot learn to
identify the domain of origin of the input observation. This
led to the authors of Ganin et al. (2016) to propose a concrete
implementation of this idea in the context of deep neural network
models. The objective of domain adversarial neural network
models (DANN), is to learn features that do not take into account
the domain of the training samples. The domain adversarial
features combine discriminativness and domain invariance into
the same representation. To build such representations, two
classifiers are involved: (i) the label classifier that predicts the
main task classes (e.g., mitosis/non-mitosis) at training and
testing time, and (ii) the domains classifier that discriminates
between several domains. Both classifiers can be tied using the
same set of features. Having two outputs with separate loss
functions, one that measures the error at classifying the class of
the sample correctly and the second one,measuring the error at
classifying the origin of the sample (i.e., the domain).

The optimization objective of a DANN model is to find a
saddle point solution of parameters for the task classifier θ̂y,

domain parameters θ̂d and domain-invariant features θ̂f . The loss

function for the N = n+ n′ training samples is:

L =
1

n

n
∑

i=1

L
i
y(θf , θy)−λ

( 1

n

n
∑

i=1

L
i
d(θf , θd)+

1

n′

N
∑

i=n+1

L
i
d(θf , θd)

)

where Ly and Ld are the task and domain loss functions,
respectively. Both n and n′ are drawn from the dataset with the
difference that n are training samples for which the task label is
available, where for the n′ samples only the domain is known. It
is worth noting that n′ are the samples with different domains
in the training but can include samples from the test set, from
which only the domain label is needed to adapt the shared feature
representation. In Ganin et al. (2016) the authors find that such
saddle points can be found using the following iterative stochastic
gradient updates:

θf ←− θf − µ

(∂Li
y

∂θf
− λ

∂Li
d

∂θf

)

, (4)

θy ←− θy − µ
∂Li

y

∂θy
, (5)

θd ←− θd − µλ
∂Li

d

∂θd
(6)

Whereµ is the base learning rate for the task classifier and λ is the
domain learning rate multiplier that allow to learn the domain-
dependant features at a different pace from the task-related ones.
Equations (5) and (6) optimize the parameters for the task and
domain loss functions, respectively, as in a classical multi-output
DCNN scenario. The loss for the task classifier is minimized
while the loss for the domain classifier is maximized. This is
done in Equation (4) that is optimized in an adversarial manner
by going in the opposite gradient direction that minimizes task
loss and in the positive direction of the gradient for the domain
features, maximizing the domain classifier loss.

A simplified architecture scheme is shown in Figure 7, where
the task and the domain classifiers are at the top of a shared
representation that maximizes the classification performance to
separate between mitotic and non-mitotic images and at the
same time minimizes the probability to recover in which center
(domain) the image was generated. If the model converges, then
for a test image the inferred representation avoids to include any
center-specific information. The original center for the test image
could be unknown, since this label is not needed and we are only
interested in obtaining the mitosis/non-mitosis probability.

The main characteristic of DANN models is that they do not
require external models to perform staining normalization or
color augmentation but are the task labels and the indicators
from the scanners or domains that are used to drive the training
process and solve the task without depending explicitly on such
models. This feature is also a potential drawback if one is
interested in a staining quantification scenario, because DANN
models do not output an explicit normalized image but the
normalization is done in the feature space instead. This group

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 August 2019 | Volume 7 | Article 198

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Otálora et al. Staining Invariant Features for DCNN

FIGURE 7 | Domain adversarial scheme: A domain-balanced batch of images is passed as input to the network that has two types of outputs: the task classification

output and the domain classification output. The shared representation θf is optimal for the task classification and unable to discriminate between the n domains.

samples from the same class regardless of the domain fromwhere
they were generated. Our experiments are inspired by the work
of Lafarge et al. (2017) where the authors build a DCNN with a
reverse gradient layer that aims to learn in an adversarial manner
the mitotic probability of patches and their domain.

It was noted by Engilberge et al. (2017) that in the context of
DCNN, the models are sensitive to color changes and also that
in the more common architectures, the color-sensive units are
located in the first layers of the network, which suggests that the
stain-dependent information of the network should be removed
from the first layers of the architectures, this lead us to place the
reversal gradient information before the fully connected layers of
the network as shown in the experimental setup section 3.

3. EXPERIMENTAL SETUP

3.1. CNN Architectures
We designed a baseline DCNN model for both datasets. For
the TUPAC dataset, we designed a relatively compact DCNN
architecture due to the small input size of 96 × 96 × 3
patches. The architecture is composed of two convolutional layers
followed by two blocks of convolution, batch normalization, and
max-pooling. Then, a dropout layer is included to regularize
the model followed by another block of convolution, batch

normalization, and max-pooling. At the end of the network, two
branches of dense layers are connected to the mitosis and domain
class predictions. For the domain branch, the gradient is reversed
in order to optimize (Equation 4).

For the TCGA-TMAZ dataset, we used as base model the
MobilNet architecture used in the experiments by Arvaniti et al.
(2018). The last layer was removed in order to add the two
branches for the domain and Gleason pattern classification. The
gradient reversal layer was added in the same way as in the
TUPAC architecture, i.e., after the common convolutional filters
and before the domain-specific dense features.

3.2. Implementation Details
We implemented the DCNN architectures and performed model
training using the Keras deep learning framework with the
Tensorflow backend. For the staining normalization method, we
used the public implementation of theMacenkomethod from the
StainTools library3. A crucial implementation detail is the need
to generate domain-balanced batches for the adversarial update
of DANN models; this is a dataset-specific part of the pipeline
where the number of domains should be provided, since they are
used as a one-hot encoding domain-label vector for each of the

3https://github.com/Peter554/StainTools
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TABLE 3 | Results on the TUPAC dataset.

CNN model combinations Baseline DCNN

Color augmentation X X X X

Staining normalization X X X

Domain adversarial X X X

Internal test set (F1-score) 0.8088 (±0.02) 0.8117 (±0.001) 0.7630 (±0.04) 0.6950 (±0.379) 0.7787 (±0.03) 0.6985 (±0.01) 0.6945 (±0.02)

External test set (F1-score) 0.71173 (±0.02) 0.7306 (±0.07) 0.5424 (±0.01) 0.8236 (±0.071) 0.5963 (±0.1) 0.6740 (±0.01) 0.5742 (±0.009)

Internal test set (AUC) 0.9596 (±0.006) 0.9631 (±0.005) 0.9351 (±0.001) 0.8972 (±0.011) 0.9503 (±0.01) 0.9030 (±0.002) 0.8871 (±0.02)

External test set (AUC) 0.8014 (±0.01) 0.8270 (±0.06) 0.848 (±0.075) 0.9146 (±0.003) 0.7925 (±0.06) 0.8446 (±0.004) 0.8255 (±0.06)

Performance measures for the possible combinations of color augmentation, staining normalization, and DANN. The first column corresponds to the baseline DCNN without any staining

normalization nor color augmentation. Numbers in bold indicate the best result for that row (performance measure).

TABLE 4 | Results for the TCGA-TMAZ dataset.

CNN model combinations Baseline DCNN

Color augmentation X X X X

Staining normalization X X X

Domain adversarial X X X

Internal test set (F1-score) 0.5614 (±0.01) 0.5386 (±0.03) 0.5928 (±0.05) 0.6232 (±0.03) 0.6761 (±0.01) 0.6493 (±0.01) 0.6317 (±0.01)

External test set (F1-score) 0.4837 (±0.02) 0.5732 (±0.04) 0.5863 (±0.04) 0.5908 (±0.03) 0.6222 (±0.05) 0.5821 (±0.01) 0.5625 (±0.06)

Internal test set (AUC) 0.8155 (±0.01) 0.7429 (±0.01) 0.7391 (±0.01) 0.8409 (±0.05) 0.7544 (±0.01) 0.7755 (±0.03) 0.7049 (±0.02)

External test set (AUC) 0.6368 (±0.01) 0.6735 (±0.06) 0.6633 (±0.01) 0.6838 (±0.01) 0.6798 (±0.02) 0.6913 (±0.01) 0.6712 (±0.01)

F1-scores for the possible combinations of color augmentation, staining normalization and domain adversarial. The first column corresponds to the baseline model. Numbers in bold

indicate the best result for that row (performance measure).

samples. The learning rates were explored in the base models and
fixed to µ = 0.01 for the mitosis model and µ = 0.001 for the
Gleason pattern classificationmodel, according to the best results
on the test set.

A warmup of 100 batch iterations for the task branch (λ =
0) in the DANN model was observed to lead to a more stable
training as compared to starting with random weights for both
branches. We provide the code of our experiments for further
implementation details4.

Four DCNN models were trained for each experiment
combination, to minimize performance variations in the test sets
due to the random-weight initializations of the DCNN models.
Average and standard deviation in performance is the final result
reported. In total 56 DCNNmodels were trained.

4. RESULTS

The classification results are shown in Tables 3, 4. Each of
the cells shows the average performance of the four DCNN
initializations and standard deviation in parenthesis. Each
column represents a combination of the strategies, and the first
column is the performance of the base DCNNmodel without any
staining normalization or augmentation technique. We trained
the DCNN models without dropout but observed overfitting
and degraded performance on the test sets. Therefore, all of our
baseline DCNN include dropout with a probability of 0.25 in the

4https://github.com/sebastianffx/stain_adversarial_learning

layers described in section 3. The F1 score was selected as one of
the performance measures to account for the class imbalance of
our datasets. The other measure selected was the area under the
receiver operating characteristics curve (AUC) since the binary
decision threshold is not always close to 0.5 for all the models.
Qualitative UMAP visualizations of feature embeddings for the
external TUPAC dataset are displayed in Figure 8.

4.1. TUPAC
In the TUPAC dataset experiments, color augmentation shows a
good performance on the internal test set, while the performance
on the external test set is slightly above the baseline (Table 3).
This result might be due to variance in the external test set
staining that can not be captured by color augmentation alone.
When both color augmentation and DANN are combined, the
performance is not outstanding neither for internal nor external
datasets. However, the results represent a good tradeoff, close
to the best results for the external test dataset. The best results
for the external dataset are obtained with the DANN approach.
An interesting result, yet not fully understood, is that DANN
show an essential decrease in performance on the internal test
set. Staining normalization decreased the performance in both
the internal and external test set images, likely due to overfitting
in the training domains.

4.2. TCGA-TMAZ
For this dataset the best results involve color augmentation
and DANN. DANN alone obtained the best AUC performance
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FIGURE 8 | UMAP embedding of the 128-dimensional first fully connected layer features of the task branch. The points are 80 randomly sampled patches of the

external test set using the baseline model with dropout: Full disks correspond to mitotic embeddings, empty circles correspond to non-mitotic ones. Red elements are

from a different center than the black ones. The baseline DCNN model of the first cell shows how same-center features are clustered (ellipses), next cell shows how

the baseline model with dropout drastically changes this by having a better intra-class variability than the baseline feature embeddings, presumably linked to the

regularization effect induced by dropout. Staining normalization alone shows an inter-class mixed embedding, which depicts the possible overfitting in the training

sources. Color augmentation also shows an excellent intra-class mixing while at the same time nicely separating mitosis from non-mitosis samples. There are local

clusters in the non-mitotic samples that are visible. The joint color augmentation and staining normalization model display a similar behavior to color augmentation but

with fewer separated inter-class embeddings. Finally, DANN embeddings show how the intra-class embeddings are mixed while retaining the inter-class separability,

showing that it is feasible to learn the desired property of staining-invariant features.

on the internal test set and DANN combined with color
augmentation obtained the best AUC performance for the
external test. Staining normalization and color augmentation
together obtained the best F1 scores, both for the internal and
external datasets.

4.3. Statistical Significance of the Results
Comparing the decisions of the best vs. second-best performing
methods using the Wilcoxon signed-rank test yield the following
results: For the TUPAC dataset, the difference between the color
augmentation and DANN, were compared only for the external
dataset, since the number of patches in the internal test set always
led to a p-value of 0. In the external test set, the difference was
significant (p < 0.05) in two out of four runs: p < 1.7232 ∗ 10−7,
0.0723, 0.1808, and 1.8721 ∗ 10−9, respectively.

For the TCGA-TMA dataset, the difference between the
combination of color augmentation and staining normalization
vs. the combination of DANN and color augmentation was

significant (p < 0.05) in three out of four runs for the internal
test dataset (p < 1.0922 ∗ 10−5, 0.1919, 0.0008, 1.5824 ∗ 10−6,
respectively), and significant in the four runs for the external
test dataset (p < 1.9029 ∗ 10−11, 6.0386 ∗ 10−20, 1.0652 ∗ 10−32,
3.1229 ∗ 10−23).

5. DISCUSSION AND CONCLUSIONS

The results show the importance of having separate evaluation
datasets, as the results in only one can be misleading. Statistical
significance of the results suggests that DANN and color
augmentation (also in combination with staining normalization)
can deal with the problem of having a limited set of centers for
training deep learning models.

In the TCGA-TMAZ dataset, the performance gain of
DANN+CA with respect to the baseline is considerable and
shows how naively training DCNN models without any strategy
to overcome staining variety is suboptimal.
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The combination of color augmentation, staining
normalization, and DANN training of DCNN models did
not improve the results and, in some cases, obtained results
below the baseline. Such behavior might be due to overfitting to
the train centers because color augmentation over the normalized
images accounts only for a limited range of variation (those in
the training centers) and leading to domain adversarial training
to not learn enough staining invariances. Similar behavior occurs
when training DANN with stain-normalized images, for which
the results are not reported here in the table, but were close and
in some cases worse than the baseline.

To conclude, the experimental results show that staining
normalization, color augmentation, and DANN methods
improve DCNN generalization for classification tasks using
digital pathology images. Results did not show a clear winner or
combination strategy. Statistical significance tests of the results
suggest that the use of color augmentation can alleviate color
heterogeneity problems up to some extent and that DANN
training of DCNN models alone or in combination with color
augmentation can lead to even better results.

Designing deep learning experiments for computational
pathology with images from different centers can provide
meaningful insights about the performance of the classification
algorithms in realistic scenarios (for instance by predicting
class labels for data with the same pathology but scanned
under different staining conditions). In future work, we devise

a training of DANN with staining augmentation done in an
end-to-end architecture, also evaluating DANN performance
thoroughly, including the external set images in the fine-tunning
of the model.
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