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There has been an increase in the application of different biomaterials to repair hard

tissues. Within these biomaterials, calcium phosphate (CaP) bioceramics are suitable

candidates, since they can be biocompatible, biodegradable, osteoinductive, and

osteoconductive. Moreover, during sintering, bioceramic materials are prone to form

micropores and undergo changes in their surface topographical features, which influence

cellular physiology and bone ingrowth. In this study, five geometrical properties from

the surface of CaP bioceramic particles and their micropores were analyzed by data

mining techniques, driven by the research question: what are the geometrical properties

of individual micropores in a CaP bioceramic, and how do they relate to each other? The

analysis not only shows that it is feasible to determine the existence of micropore

clusters, but also to quantify their geometrical properties. As a result, these CaP

bioceramic particles present three groups of micropore clusters distinctive by their

geometrical properties. Consequently, this new methodological clustering assessment

can be applied to advance the knowledge about CaP bioceramics and their role in bone

tissue engineering.

Keywords: calcium phosphate, bioceramic particle, microporosity, data mining, K-means clustering

INTRODUCTION

It is estimated that ∼1.5 million devices are implanted worldwide per year to heal musculoskeletal
diseases (Holzapfel et al., 2013), these procedures present difficulties that have economic
implications for health care providers. Likewise, given the complications in the access or usage
of grafts, there has been an increase in the application of different biomaterials in order to repair
hard tissues, such as bone and teeth (Giannoudis et al., 2005).

One type of biomaterials currently used for hard tissue regeneration are calcium phosphate
(CaP) based bioceramics, which not only have a similar composition to the mineral phase of bone
(Dorozhkin, 2010), but can be biocompatible, biodegradable, osteoinductive, and osteoconductive
(Vivanco et al., 2012; Denry and Kuhn, 2016; Kim et al., 2017). In addition, CaP bioceramics
promote rapid bone formation and may assure bone healing within a year (Habraken et al., 2016).
Moreover, it has been shown that calcium and phosphate ions trigger an osteoinductive response
during bone regeneration, being resorbed by cell-mediated processes, therefore controlling the
potential toxicity of degradation products (Habraken et al., 2016).

Recent advances have started to focus on using CaP bioceramics for bone tissue regeneration,
given that they can be inserted in the defect site with a minimally invasive surgery, preventing the
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risks of infections, surgical scars, and blood loss (Low et al., 2010;
Uswatta et al., 2016). Among CaP bioceramics, hydroxyapatite
(HA) and tricalcium phosphate (TCP) have been commonly
used in clinical applications and in in vivo studies. For example,
some studies have shown that 95% of these CaP bioceramics are
resorbed in 26–28 weeks (Knaack et al., 1998; Wiltfang et al.,
2002), with crystalline TCP having a higher degradation rate
than crystalline HA (Vicente et al., 1996; El-Ghannam, 2004).
This degradation profile is a desirable property, given that it
allows the replacement of the bioceramic material with newly
synthetized bone.

Previous evidence suggests that the structural and material
properties of a CaP bioceramic strongly influence its capacity
to induce new bone formation (Habibovic and de Groot, 2007).
Additionally, it is not only the material per se or its fabrication
parameters which influence biological processes (Habraken et al.,
2016), but also its final microarchitecture, such as pore size and
pore distribution (Gauthier et al., 1998; Mastrogiacomo et al.,
2006; Novotna et al., 2019). Correspondingly, the porosity of
a bioceramic is an important requirement for vascularization
(Karageorgiou and Kaplan, 2005).

Although there is a general agreement that pore size is
a key factor affecting cell ingrowth and bone formation in
bioceramics (Hutmacher, 2000), there is no conclusive data
regarding optimal pore size. For example, a minimal pore
diameter of 100µm has been proposed to influence cell ingrowth
(Karageorgiou and Kaplan, 2005), while a diameter of 200µm
or more has been proposed to support new bone formation
(Gauthier et al., 1998; Flautre et al., 2001; Galois and Mainard,
2004). Interestingly, some in vivo studies have suggested that
there is no significant difference in bone regeneration for pore
sizes in the range of 400–1,200µm (Hollister et al., 2005; Schek
et al., 2006). However, there is evidence for bone formation
in structures with interconnected micro-pores of <10µm in
size, while also having a macro-porosity of more than 100µm
(Lan Levengood et al., 2010a,b).

It is well-known that microporosity affects the process of
osteogenesis (Zhang et al., 2018; Rustom et al., 2019), for
instance, the increased specific surface areas by microporosity
in biomaterials can offer more protein adsorption sites.
Additionally, the capillary force generated by this microporosity
can improve the attachment and immigration of bone-related
cells on the biomaterial surface, with these cells penetrating
them even if these micropores are smaller (Polak et al.,
2013; Zhang et al., 2018). The contribution of capillarity
induced by microporosity on biphasic CaP biomaterials has
also been tested in vivo, by experiments with pig mandibles,
which showed that capillarity induced by microporosity
improved the homogeneity of bone distribution in these
biomaterials (Rustom et al., 2016).

Although the above-mentioned features of a biomaterial, such
as the specific surface area and the capillary force generated by its
microporosity, have been shown to play a role in osteogenesis,
detailed analyses of each of these features might not be yet
fully quantified. Likewise, while properties such as pore size,
localization, or gradients have been studied in relation to cell
growth and bone formation, more global properties related

to their organization, such as pore clustering, have not been
thoroughly studied.

The process of bioceramic sintering can be prone to form
a complex microarchitecture with high surface roughness and
microporosity (Wilson et al., 2004; Champion, 2013). For
example, the creation and distribution of micropores during
sintering can create clusters of them with amounts in the order of
103, which could be difficult to quantify with the traditional tools
used in tissue engineering. Thus, a necessity appears to develop
techniques to analyse these big data sets. These techniques
can be used to relate these large micropore datasets and
their influence on the mechanical and biological performance
of bioceramics.

In this work, a novel method is used to asses pore
clustering and to study the microarchitecture of CaP
bioceramic particles as a model that presents both micro
and macroporosity, driven by the research question: what
are the geometrical properties of individual micropores in
a CaP bioceramic, and how do they relate to each other?
Material properties were studied by crystallographic phases
and microstructural morphology. Hence, this study adds
to the knowledge of CaP bioceramics and their use in
regenerative medicine.

MATERIALS AND METHODS

Bioceramic Material
In this work, the bioceramics used as a model were commercial
Megagen Boneplus Eagle Eye Synthetic Bone Graft (http://www.
imegagen.com).

These CaP bioceramics were used as received, which
come in particles of a torus shape with a diameter of
max 1mm. According to the manufacturer, this material is
made of a synthetic HA/β-TCP composite (60–40%), and
each particle presents an interconnected micropore channel
structure, while also having a central macro-pore (as shown
in Figure 1).

Microstructural Morphology and Phase
Identification
The microstructural morphology of the bioceramic surface
was analyzed by scanning electron microscopy (SEM). Samples
were mounted on aluminum stubs with double-sided carbon
tape and sputter coated with gold for 30 s at 45mA (Denton
Vacuum Desk V). Subsequently, SEM images were obtained (Jeol
JSM IT300LV).

The crystallographic phase was determined by means of
X-ray diffraction (XRD) (Bruker D8 Advance), with Cu Kα1
radiation (λ = 1.5406 Å) operated at 40 kV and 30mA. The
XRD patterns were recorded in the 2θ range of 10◦ to 80◦, with
a step size of 0.001◦ and step duration of 34 s. The recorded
XRD spectra were identified by matching the spectra with ones
based on the structural data of similar apatite bioceramics
available in the Crystallography Open Database (COD). The
phase composition analysis was done using the Rietveld Method
(Bish and Howard, 1988).
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FIGURE 1 | CaP bioceramic particle microarchitecture. (A) SEM micrograph of the bioceramic surface. (B) Area of interest marked in (A), showing the microporosity of

the bioceramic, the yellow square indicates a representative micropore. (C) Diagram of the five attributes measured for each micropore, based on Rueden et al. (2017).

Assessment of Micropore Clusters of Cap
Bioceramic Particles
A total of five (n= 5) bioceramic particles were analyzed by SEM
imaging, obtainingmore than 5× 103 micropores to be analyzed.
The images were processed using ImageJ software (NIH, USA,
version 1.51j8), with the aim of isolating only the micropores
from the surface of the bioceramic particles, to perform the
measurements and the subsequent analysis of clusters.

In order to isolate the micropores of each bioceramic particle,
the threshold tool from ImageJ was used, in which the SEM
microphotographs were converted to their corresponding binary
images, where black pixels represent empty spaces (pores),
following a similar protocol used previously (Xu and Chan,
2008). The validation of this porosity measurement was done
using an accepted methodology (Xu et al., 2007).

For each of the more than 5 × 103 isolated micropores
(observations) the values of five geometrical attributes (variables)
were determined: area, perimeter, circularity, roundness, and
Feret’s diameter (Walton, 1948). The area is expressed in µm2

and the perimeter in µm. The circularity and roundness are
expressed in values between 0 (one line) and 1 (one circle and
sphere, respectively). Feret’s diameter represents the distance
between two parallel lines that are tangential to the contour of
the projection of a particle, in this case micropores, which allows
having a measurement in µm of the diameter of the micropores
that have an irregular shape (Merkus, 2009). Details of these
parameters are shown in Figure 1.

Clustering Analysis was conducted by using the K-means
clustering algorithm, which is a method that finds K vectors
that represent a complete data set and aims to minimize the
sum of the squared distances between all the points and the
center of the cluster (Gonzalez and Tou, 1974; Pham et al.,
2005). K-means was applied to a series of groups from 1 to 10,
and inertia values were obtained (sum of the square distances
of each cluster micropore to its centroid), which were used
to determine the number of groups by means of the “Elbow”
method. This method allows representing in a linear graph the
inertia with respect to the number of clusters, indicating an
inflection point and evaluating themaximal inflection. This point
(elbow) indicates the optimal number of groups for the data set
(Kaufman and Rousseeuw, 1990).

The validation of the number of clusters obtained was done
by the Davies-Bouldin index (DBI), which is based on the fact
that those algorithms that produce clusters with low intracluster
distances (high intracluster similarity) and high intercluster
distances (low intercluster similarity) will have a low DBI.
Consequently, the clustering algorithm that generates a collection
of clusters with the lowest value of this index was considered the
best algorithm (Davies and Bouldin, 1979).

Finally, the analysis of clusters was deepened by relating the
Feret’s diameter of the micropores with their circularity (RStudio
Inc., version 1.0.153), since it is known that the size and shape of
the pores of a biomaterial is critical for cellular behavior (Akay
et al., 2004; Zadpoor, 2015).
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FIGURE 2 | The CaP bioceramic particles show three micropore clusters. (A)

Elbow method to determine the number of clusters in the 5,338 micropores

data set, the “elbow” marked with the red asterisk suggests that the number

of micropore clusters is three. (B) Davies-Bouldin Index (DBI) calculated

considering the five attributes of the 5,338 micropores isolated from the five

bioceramic particles, for which the K-value obtained by the elbow method,

together with its closest neighbors, was used as an approximation. The lowest

value of the DBI indicates the number of suitable clusters, in this case three.

THEORY/CALCULATION

Determination of Davies-Bouldin Index
The validation of the number of clusters obtained was done
by means of the DBI (Davies and Bouldin, 1979), using the
following equation:

DB =
1

n

n
∑

i=1

max
i 6= j

(

σi + σj

d(ci, cj)

)

Where n is the number of clusters, cx is the centroid of cluster
x, σx is the mean distance of all observations in cluster x to the
centroid cx, and d(ci,cj) is the distance between the centroids ci
and cj.

RESULTS

Analysis of Cap Bioceramic Particle
Microarchitecture
Since the architecture and microporosity of CaP biomaterials
can influence itsmechanical and biological performance (Rustom
et al., 2019), an analysis of the bioceramic microarchitecture was
carried out from SEM images. These data were processed using
ImageJ, with the aim of isolating only the micropores from the
surface of the bioceramic particles, to perform the measurements
and the subsequent cluster analysis.

The micropores were individually analyzed, obtaining 5,338
observations from 5 bioceramic particles, in which the area,
perimeter, circularity, roundness, and Feret’s diameter were
measured (Figure 1).

FIGURE 3 | The three micropores clusters based on Feret’s diameter and

circularity. (A) The three clusters of micropores are highlighted in black (1), red

(2), and green (3). The yellow dots indicate the centers of each cluster. (B)

Table showing the Feret’s diameter and the circularity of the centers of each

cluster (yellow dots in A). It also indicates the number of micropores that

belong to each cluster and their representative percentage within the

bioceramic particles.

Microporosity Cluster Determination of
Cap Bioceramic Particles
Clustering is a data exploration technique that allows objects
with similar characteristics to be grouped, in order to facilitate
their subsequent processing. In this particular case, the K-means
method was used.

K-means was applied to a number of clusters from 1 to
10, and the inertia values were obtained. Then, after using the
Elbowmethod, the suggested number of clusters in these particles
was three (K = 3). In order to confirm this result, the data
were validated by means of the DBI, which showed that when
comparing a K of 2, 3, and 4 (using the closest neighbors), a K =

3 gives the lowest DBI, and thus validates this result (Figure 2).
The analysis of clusters was deepened by relating the Feret’s

diameter of the micropores with their circularity. This analysis
indicates that within these three clusters of micropores, the first
cluster represents <3% of the micropores, has a Feret’s diameter
of more than 100µm but a circularity generally lower than 0.1,
being the least circular pores. The second cluster represents
<20% of the micropores, has a Feret’s diameter of about 50µm
and circularity near 0.2. While the third cluster represents most
of the micropores (more than 80%), has a Feret’s diameter of
<50µm and a wide range of circularity up to 1, being the most
circular pores (Figure 3).

Phase Identification of Cap Bioceramic
Particles
In order to corroborate this CaP bioceramic crystallographic
phases, their XRD pattern was indexed using standard cards by
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FIGURE 4 | X-Ray diffraction pattern for the bioceramic particle used. The peaks corresponding to Hydroxyapatite and β-TCP are shown by blue squares and red

circles, respectively. Peaks identification based on Lee et al. (2013).

the COD. This bioceramic showed two phases, which matched
with the card number PDF 86-0740, correlated to hydroxyapatite,
and PDF 03-0713, correlated to Whitlockite, which corresponds
to β-tricalcium phosphate (Jarcho et al., 1979).

The Rietveld composition analysis showed that this
bioceramic is composed of 53.74% hydroxyapatite (Ca5(PO4)3
OH) and 39.02% β-tricalcium phosphate (Ca3(PO4)2), with
the rest of the components being other calcium phosphates or
calcium oxide: 3.57% of CaP4O11 and 3.68% of CaO. Therefore,
the main crystallographic phases of these bioceramic particles are
indeed hydroxyapatite and β-tricalcium phosphate (Figure 4).

DISCUSSION

This research analysis shows that in these CaP bioceramic
particles, three groups of micropores are distinguished by their
area, perimeter, circularity, Feret’s diameter and roundness. To
the best of the author’s knowledge, this is the first report
on the analysis of microporosity clusters of CaP bioceramics
particles with the described method, driven by the research
question: what are the geometrical properties of individual
micropores in a CaP bioceramic, and how do they relate to
each other?

Given that on the one hand, the fabrication process
of bioceramics leads to the generation of a complex
microarchitecture (Wilson et al., 2004), which have an effect
on their biological (Polak et al., 2013; Rustom et al., 2016) and
mechanical properties (Pecqueux et al., 2010). And on the other
hand, the generation of these large amounts of micropores
requires techniques to analyse these big data sets. This study
used CaP bioceramic particles as a model, to validate a novel
method to analyse such microarchitecture in terms of micropore
clustering, which has not been previously studied on this
bioceramic (Conserva et al., 2011).

The microstructural and morphological properties of CaP
bioceramics are related to biological and cellular performance,
for example, it has been shown that the size and shape of HA
microparticles have an influence on the osteogenic differentiation
of MC3T3-E1 preosteoblasts (Xu et al., 2018). Furthermore,
microporosity (pores of < 50µm) plays a role in bone ingrowth
and in the improvement of a scaffold mechanical properties
(Rustom et al., 2019).

In this study, almost 20% of the micropores (clusters 1
and 2) have a Feret’s diameter of 50µm or more. In a
study that used biphasic CaP bioceramics in vivo, these large
pores have been shown to promote natural bone deposition
and resorption processes (Lan Levengood et al., 2010b). The
remaining 80% (cluster 3), corresponds to micropores of smaller
size (20µm or less). These small pores can have a higher
capability to adsorb proteins in vitro, which can influence
the adhesion and proliferation of human bone cells (Rouahi
et al., 2006). Additionally, it has been shown that an increase
in surface roughness significantly improves cell attachment
and proliferation (Li et al., 2005), as well as improving
the homogeneity of bone distribution by micropore-induced
capillarity (Rustom et al., 2016).

The abovementioned pore properties, added to the existence
of a central macropore in each of these particles, which could
allow vasculogenesis, as shown for the macropores of other CaP
bioceramics (Lan Levengood et al., 2011), make these particles
suitable for bone tissue regeneration, with proper oxygen and
blood supply. Besides, it is known that biphasic CaP bioceramics
create a unique microenvironment that favors bone regeneration
(Lobo and Arinzeh, 2010).

By using the presented methodology, future studies will
be able to relate micropore geometry and clustering with
biological performance of different CaP bioceramics in terms
of adhesion, proliferation, or differentiation, among others.
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Consequently, an optimal set of microarchitectural parameters
can be found, which will lead to a desired response in
clinical therapies. Furthermore, this methodology could be
applied to structures made of other materials, and fabricated
by processes that could allow for major control of their
microarchitecture for bone tissue engineering applications
(Turnbull et al., 2017).

Within the limitations of this study, it is the surface
microarchitecture of the CaP bioceramic and not the internal
microarchitecture of the particle that was examined, which
in future studies should be investigated to determine if there
are variations in the characteristics of the micropores and,
consequently, of the clusters. Likewise, it is necessary to analyze
a larger number of particles, different manufacturing lots, and
incorporate a more comprehensive and multi-scale analysis in
order to integrate biology with the materials science paradigm
(Roeder, 2010).

CONCLUSIONS

In this study, a novel method based on data mining techniques
was used to analyze micropore clustering in CaP bioceramic
particles, and five geometrical parameters were assessed in
each micropore (area, perimeter, circularity, Feret’s diameter,
and roundness). As a result, three clusters of micropores are
described, in which almost 20% of the micropores (clusters 1 and
2) have a Feret’s diameter of 50µm or more, with the remaining
80% (cluster 3), having micropores of smaller diameter (20µm
or less).

This new methodology can be applied to advance the
knowledge about CaP bioceramics by analyzing global micropore

properties, such as pore clustering, and their relation with
other properties of interest, such as mechanical or biological
performance, for bone tissue engineering.
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