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Image analysis tools for cancer, such as automatic nuclei segmentation, are impacted by

the inherent variation contained in pathology image data. Convolutional neural networks

(CNN), demonstrate success in generalizing to variable data, illustrating great potential

as a solution to the problem of data variability. In some CNN-based segmentation works

for digital pathology, authors apply color normalization (CN) to reduce color variability of

data as a preprocessing step prior to prediction, while others do not. Both approaches

achieve reasonable performance and yet, the reasoning for utilizing this step has not been

justified. It is therefore important to evaluate the necessity and impact of CN for deep

learning frameworks, and its effect on downstream processes. In this paper, we evaluate

the effect of popular CN methods on CNN-based nuclei segmentation frameworks.

Keywords: computational pathology, standardization, neural networks, deep learning, color normalization, nuclei

segmentation

INTRODUCTION

In 2015, the World Health Organization (WHO) estimated that cancer was the leading cause of
death in 91 of 172 countries. By the end of 2018, there was an estimated 18.1 million new cancer
cases, and 9.6 million cancer related deaths (Bray et al., 2018). Cancer is prevalent worldwide, and
while the causes are not yet fully known, several risk factors have been identified through routine
analysis of clinical data (Maringe et al., 2013).

An important tool for the detection and management of cancer is the analysis of tissue samples
under assessment by a pathologist (Hutter, 1991). Based on visual analysis of the tissue and cells,
the pathologist renders a diagnosis, determines the aggressiveness of the disease, and recommends
a treatment plan. Pathological analysis of tissue slides, in the form of histological grading, is critical
to cancer treatment planning and for delivering high quality patient care.

Histological grading is an important practice that describes how abnormal tumor cells
and tumor tissue appear under a microscope. It is common among all cancers and involves
the analysis of tissue specimens for characteristics of malignancy. In preparation for grading,
hematoxylin, and eosin (H&E) dyes are used to increase tissue contrast by highlighting
specific structures. For instance, hematoxylin, normally purple, is a stain that has an affinity
to the nucleic acids contained in the nuclei. Eosin, normally pink, is a counter stain
that binds to the cytoplasm of cells (Hortobagyi et al., 2017). The combination of the
two stains improves contrast and makes it easier to discern cell and tissue characteristics.
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Characteristics such as cell appearance, nuclear pleomorphism
(size and shape), and spatial arrangement of cells are important
metrics for determining the histological grade (Hortobagyi et al.,
2017). However, conventional grading is time consuming, and
the interpretation is subjective and error-prone (Rakha et al.,
2010; Khademi, 2013).

Nuclear grading is common between many cancer grading
systems, and examines the appearance and morphology of
cells. Unfortunately, grading for nuclear pleomorphism suffers
greatly from interpretation variability. For example, using the
Nottingham Grading System for breast cancer, nuclear grading
has poor-to-moderate agreement (Andrion et al., 1995). Similar
results are found for other cancers as described inWludarski et al.
(2011) and Ismail et al. (1989). As such, automating pathological
analysis for nuclear grading proposes the opportunity to reduce
subjectivity, variability, and workload, and in turn, increase
reliability, reproducibility, and improve clinical workflow.

The FDA approved the first, clinical, whole-slide imaging
(WSI) scanner in April 2017, which was a milestone for
transitioning anatomical pathology to a digital practice (Boyce,
2017). Digital images produced byWSI scanners enable clinicians
to visualize cellular and tissue microstructure in full color and
under high resolution. In addition, digital image data enables
the use of automated image analysis and machine learning tools,
broadly computational pathology, to improve the accuracy and
efficiency of nuclear grading systems. Early automated tools
included nuclei detection, but more recently nuclei segmentation
has becomemore important, since features from entire nuclei can
be extracted and analyzed.

Automated segmentation of nuclei is one of the most
crucial steps for automated nuclear grading systems and has
remained challenging due to the complexity of the task. Firstly,
the characteristics of the cells are quite variable from patient
to patient. Cancerous nuclei can be highly pleomorphic and
tumors often display heterogeneity. Reviews state that traditional
segmentation frameworks have poor segmentation accuracy for
images with cancerous nuclei (Cloppet and Boucher, 2009; Di
Cataldo et al., 2010). This is especially apparent when the nuclei
are clustered and overlapping (Wählby et al., 2004; Cloppet and
Boucher, 2009; Di Cataldo et al., 2010). Some of the traditional
nuclei segmentation methods include morphological processing
(Loménie and Racoceanu, 2012), hand-crafted feature design and
classification (Hasan and Roy-chowdhury, 2014), unsupervised
clustering (Parvin et al., 2007), and supervised approaches that
classify each pixel into different categories: nuclei or background
(Mouelhi et al., 2013; Xu et al., 2016a; Bejnordi et al., 2017).
Throughout these frameworks, data variability and algorithm
generalization continue to be the main barrier.

Over the last few years, deep learning (DL)-based
algorithms, such as convolutional neural networks (CNN),
have become popular in the analysis of digital tissue specimens.
DL frameworks demonstrate dominating performance in
generalizing to highly variable data (Al-Milaji et al., 2017). This
makes them suitable for computational pathology applications
such as segmentation. DL-based methods for region-specific or
object-level segmentation have been proposed in several works
(Shelhamer et al., 2014; Ronneberger et al., 2015; Xu et al., 2015,

2016b; Chen et al., 2016; Agarwalla et al., 2017; Al-Milaji et al.,
2017; Kumar et al., 2017; Li et al., 2017; Naylor et al., 2017; Alom
et al., 2018; De Xie, 2018; Graham and Rajpoot, 2018; Wang
et al., 2019).

An early DL framework, proposed by Ronneberger et al.
segmented cells in electron microscopy images by using a
variation of a fully convolutional neural network (FCN)—also
known as “U-Net.” The original FCN architecture utilizes a series
of successive convolution layers and max pooling operations,
followed by subsequent up-sampling and additional convolution
layers. U-Net was developed by connecting features from the
downward path with up-sampled outputs at various layers. By
connecting these paths, high resolution features can be localized
at the output layers. The work contributed by Ronneberger et al.
has been adapted and improved for semantic region and object-
level segmentation for H&E stained images. For instance, Li et al.
altered the original U-Net architecture by introducing multi-
scale image patches into the training set. Incorporating the same
region at three different sizes provides contextual information
to the network and resulted in a greater gland segmentation
accuracy compared to the original U-Net (Li et al., 2017). In
addition, Alom et al. improved segmentation results by replacing
the forward convolutional layers with recurrent convolutional
layers. This replacement, along with accumulating features
outside the network, and replacing “cropping and copying”
operations with concatenation, improved nuclei segmentation
accuracy (Alom et al., 2018).

Classic deep learning frameworks with some modifications to
parameters, hyper-parameters, and post-processing techniques,
continue to be implemented and demonstrate success for region
specific and pixel-wise segmentation in digital H&E images. Xu
et al., Kumar et al., Agarwalla et al., Al-Milaji et al., and Xie et al.,
implement various CNN architectures that perform one, or both,
region specific and pixel-wise segmentation. As demonstrated
by the number of different architectures that exist in literature,
there are numerous DL-based methods that address the issue of
data variability in segmentation tasks and attempt to improve
generalizability for multicenter data.

In multicenter digital pathology datasets, there is the
problem of color constancy, which is attributed to the lack of
standardization in laboratory staining practices, and the inherent
variation contributed by the multitude of dye and digital scanner
manufacturers (Macenko et al., 2009). In such samples, the color
characteristics of cells and tissue can vary drastically across
imaging centers, even for the same tissue types and stains.
As computational algorithms begin to expand to the clinical
domain, algorithms that generalize and scale to large, multi-
institutional datasets are needed to fully realize the potential of
AI in digital pathology.

For classic segmentationmethods, instead of developingmany
models that handle the different degrees of variability, color
normalization (CN) is applied as a preprocessing step. CN
is common preprocessing technique that attempts to reduce
color variability and improve the generalization of algorithms
by transforming the input data to a common space. In color
normalized digital pathology samples, regions of digital tissue
specimens are mapped to similar color characteristics regardless
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of the scanning device, stain vendor, and preparation protocols.
Because of the reduced variability in color characteristics of
tissues, CN has demonstrated improvement in computer-assisted
diagnostic tools (CADs) (Khan et al., 2014; Bejnordi et al., 2016;
Kumar et al., 2017; Li et al., 2018).

While CN is often used in non-DL segmentation frameworks,
there are DL architectures that utilize CN as a pre-processing
technique as well (Kumar et al., 2017; Li et al., 2018). However,
when CN has been applied in DL-based frameworks, the
necessity and effect of CN has traditionally not been evaluated. In
order for DL-based frameworks to generalize to multicenter data
effectively, the effect of color variability and subsequently, CN as
a preprocessing step, needs investigation. To our knowledge there
are no works to date that systematically assess the effect of CN on
DL-based frameworks—and is the subject of this work.

In this work, we extend the DL-based nuclei segmentation
methods of Kumar et al. by implementing a ternary segmentation
scheme (nuclei, boundary, background) on two different CNN
architectures to assess the effect of CN on model performance.
In particular, a patch-based CNN and the UNET architecture
are evaluated, and five open source CN methods are used to
normalize the training and test datasets. A reference image is
used for CN in all methods except for the generative adversarial
network (GAN)-basedmethod, which uses a collection of images.
The effectiveness of each CN scheme is evaluated using image
quality metrics, including a novel metric proposed called the
normalized median hue (NMH), which quantifies the global
color variation of an image population.

Usingmodels generated from the un-normalized andCNdata,
the segmentation results from all CN methods are compared
to results generated by the un-normalized model using various
overlap metrics. An ensemble nuclei segmentation model is
also proposed, that combines the results from the various CN
models per architecture to investigate whether these classifiers
combined can improve segmentation performance. To address
the multicenter data problem, we evaluate the performance of the
nuclei segmentation models on various H&E datasets, each with
unique color characteristics. In total, three datasets are used. The
first one is “TCGA-Kumar” and it is tissue of the seven different
types and there are 29 images. These images contain ternary
annotations and are used for training (with 7 held out for testing).
The second one, “TNBC” contains 50 images of triple negative
breast cancer tissue. The last dataset, “SMH,” is contains images
of lymph node tissue from patients with suspected breast cancer
metastases. These datasets comprise variable color characteristics
and are ideal for testing the generalizability and clinical utility of
the suggested framework.

The contribution of this paper is as follows: (1) we
rigorously test the performance of two baseline deep CNN
architectures with five popular color normalization methods
on three multicenter datasets with unique color characteristics.
(2) We propose a novel metric that quantifies the color intra-
variability tasets. (3) We propose an ensemble segmentation
method that utilizes the un-normalized and CN-based models as
weak learners contributing to a single segmentation prediction.
(4) Analyze the effects and impact of color normalization on deep
learning-based segmentation of nuclei in H&E.

The rest of this paper is organized as follows. Methods and
Materials used in this paper are reviewed in section II. In section
III, we outline the Experimental Results, and in section IV and V
present Discussions and Conclusions.

MATERIALS AND METHODS

Data
The first dataset, “TCGA-Kumar,” used in this paper was
adapted from Kumar et al., and is publicly available (Kumar
et al., 2017). The data is comprised of a diverse set of
H&E stained tissue images with manually annotated nuclei,
boundaries, and background labels. The annotations were
created by undergraduate students then assessed by a pathologist
for accuracy. The whole-slide images were digitized under 40X
magnification and were obtained from The Cancer Genomic Atlas
(TCGA). Twenty-nine regions of interest (ROIs) were cropped to
a size of 1,000 × 1,000 pixels and were used in the development
of CNN-models in this work. The following tissue types comprise
the dataset: breast, lung, kidney prostate, bladder, colon, and
stomach, and include both benign and diseased tissue samples.
It presents a highly diverse dataset, with highly variable staining
intensities, colors, and nuclei appearances across organs. Thus,
this data is a good representation of the multicenter, multi-organ
andmulti-disease problem that could be common in clinical data.
We chose to assess the CN and nuclei segmentation results on the
data provided by Kumar et al. for these reasons.

The second dataset, “TNBC,” used in this work was first
introduced in Naylor et al. (2017) and can be found at: https://
github.com/PeterJackNaylor/DRFNS/tree/master/datafolder.
The dataset is comprised of H&E stained, triple negative breast
cancer (TNBC) ROIs, sampled from whole-slide images (WSIs)
of 11 different patients. Approximately 3–7 images of size 512
× 512 were cropped from each WSI resulting in a total of 50
images. The dataset has a total of 2754 annotated cells where a
sample ROI contains a minimum of 5 to a maximum of 293. To
our knowledge, scanner information and acquisition parameters
such as magnification were not available.

The third dataset, “SMH,” used in this work was sourced from
St. Michael’s hospital in Toronto, Ontario, Canada. This dataset
is comprised of two sets: (i) 30 non-overlapping ROIs of size 1000
× 1000 cropped from the WSI of a single patient, and (ii) 12 512
× 512 non-overlapping ROIs cropped from the WSIs across two
patients. The first dataset is used for color normalization using
CycleGAN, “SMH-norm” and the latter is used for segmentation
evaluation, “SMH-seg.” The WSIs are of sampled lymph nodes
to search for metastases from a primary breast tumor. The slides
were stained using H&E and digitized with an Aperio Scanscope
AT Turbo whole-slide scanner under 20X magnification. The
nuclei were annotated by an undergraduate assistant.

Experimental Design
Figure 1 depicts the experimental design used to address our
research question. First, the TCGA-Kumar data was organized
between un-normalized and normalized data. Subsequently, the
datasets were used to develop the deep CNN models in the
training stage. Using the developed models, segmentation was
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FIGURE 1 | Experimental design.

performed on the validation images followed by post-processing.
This section will discuss each of these steps.

Color Normalization
Due to the numerous CN methods used in computational
pathology tasks (non-DL and DL-based segmentation
frameworks), segmentation accuracy will be evaluated using
several state-of-the-art CN methods. For each experiment, a
different CN method was applied to the datasets before the
CNN was trained. CN methods used in this paper were adapted
from the Stain Normalization Toolbox made publicly available
by the Department of Computer Science at the University of
Warwick (Magee, 2014). Each method in the toolbox transforms
the input image to a standard color space based on a reference
image. The ability to maintain an accurate representation of
stains in the CN output varies between each method. Early CN
methods, such as histogram specification (“HS”) or color transfer
(“RH”), have been noted to offer inaccurate representation of
H&E concentrations (Magee et al., 2009). Other methods that
perform stain deconvolution first, such as stain specific color
transfer (“KH”), and spectral matching (“MC”) tend to offer a
more accurate description of the individual stain components.
This is largely due to the fact that stain deconvolution offers
a robust and accurate description of constituent pure stains
contained in the tissue specimen (Ruifrok and Johnston,
2001), which can be individually color normalized for more
optimal results. Additionally, stain deconvolution removes
color variability caused by unstandardized laboratory practices
(Macenko et al., 2009). While, these methods have demonstrated
their effectiveness in the past, because of their reliance on
an expertly selected target image, other methods have been

explored. Recently, general adversarial nets or GANs, have been
adapted in digital pathology. Specifically, the CycleGAN or
StainGAN, demonstrated superior results with respect to stain
separation and maintaining image information compared to RH,
MC, and KH after normalization was applied (Zhu et al., 2017;
Shaban et al., 2019). Rather than relying on a single target image,
the StainGAN maps a target image set to a reference image set.
In this work, an open-source CycleGAN was used to perform
the normalization operation (Erik Linder-Noren, 2018). The
following subsections will further detail the methods used in
this work.

Histogram Specification
Histogram specification or histogram matching includes the
application of histogram equalization to the histogram of a
query image and a reference image. Histogram equalization
applies a transformation to an image such that the resulting
image has intensity levels that are equally likely. Generally,
equalization results in an image with increased contrast and
increased dynamic range (Gonzales and Woods, 2008). In
histogram specification, the transformation to a specified
histogram is estimated. The transformation is then used to match
the histogram of the individual red, green, and blue channels of
the query image to the red, green, and blue (RGB) channels of
the specified image. A recent work demonstrates that histogram
specification can effectively transfer the color of a reference
image to a query image and is validated quantitatively (Roy
et al., 2019). However, due to multiple dyes and tissue structures
that vary from image-to-image, histogram specification
is known to introduce image artifacts such as incorrect
stain mapping.
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Color Transfer
During color transfer, after both the reference image and the
query image are transformed to lαβ color space, the mean and
variance of reference image are matched to that of the query
image (Reinhard et al., 2001). Initially, this method was proposed
for natural image color correction, but was later adopted in digital
pathology for color normalization tasks. The stain normalization
toolbox utilizes two variations of color transfer (1) the original
Reinhard et al. method, and (2) a non-linear mapping approach
that also employs image-specific color deconvolution (Khan
et al., 2014).

Stain deconvolution
For CN tasks, stain or color deconvolution is used to transform
an RGB-image to a stain space where the image channels
are representative of the constituent pure stains contained in
the tissue specimen (Ruifrok and Johnston, 2001). According
to Ruifrok and Johnston (2001), separating the pure stains is
possible through the Lambert-Beer law:

Ip = IOe
−εpcp (1)

where Ip is the source image, IO is the background brightfield,
c is the concentration of the dye pigment, p, and ε is the molar
absorption coefficient (Haub and Meckel, 2015). The absorbance
and mixing of stains can be modeled as:

OD = − ln

(

Ip

IO

)

=
∑

p

(

εp • cp
)

= VS (2)

S = OD∗V−1 (3)

where OD is the optical density values for each channel in the
RGB color space, V is the stain vector, and S is the concentration
of each stain (Macenko et al., 2009). If the stain vector can be
estimated, the pure stains described by S can be determined
from the OD values of the input image (Ruifrok and Johnston,
2001). The challenge of stain deconvolution, however, is robustly
estimating the stain vectors V, which should be done adaptively
for each image.

Image-specific color deconvolution and non-linear color

normalization
Khan et al. proposed a stain normalization algorithm that
first estimates the stain matrix of both the reference image
and query image using stain color descriptors followed by
spline based mapping of reference image’s stain channels to
the query image’s stain channels (Khan et al., 2014). A review
by Li and Plataniotis (2015) stipulates that for this method
color variation in the images are generalized and not addressed
separately. Furthermore, statistics in the stain channels are
modified which may result in inaccurate representation of stain
and tissue features.

Spectral Matching
The spectral matchingmethod utilized by the stain normalization
toolbox is based on the work of Macenko et al. (2009), which
estimates the stain vectors using singular value decomposition.

Subsequently, the maximal range which comprises the stain
content is estimated from the stain vectors and transformed back
to the OD space. Various works state that while this method
preserves histological information, normalization is not robust
when images contain large stain variations (Bejnordi et al.,
2016; Roy et al., 2019). Furthermore, because this method only
addresses stain variation, other causes of color disagreements
may not be addressed (Li and Plataniotis, 2015).

Generative Adversarial Networks: CycleGAN
CycleGAN performs unpaired image-to-image translation by
using a model consisting of two generators, G and F, and
discriminator pairs, DY , DX . The cycle consistent methodology
outlines that ifG canmapX to domain Y, GX :X → Y , then F can
map Y to domain X, FY :Y → X. The output of such mapping
functions are ŷ = G(x) and x̂ = F(y), respectively, where ŷ is
a mapping of X in the Y domain, and x̂ is mapping of Y in the
X domain. The generators, GX , and FY , are trained to generate
images of the opposite domain, while the discriminators, DY ,
DX verify if the output images come from the real domain. This
forward and backward cycle is achieved by the introduction of
two cycle consistency losses represented as LCycle. Combining
these losses with adversarial losses on domain X and domain Y
achieves unpaired image-to-image translation:

L = LAdv + λ∗LCycle (4)

where, LAdv, is the adversarial loss and λ is the regularization
parameter. Due to unpaired image-to-image translation,
CycleGAN requires two data domains for training (Zhu et al.,
2017; Shaban et al., 2019).

Color Normalization Quality Metrics
Several metrics are used to determine the utility of color
normalization. A common metric used to demonstrate color
consistency, or lack thereof, is the normalized median intensity
(NMI). However, NMI is more indicative of an image’s intensity
information rather than the color content. Therefore, in addition
to NMI, we utilize other color metrics introduced in Roy et al.
(2019) as well as normalizedmedian hue (NMH), which is a novel
proposed color consistencymetric thatmeasures variability in the
hue across datasets.

The goal of these metrics is to demonstrate the variation of
color across a population of images before and after CN was
applied. By analyzing the variation of color after normalization,
the ability of the applied method to transform an image set into
a common space can be quantified. Several metrics are used, as
described below and the coefficient of variation (CV) is quantified
across the population of images for each metric. The CV is
defined as the standard deviation divided by the mean of each
metric from a dataset. For optimal CN results, the population
variability would be low, with an optimal value for the metric
(i.e., mean).

Normalized Median Intensity
The NMI of an image population quantifies the intensity
variation of an image population and is used to compare the
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various CN methods (Bejnordi et al., 2016). NMI is defined as:

NMI(I) =
Mediani∈I

{

A(i)
}

P95
{

A(i)
} (5)

where the numerator is the median of the mean R, G, and
B channels, A(i), for the pixel, i, in image I, and P95 is
the 95th percentile. A population of images are considered
more consistent when the CV of the NMI computed over
the population decreases (Basavanhally and Madabhushi, 2013;
Bejnordi et al., 2016).

Normalized Median Hue (NMH)
The NMHmetric was inspired by the NMI metric introduced by
Bejnordi et al. (2016). Instead of looking at pure intensity, the
NMH looks at consistency in the hue and is defined as:

NMH(h) =
Mediani∈I

{

H(h)
}

P95
{

H(h)
} (6)

where the numerator is the median of the hue-channel of a
hue, saturation, and value (HSV) image at some pixel h, and
the denominator is the 95th-percentile of the hue-channel at
some pixel h. In a similar way as NMI, the CV of the NMH

quantifies the color variation of a population of images but
looking at the median hue value. Low NMH CV indicate less
color intra-variability within an image population.

While both metrics attempt to analyze constancy of an image
population, from the distribution of intensities in Figure 2
it is difficult to infer the dominant color from the intensity
histogram (top). By converting the RGB H&E image to grayscale,
color information is lost as color is correlated between the
RGB channels. For an HSV image, the perceived color is in
the hue-channel and is based on the angular properties of
the HSV color space. From Figure 2, it is apparent that the
hue histogram is bimodal indicating two dominant colors or
stains. In the context of digital pathology, hues attributed
to hematoxylin are closer to blue (240◦) and hues attributed
to eosin are closer to red (0◦/360◦). Mixing of stains or
varying concentrations are between these values. Therefore, the
median value of the hue distribution will quantify the relative
hue of images and should be approximately consistent across
datasets if the CN was applied successfully. From the intensity
histogram, only the distribution of pixel intensities can be
inferred. When assessing the quality of color normalization, it
is important to be able to quantify the color intra-variability of
an image population, which will be measured through the CV of
the NMH.

FIGURE 2 | Comparing the NMI and NMH distributions. (A) Original image, (B) A(i)—grayscale image of (A), (C) hue image (from HSV space), (D) grayscale intensity

histogram, (E) hue histogram, where the red line indicates NMI or NMH respectively.
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Absolute Mean Color Error (AMCE)
The AMCE of the α and β channels of the lαβ color space
represents the mean global color difference between the target
image and the processed image for the respective channels. The
α- channel corresponds to the red and green components of
the image’s color, while the β-channel corresponds to the yellow
and blue components of the image’s color. AMCEα and AMCEβ

equations are given below:

AMCEα = |
1

W

W
∑

i=1

µ
(

αi(tar)
)

−
1

W

W
∑

i=1

µ
(

αi(proc)
)

| (7)

AMCEβ = |
1

W

W
∑

i=1

µ
(

βi(tar)
)

−
1

W

W
∑

i=1

µ
(

βi(proc)
)

| (8)

where αi (tar) is the target image information at some local
ith window and αi (proc) is the processed image information at
some local ith window. The absolute difference is taken for these
metrics and averaged by the total number of windows,W. A low
AMCE value indicates similar color content between the target
and processed images (Roy et al., 2019). Roy et al. stipulates that
the global color of the reference image should be approximately
equal to the global color of the processed image, which should be
captured by the AMCE.

Contrast Difference (CD)
Contrast difference is a grayscale-base metric, where the change
in contrast is quantified between the normalized image and the
un-normalized image. In this work we adopt Roy et al.’s definition
of CD:

CD (N, UN) =
1

W

W
∑

i =1

σ (Ni)

µ(Ni)
−

1

W

W
∑

i =1

σ (UNi)

µ(UNi)
(9)

where σ (Ni) and σ (UNi) are the standard deviations of the
normalized and un-normalized images at some ith window, and
µ(Ni) and µ(UNi) are the means. Regarding CD, Roy et al.
hypothesizes that the contrast of the normalized image should be
greater than that of the un-normalized image. Therefore, post-
normalization a positive CD value would indicate an increase
in contrast. Furthermore, Roy et al. notes that over contrast
enhancementmay result in discolouration of the nuclei and tissue
structures. If the normalized image sets are used for clinical
diagnosis, darker nuclei could be misinterpreted.

Nuclei Segmentation Using CNNs
The CNN architectures utilized for nuclei segmentation were
adapted from Kumar et al. (2017), “CNN3” and Ronneberger
et al. (2015), “UNET3.” Unlike prior binary classifiers, which only
discriminate nuclei against the background, these segmentation
models were adapted to predict the nuclei and the corresponding
boundaries at the same time. The method predicts the category
of all the pixels of an image with only one pass. The input of
the network is an H&E ROI and the output is the estimated
classes. For CNN3 the output layer is a softmax function that
is used during prediction to give the probability of the center
pixel. The output of the model has three channels that represent

the probabilities of each pixel being background, boundary or
nuclei. For UNET3, the output layer is three-channeled and is
achieved through convolution with sigmoid activation. Similar to
CNN3, each output channel of UNET3 represents the probability
of pixels being background, boundary or nuclei. Contrary to
the method of Kumar et al. where a threshold applied to the
fuzzy output to separate the classes, in our implementation of
CNN3 and UNET3 the maximum probability is used to generate
a binary map for each class. Nuclei class images are then refined
via a simple and fast post-processing procedure.

Ensemble Segmentation
Ensemble segmentation has demonstrated benefit in digital
pathology segmentation tasks (Naylor et al., 2017; de Bel et al.,
2018). Traditionally, collections of networks are trained on
the same dataset, and each model is then used to make a
prediction. The predictions by each model are then averaged.
The added benefit of using ensembles is to reduce the variance
of the predictions, where each model can contribute to the
prediction. In this work, the models trained on un-normalized
and normalized data are used as an ensemble, where their
predictions are averaged to produce a final segmentation. For
instance, from Equation 10, let n represent models that were
separately trained on the same dataset, but each dataset had a
different color normalization method applied, i represent the
input or query image for segmentation, Pn(i) is the predicted
class probability image of nuclei for image i, andN is the number
of models.

E (i) =
1

N

∑

P1 (i)+P2 (i) .. + Pn (i) (10)

By averaging the probability images of each model, the output
probabilities represent the agreement or disagreement between
models. Nuclei regions where probabilities overlap would be
more prominent, while regions which have low agreement would
be attenuated. To our knowledge, this is the first attempt from a
color normalization perspective. The ensemble image is binarized
using Otsu’s threshold for the UNET3, and a fixed threshold
for CNN3. The final prediction therefore reflects a contribution
between all models. Normally a single CN method is applied to
normalize data or is combined with the un-normalized training
set. In these cases, any benefit of other CN methods, i.e., greater
contrast, or improved color constancy, is ignored. Therefore,
by including all un-normalized and CN models in the final
prediction, improved performance is expected. Figure 3 below
depicts the ensemble implementation.

Post-processing
The binary nuclei images predicted by the models are post-
processed using a series of basic filtering and morphological
operations. Initially, nuclei predicted images are filtered using
a 3 × 3 median filter. Applying a median filter is a form of
false positive reduction and attenuates single or very small pixel
regions. This filtering operation is followed by morphological
operations. Morphological operations in image processing apply
a structuring element to an input image, creating an output image
of the same size. For the proposed post-processing method, a
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FIGURE 3 | Segmentation framework.

structuring element is used to fill and close gaps in nuclei to
ensure there are no holes. Subsequently, very small objects that
were not attenuated by the median filter are removed in the
boundary images.

EXPERIMENTAL RESULTS

In this section the experimental setup, implementation details,
segmentation validationmetrics and results will be detailed. First,
color normalization using the toolbox will be outlined, followed
by normalization using CycleGAN. Next, data preparation,
parameters, and hyper-parameters concerning the CNN3 and
UNET3 architectures are described. Lastly, color normalization
results are presented followed by segmentation results.

The first experiment involved the normalization of the all
the datasets; TCGA-Kumar, TNBC, and SMH. The data is CN
by each of the five tested methods: histogram specification
“HS,” color transfer “RH” (Reinhard et al., 2001), “KH” (Khan
et al., 2014), spectral matching “MC” (Macenko et al., 2009),
and cycle generative adversarial nets “GAN” (Shaban et al.,
2019). To examine likeness and similarity to the reference
image sets and intra-population color variation, each of the
image quality metrics are measured for the respective dataset,
and the CV for each metric is measured over the population
of images.

The next experiment involved the development of the
deep CNN models. As previously stated, the TCGA-Kumar
set was used to develop the deep CNN architectures for
each CN dataset. This experiment results in six models for
each of the DL architectures (5 CN and 1 unnormalized).
In this stage, the ensemble classifier is also assembled, which
takes the result from each model and combines the outputs.

Segmentation performance for each of the models is measured
using segmentation overlap quantities for the TCGA test
dataset initially.

To demonstrate the clinical utility and generalizability to
multicenter data, themodels trained on the TCGAKumar dataset
are applied to two other datasets (new data) not observed during
training—the TNBC and SMH datasets. These images are all
from different studies, centers, etc. and contain color variability
that is representative of the multicenter challenge.

Color Normalization Reference Images
In this work, the color normalization toolbox (Magee, 2014)
was used to apply traditional color normalization techniques to
the datasets. Each method provided in the toolbox requires a
reference image. The reference image was acquired from a ROI
from St. Michael’s hospital of a lymph node metastases secondary
to breast invasive ductal carcinoma. The reference image was
chosen due to its uniform color and high contrast and can be seen
in Figure 4A. For normalization using CycleGANs, an image
population of ROIs were used instead of a single reference image
and can observed in Figure 4B.

Cycle-GAN Implementation
The CycleGAN implementation used in this work uses a
U-Net structured generator network of down-sampling and
up-sampling paths, and a discriminator network of four
discriminator layers comprised of a convolutional layer, Leaky
ReLu activation and instance normalization (Erik Linder-Noren,
2018; Shaban et al., 2019). Figure 5 displays the CycleGAN
architecture. In addition, most of the original architecture’s
hyper-parameters were maintained with λ = 10, learning rate
of 0.0002, batch size of 1, and identity loss of 0.1∗ λ (Zhu
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FIGURE 4 | (A) Reference image for stain normalization toolbox (B) Sample dataset for CycleGAN training.

FIGURE 5 | CycleGAN architecture.

et al., 2017; Erik Linder-Noren, 2018). For our experiments,
the un-normalized TCGA-Kumar, TNBC, and, SMH-Seg images
are being translated to the SMH-norm domain. Note, while
cases from the respective sets may be contained in both the
SMH-seg and SMH-norm sets, non-overlapping patches were
extracted and separated for the purpose of CycleGAN training
and segmentation.

Due to the input size requirements of the CNN3 and UNET3
architectures, multiple CycleGAN models were trained. The
CNN3 architecture requires a 1,000× 1,000× 3 input dimension
and therefore needed to be trained on images of the dimension.
Therefore, 30 1,000 × 1,000 × 3 ROIs of the SMH-norm data
were used. Next, to train the CycleGAN to transform images
from the TNBC data to the SMH-norm domain, 30 ROIs from
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the SMH-norm data were patched (non-overlapping) to match
the dimensions of the TNBC data, 512 × 512 × 3. Therefore, 30
patches from the TNBC data and 30 patches from SMH-norm
data were used to develop this model. Lastly, to transform the
SMH-seg images to the SMH-norm domain, 12,512 × 512 ×

3 images of the SMH-seg domain and 12,512 × 512 patches of
the SMH-norm domain were used to develop the CycleGAN.
Because the UNET3 architecture requires a 256 × 256 × 3
input dimension, the larger images for each dataset were simply
patched to the appropriate size. Each model was trained for 100
epochs. The model which exhibited the best results qualitatively
were chosen to represent the CN GAN images.

Deep CNN Architecture and Segmentation
In this subsection, the experimental setup and implementation
details for the nuclei segmentation models, as well as, the deep
CNN architectures will be detailed. As a result of the unique input
dimensions of the architecture’s data preparation and training
slightly varied and will therefore be outlined as well.

Data Preparation and Training Protocol for Nuclei

Segmentation
Due to the numerous types of CNN architectures used in nuclei
segmentation tasks, two architectures are used in our evaluation
of CN on DL-based segmentation. The architectures to be
evaluated are the standard CNN (Kumar et al., 2017), and the
standard U-Net (Ronneberger et al., 2015). Observing the effect
of CN onmultiple architectures demonstrates the generalizability
of our experiments. The data is CN by each of the five described
methods (HS, RH, KH, MC, GAN). The un-normalized and CN
datasets were then subsequently used to train each of the deep
learning architectures (CNN3 and UNET). The optimized model
for each dataset, along with the resultant ensemble model, are
used to segment nuclei from test images.

While, both architectures aim to achieve the same goal, the
data preparation and training process are slightly different. In
both implementations the original images are “patched” into
smaller images—for CNN3 51 × 51 pixels with a stride of 7, and
for UNET3 256 × 256 pixels of non-overlapping patches. The
CNN3 training protocol included a ∼74% training and ∼26%
testing split, while the UNET3 implementation used a 59%%
training, ∼17% validation, and ∼24% testing split. The testing
data for both architectures included the same representative
patches but differed by size and quantity to accommodate for
the architecture design. In total, for CNN3 409146 51 × 51
patches were used for training and 147972 patches of the same
size were reserved for the test set. In total, for the UNET3
architecture 292 256 × 256 patches were used for training, 60
patches for validation, and 112 for testing. Both data preparation
protocols apply the same patch augmentations (90◦, 180◦, and
270◦ rotations), but mainly differ in the structure of their
training labels. For CNN3, the center pixel of the 51 × 51 patch
has a corresponding label as either background, boundary, or
nuclei. However, for UNET3, each patch has a corresponding
image label, where each pixel of the label is one-hot encoded
for background, boundary, or nuclei. In addition, the original
evaluation structure (Kumar et al., 2017) organized the test sets

as same organ and different organ testing, where tissues under the
latter category, stomach, bladder, and colon, were excluded from
training. Therefore, to improve the generalization of our models
at least one image of stomach, bladder, and colon were included
in the training dataset. This training structure was maintained
for UNET3 as well. After patching, the RGB images and the
annotation data are applied to the CNN architectures to train the
nucleus-boundary models.

Both architectures were trained on a personal computer
(PC) equipped with a NVIDIA 1080 Ti graphics processing
unit (GPU), 32 Gigibytes (GiB) RAM, 1 Terabyte (TB) hard-

drive, and an Intel R© Core
TM

i7-8700 CPU. The CNN model
was implemented with Python using the PyTorch deep learning
framework. The learning rate was set to 0.001, and unlike
the original method in Kumar et al., the models were only
trained for 40 epochs (∼4-6 hrs) as accuracy did not increase
significantly for greater epochs. All other parameters such as
batch size, drop-out, and general architecture were maintained
as in the original paper (Kumar et al., 2017). Unlike the
CNN3 architecture, UNET3 was trained for a maximum of 100
epochs (∼0.25 h). For the complete training algorithm refer to
Figure 3 in section Ensemble Segmentation. Table 1 depicts,
in high level, some parameters and hyper-parameters for the
respective architectures.

Segmentation Validation Metrics
A series of overlap metrics are used to quantify segmentation
performance. Firstly, the dice similarity coefficient (DSC) is used
to evaluate the nuclei segmentation model’s performance (Dice,
1945) since it accounts for the overlap between automated and
manually segmented objects.

DSC =
2TP

2TP + FP + FN
(11)

A higher DSC indicates better segmentation accuracy compared
to a lower value. The Extra fraction (EF) is another metric
used to evaluate model performance. The EF quantifies over-
segmentation and can be found by:

EF =
FP

TP + FN
(12)

Ideal model performance would demonstrate a high DSC
value and a low EF value. Another metric commonly used to
quantify segmentation performance is the Jaccard (JAC) Index
or intersection over union, which measures the relative overlap
between the segmented image and the corresponding label
(Kumar et al., 2017). Given the nuclei image label, L, and nuclei
prediction, P, the Jaccard Index is calculated as:

JAC (L, P) =
|L ∩ P|

|L ∪ P|
(13)

A greater JAC value would indicate greater similarity between the
label and the prediction. Lastly, precision and recall additional
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TABLE 1 | Description of deep CNN architectures.

a) CNN3 architecture and description

Layer name Filter size Activation Dimension Dropout

Input image – 51 × 51 × 3 –

Conv layer 1 4 × 4 ReLU 48 × 48 × 25 0.2

Max-pool layer 2 × 2 Max 24 × 24 × 25 –

Conv layer 2 5 × 5 ReLU 20 × 20 × 50 0.25

Max-pool layer 2 × 2 Max 10 × 10 × 50 –

Conv layer 3 6 × 6 ReLU 5 × 5 × 80 0.5

Max-pool layer 2 × 2 Max 3 × 3 × 80 –

Fully-connected – ReLU 1024 × 1 0.6

Fully-connected – ReLU 1024 × 1 0.6

Output layer SoftMax 3 –

Hyper-parameters

Optimizer: stochastic gradient descent

Learning rate: 0.01

Momentum: 0.9

b) UNET3 architecture and description

Layer name Input dimension Output dimension

Input image – –

Encoder network 256 × 256 × 3 8 × 8 × 512

Center 8 × 8 × 512 1 × 1024

Decoder network 1 × 1024 256 × 256 × 32

Output layer 256 × 256 × 32 256 × 256 × 3

Hyper-parameters

Optimizer: Adam

Learning rate: 0.001

metrics used to quantify segmentation performance and are
defined as follows:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

Precision quantifies the proportion of nuclei pixels in the
prediction image that correspond to nuclei pixels in the label
image, while recall is the proportion of nuclei pixels in the label
image that were successfully detected by the prediction image. A
low precision score indicates over-segmentation while low recall
scores indicate under-segmentation.

Color Normalization Results
In this section, results of the CN schemes are analyzed with
respect to the TCGA-Kumar, TNBC, and SMH-norm datasets.
Each of the ROIs from all datasets were CN using one of
five methods. For ideal CN results, the normalized image
set should demonstrate low color intra-variability and high
likeness to the reference distribution. Figure 6 compares query
images along with their normalized results with respect to the
reference image. It is noted that the quality of CN differs
between CN methods and even between the normalized results

of a single method. It is possible that for each CN method
artifacts were introduced. Artifacts from CN would manifest as
a stained brightfied background, or incorrect color in nuclei
or tissue. Since H&E have affinity to certain tissue structures,
hematoxylin should be found predominantly in the nuclei,
whereas eosin should be found in the stroma or other tissues.
Image populations that maintain accurate stain representations
while being normalized, are predicted to result in better
performing segmentation models than images which are color
normalized inaccurately. Inaccuracies caused by color artifacts
and overlapping stain regions are expected to negatively impact
nuclei segmentation downstream.

Firstly, staining of the brightfield background, tint, or

discoloration of nuclei are present in many of the normalized
images across all the datasets. For instance, HS, and RH, which
simply apply the color statistics of the reference distribution to
the target (Reinhard et al., 2001; Gonzales and Woods, 2008),
contain gray-blue color in the normalized TCGA-Kumar images
and staining in the brightfield background and lipid structures in
the TNBC dataset. As another example, RH andGANnormalized
images of both the TCGA-Kumar and TNBC datasets, while
having a stained brightfield, result in normalized images that
exhibit a tint which effects the contrast between nuclei and
surrounding tissue structures. Furthermore, MC normalized

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 November 2019 | Volume 7 | Article 300

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Pontalba et al. Color Normalization in CNN Nuclei Segmentation

FIGURE 6 | Comparison of various color normalization methods. (A) TCGA-Kumar dataset (B) TNBC dataset and (C) SMH-seg dataset. First column represents the

reference image, while the following columns represent the color normalization methods, with the last column as the un-normalized query image.
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images across the TCGA-Kumar and TNBC datasets exhibits
inconsistent color mapping for the query images as indicated by
vibrant stain colors and incorrect color mapping of tissues from
the reference images to the query images. In addition, while KH
normalized images demonstrate a lack of likeness to the reference
image, the mapping of color in nuclei and stroma appear to
be more accurate than the other methods. With respect to the
SMH-norm data, with the exception of GAN, all other methods
demonstrate great similarity to the un-normalized dataset. This
is expected as the reference image is of the same tissue type and
sourced from the same institution.While not perfect, all methods

manage to achieve some similarity between the color normalized
images and some likeness to the reference image. This similarity
is be better analyzed through the quantitative results.

To assess the quality of CN quantitatively, the metrics that
were introduced by Roy et al. (2019) are used. Roy et al. stipulated
that the global color of the target image should be similar to
that of the processed image. This idea will be referred to as
likeness and will be quantified using AMCE α and β. In addition,
Roy et al. hypothesizes that image contrast should increase post-
normalization.This hypothesis will be analyzed using CD. Lastly,
in combination with Roy et al.’s hypotheses, the quality of CN

FIGURE 7 | Coefficient of variation for unormalized and color normalized datasets.
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TABLE 2 | Coefficient of variation for un-normalized and color normalized

datasets.

AMCE α AMCE β NMH NMI CD

TCGA-Kumar

Method 5.788 4.330 0.139 0.593 2.863

GAN 0.682 0.481 0.009 0.082 −0.568

HS 1.039 0.580 0.022 0.014 –4.922

KH 0.847 0.742 0.025 0.115 7.543

MC 1.109 1.344 0.023 0.129 4.988

RH 1.311 0.618 0.017 0.081 –4.179

UN 0.800 0.565 0.042 0.172 N/A

TNBC

GAN 0.172 0.196 0.824 0.051 0.407

HS 0.828 0.796 0.031 0.016 0.146

KH 0.447 0.396 0.108 0.047 0.216

MC 0.568 1.000 0.026 0.078 0.298

RH 0.732 0.661 0.023 0.077 0.147

UN 0.205 0.475 0.257 0.031 N/A

SMH

GAN 0.775 0.538 0.030 0.046 –0.346

HS 1.068 0.797 0.030 0.045 1.332

KH 1.034 1.083 0.014 0.079 0.544

MC 0.496 0.739 0.019 0.079 –7.770

RH 0.870 0.734 0.023 0.080 1.766

UN 0.468 1.055 0.014 0.087 N/A

Bolded values indicate methods which achieved the lowest value for each validationmetric

with respect to each dataset.

is evaluated by analyzing the variability amongst the normalized
image population. This notion will be referred to as color intra-
variability and will be quantified using the proposed metric,
NMH. Analyzing the coefficient of variation for these metrics
enable us to assess the stability of the CN methods across the
images of each dataset. Metrics with greater CV values indicate
that the CN method is not consistent. For instance, high CV
values for AMCEα,β indicate that the CN method had a large
variation in global color error when compared to the reference
image. Furthermore, for both NMI and NMH, high values of
CV indicate large variations in intensity and color amongst the
images of each CN dataset. Lastly, positive and high values of
CV for CD indicate that the CN method was inconsistent in
producing images with greater contrast, while negative and high
CV values indicate that there was some contrast enhancement.
Lower and positive values for CD are ideal.

The CV of NMI, AMCE, CD, and NMH were computed and
compared amongst the CN image sets to the un-normalized set
and is shown in Figure 7 and Table 2. Quantifying both the
intra-variability of the image sets, and likeness to the reference
distributions with these metrics by the CV will give a proxy
measurement of the quality of CN. By knowing the quality of
CN, we are hoping to infer which image sets may generate more
robust segmentation models through indication of minimized
variability within the dataset.

Based on Figure 7 and Table 2 the HS, MC, and RH methods
seem to produce less consistent CN results for TCGA-Kumar

data, as demonstrated by the higher CV values for AMCE α and
β, which indicates that global color characteristics are variable
throughout the dataset. This is consistent with both the TNBC
and SMH datasets except for KH, which is less consistent for the
SMH dataset. With respect so NMI, most methods demonstrate
intensity variability except for HS. In terms of color intra-
variability (NMH), most methods demonstrate consistent color
as defined by the median hue, except for the GAN method
applied to the TNBC dataset. Lastly, CD difference appears to be
highly variable for most methods of the TCGA-Kumar dataset
and MC of the SMH dataset. The TNBC dataset shows stable CD
post-normalization. With respect to segmentation performance,
datasets which exhibit low variability in their CN metrics are
predicted to outperform models whose datasets demonstrate
large color variabilities.

Nuclei Segmentation Model Performance
We tested two commonly used baseline architectures for
evaluating the effect of CN on nuclei segmentation; the CNN3
and UNET as outlined in section Experimental Design, in
addition to the results obtained by un-normalized images and
the ensemble classifiers. The TCGA-Kumar data was used to
develop the models. Training was implemented using 409146
representative patches from 22 ROIs, and 147972 representative
patches from 7 ROIs of mixed tissue types was used for testing.
To investigate the generalization of CNNmodels that use CN, 46
patches from 12 ROIs of triple negative breast cancer tissue, and
48 patches from 12 SMH lymph node metastases ROIs images
were also tested. These datasets effectively demonstrate multi-
institutional data with more than 21,000 nuclear boundaries
annotated for TCGA-Kumar, 2754 cells for TNBC, and 1459 cells
for SMH-seg. Furthermore, these datasets exhibit unique staining
and color properties which make them ideal for our experiments.

Note, for testing the UNET3 architecture on TGCA-Kumar
data, representative non-overlapping patches were extracted,
segmented, and then re-combined to measure segmentation
performance. In addition, when testing the CNN3 on the TNBC
and SMH-seg datasets, the same patches were extracted but
zero-padded to match the input size of the CNN3. While
training, a model was created at each epoch to select the most
optimal epoch. To select the optimal models, segmentation
performance as a function of epoch was plotted and analyzed.
CNNs that were trained on un-normalized, GAN, HS KH,
MC, and RH, models demonstrated the greater accuracy on
the test set at epoch 16, while For UNET3, greater results
were observed at epoch 40. Therefore, the models used at
these epochs were used for segmentation evaluation. Figure 8
depicts a test image compared to the ground truths across
all datasets. The first row depicting a sub-patch of an ROI
while subsequent rows in Figure 8 depicts the predictions by
the deep CNN architectures and the Ensemble. The binary
masks from the output are the compared to the ground truths
over all models and datasets using the average Dice Similarity
Coefficient (DSC), Jaccard Index (JAC), Extra Fraction (EF),
Precision (PR), and Recall (RC) over the respective dataset in
Figures 9, 10.
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FIGURE 8 | Sample segmentation result across all datasets (A) TCGA-Kumar (B) TNBC (C) SMH-seg.
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FIGURE 9 | TCGA-Kumar segmentation validation metrics.

Performance on TCGA-Kumar Dataset
Using DSC as the main performance metric, over both
architectures, the Ensemble segmentation method produced the
highest and most consistent DSC as depicted in Figure 9. From
Figure 8A, ensemble segmentations are more refined compared
to other methods and there is less noise in the segmentation.
This is likely due to the fact that the result combines the most
common attributes among the methods, which perhaps are the
most reliable and consistent features across the datasets. In
terms of the poorest performance in CNN3, the RH, and MC
demonstrated the lowest mean DSC values and/or the highest
spread indicating lower reproducibility. The HS method also had
a high standard deviation on the CNN3 model. Similarly, in the
UNET architecture, the RH method produced the lowest mean
DSC, albeit with a relatively low standard deviation, compared to
that of the HSmethod. Observing the segmentations qualitatively
in Figure 8A, RH and HS have more difficulty with clustered or
overlapping nuclei. Analyzing these results with respect to the
CN metrics, HS, MC, and RH, exhibited the greatest variability
in producing images that were similar to the reference image.
This is apparent for the AMCE α and β values, which indicates
there is a wide variability in the global color characteristics.
This information is not available using the traditional NMI
metrics, as shown, since the intensity variability is low on the HS
method, but this method does not produce optimal segmentation
results. This further demonstrates that intensity based metrics
may not be sufficient in quantifying CN performance (and
therefore, does not relate to downstream processing such as

nuclei segmentation). Comparing these results to that of the un-
normalized data; the CV for the ACME metric is higher for the
un-normalized data compared to for example, the GAN method,
and as seen by the segmentation results, the un-normalized data
models are performing worse that than of the GAN models. This
may be further indicated by the low color intra-variability as
defined by the NMH. It is clear that the un-normalized data
has the highest intra-variability with respect to the median hue
value, and this variability may translate to poorer segmentation
performance. That being said, despite the variability in the un-
normalized data, there is still modest generalization of the CNN3
and UNET3 architectures on this dataset. In general, the CNN3
architecture had lower and more variable DSC values than the
UNET3 architecture, indicating that the UNET provides more
reliable and consistent segmentation results for this dataset. With
respect to EF, the UNET3 seemed to have some issues with
under segmentation (i.e., false positives) as KH and RH for this
architecture have a larger and greater spread of values compared
to other models. For CNN3, the Ensemble model had a greater
spread of EF values whereas RH over-segmented images the least.

Performance on TNBC Dataset
Compared to the TCGA-Kumar set, both deep CNN
architectures across all the models observed a lower performance
on the TNBC testing set (Figure 10A), which suggests some
generalization issues. Despite this, combining segmentations
from all predictions in the Ensemble model achieved the highest
and most consistent DSC compared to the other models,
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FIGURE 10 | Segmentation validation metrics on new data. (A) TNBC dataset (B) SMH-seg dataset.

suggesting the combination of the results from the various
models and datasets has the effect to increase signal, while
suppressing noise. In the CNN3 model, the poorest performing
models were from the RH, HS, and MC data, demonstrated

by low mean DSC values with wide variance indicating sub-
optimal segmentation and low reproducibility. These trends
may be explained by the higher CVs in the ACME metrics,
indicating that there is global color differences among the image

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 17 November 2019 | Volume 7 | Article 300

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Pontalba et al. Color Normalization in CNN Nuclei Segmentation

populations that create generalization challenges for the CNN3
model. Similarly, in the UNET3 architecture, the GAN and
the HS methods produced the lowest and widely varying DSC.
This may be explained by considering the NMH and ACME
metrics together, which show that there is a large variance
among the images in terms of the global color characteristics
and median hues. These results are consistent with what was
previously observed for TCGA-Kumar segmentation. In terms
of comparison with un-normalized data, it is interesting to
note that the CV of the ACME and NMH metrics are lower
than some of the other CN methods, and this un-normalized
dataset achieved moderate performance for both CNN3 and
UNET. This could mean a series of things. Firstly, the CN
may be modifying the images in an unfavorable manner by
increasing the global color variability in the image population,
and the level of color variation in the original unnormalized
data can be handled by these two architectures. In general,
as found before, the UNET3 has higher performance over
most methods and more consistently demonstrates higher
generalization capabilities. Analyzing the EF results, each model
seemed to have an issue with under-segmentation as the spread
of EF values are quite large. By observing (Figure 8B) for
this specific case, UNET3 had difficulty with clustered nuclei,
whereas CNN3 was able to segment individual nuclei more
effectively. However, nuclei predicted by CNN3 contain more
holes, especially for GAN and HS. Poor segmentation accuracy
for both architectures could be attributed to unfavorable color
artifacts introduced post-normalization. From Figure 6B, MC
HS, and RH, introduce incorrect color to the tissue structures
and background. Analyzing the CN metrics, these models
demonstrate high variability in the AMCE, low color intra-
variability, and no improvement in contrast. The low color
intra-variability for these methods may indicate that an image’s
color is too consistent such that color is transferred incorrectly to
nuclei and stroma. Therefore, the global color observed, though
similar to the reference, is an inaccurate representation because
of CN.

Performance on SMH-Seg Dataset
Based on this dataset, yet again, the ensemble segmentation
model is one of the top performers for both architectures.
However, interestingly, in this dataset, the performance of the
ensemble classifier is close to that of the un-normalized data
with some outliers for the CNN3 architecture. Observing the
ACME metrics, it can be seen that the CV for the ACME α

quantity is the lowest for the original un-normalized data, which
may be explaining the poorer performance in the CN schemes
(difference in red and green colors with red as dominant in
H&E). In addition, the NMH is low on the un-normalized
dataset, indicating low intra-color variability and therefore, could
be explaining the good segmentation performance. In terms of
poor performance, the GAN and RH have the lowest mean
DSC and highest variance, indicating generalization issues in
CNN3. Similarly, in the UNET architecture, the HS and GAN
methods are the poor performers. Observing the CN metrics,
there are some trends that are supporting these segmentation
results, although it may not be as clear as the previous examples.

Because the reference image was taken from the same institution
of the testing images, perhaps the color across the images would
be similar—and therefore, the metrics would be slightly in favor
of these images. Despite this, it is still evident that there is wide
variability in CN methods and most of the models demonstrate
variable color error but maintain low color intra-variability.
Regarding EF, the models exhibited low EF values except for
the Ensemble method, which has an outlier that skews overall
performance. Comparing the results qualitatively, prediction
images are very similar for the case depicted (Figure 8C). Due
to the similarity of each prediction, the Ensemble prediction is
similar to the other methods.

Performance on Multi-Center Dataset
In the previous subsections, segmentation performance was
analyzed as a function of dataset and CN method. In this
subsection, the results are analyzed overall to observe the
optimal CN method per architecture, and overall generalization
capabilities of each architecture. Firstly, instead of treating
each dataset separately, the CN trends over all multicenter
data combined are investigated by averaging the segmentation
validation metrics over all three datasets. A greater perspective
can be gained on which architecture across the different
CN models performed better overall. Figure 11A depicts the
segmentation performance across the multicenter data. Table 3
depicts the average segmentation validation metrics across the
datasets. Bolded values indicate the top performing models.

Our results demonstrate that segmentation performance
varied depending on the CN method applied. In CNN3, the
MC, RH, GAN, and HS were the worst performing in terms
of DSC over the multi-center datasets. The best performance
was using the KH normalization, which was comparable to the
un-normalized data. Inspection of the CN metrics in section
Color Normalization Quality Metrics, show that low CV values
for NMH or moderate CV values for ACME may describe
this phenomena. An interesting point to mention regarding the
CN metrics can be brought to attention here. Although the
metrics vary greatly between datasets, we believe it is not possible
to directly compare metrics across datasets, since the overall
structure and color variability of the dataset will result in different
“baseline” values for these metrics. Instead, it may be more
pertinent to compare metrics within datasets that are generated
by different normalization schemes. Segmentation performance
was negatively impacted if CN reduced contrast or introduced
color artifacts. Furthermore, false color, incorrect tissue stain
localization, and clustered nuclei resulted in objects not being
detected. This is especially evident if the original image has poor
contrast, and the applied CN method does not improve contrast
or increase object discernibility.

On average, the UNET3 architecture achieved a greater DSC
than the CNN3 architectures indicating better generalization
capabilities for UNET over all CN and un-normalized
data models. In both architectures, the Ensemble method
demonstrated the greatest average DSC, indicating that there is
a synchronized averaging effect occurring—where the “signal” is
being amplified, while the noise is being suppressed. Consistent
with the previous results, under segmentation is most prominent
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FIGURE 11 | Segmentation validation metrics across all datasets, (A) CN model as a function of architecture (B) dataset as a function of CNN model.

for UNET (see EF), although it is only slightly higher than that
of the CNN3.

Overall, it was found that segmentation models based on
un-normalized datasets are comparable to models that use CN,
especially in UNET. This demonstrates that even in the absence
of a consistent color representation in the data, the deep learning

models have still effectively learned how to discriminate nuclei
and boundaries. This is an extremely interesting result—that
despite wide color variability in the data, the models built from
un-normalized data can still generalize. Therefore, we infer
that the features the deep learning models learn may be color
invariant, or that color features are weighted less when obtaining
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TABLE 3 | Mean validation metrics accross segmentation models and datasets.

Validation metrics Datasets Architecture

CNN3 UNET3

DSC SMH-seg 0.609 ± 0.180 0.669 ± 0.132

TCGA-Kumar 0.727 ± 0.084 0.771 ± 0.084

TNBC 0.365 ± 0.159 0.469 ± 0.177

EF SMH-seg 0.732 ± 0.174 0.784 ± 0.124

TCGA-Kumar 0.234 ± 0.155 0.271 ± 0.258

TNBC 0.508 ± 0.184 0.611 ± 0.188

Precision SMH-seg 0.786 ± 0.100 0.830 ± 0.082

TCGA-Kumar 0.781 ± 0.092 0.787 ± 0.129

TNBC 0.566 ± 0.112 0.667 ± 0.161

Recall SMH-seg 0.732 ± 0.215 0.783 ± 0.143

TCGA-Kumar 0.715 ± 0.134 0.788 ± 0.094

TNBC 0.659 ± 0.188 0.704 ± 0.188

Bolded values indicate the architecture which achieved the best performance for each

validation metric.

the pixel prediction. It also could mean that the features learned
are relative colors, or abstractly related to color contrast, which
does not take into account absolute colors. This phenomenon
could be the result of using 2D convolutional filters on each
of the R, G and B channels separately in the first layer. Color
images are highly correlated, and color edges and textures are
distributed across the RGB channels. Therefore, by using 2D
filters, the inherent correlation across channels may be lost,
which ultimately may cause the CNN to be less sensitive to
color information. Therefore, if CN is applied for pre-processing,
it is imperative to consider the risks of using CN instead of
un-normalized data.

In Figure 11B, the graph is included as an average over
all CN and un-normalized data models, to show overall
generalization capabilities of both architectures as a function
of dataset. Essentially, such analysis will differentiate which
architecture is able to generalize to the validation sets. It was
expected that the architectures would perform well on the
TCGA-Kumar test set, as at least one ROI of each tissue
type was included in the training data. Different from this,
the TNBC data was of a tissue type observed during training
but exhibited very dissimilar stain and color properties. In
addition, the SMH-seg dataset was an entirely new tissue type
not included in the training set, but showed some similarity
to the stain properties of the training data. Furthermore,
the training data was normalized using images from the
SMH dataset so it is inferred that the architectures would
generalize well.

As shown, and supported by other results, the UNET
architecture performs the best overall datasets (with highest
DSC) at a cost of a slightly higher false positive rate over the
CNN3. It is shown that across datasets, the TCGA-Kumar is
the best performing, which aligns with what was previously
stated. The poorest performance comes from the TNBC data,

and we believe this is largely because the original color
characteristics were so different from the original training data.
Observing Figure 6, the un-normalized TNBC images appear
to be quite faint with low stain concentration in general across
the example images. Compared to the un-normalized images
of the TCGA-Kumar dataset, the TCGA-Kumar images appear
to be highly concentrated with H&E staining. Furthermore,
even compared to the SMH set, the SMH images appear
to have high concentrations of H&E staining. Perhaps low
CN performance for the TNBC set can be attributed to the
stark differences in stain concentrations between the TNBC
images and the image used to normalize them. As previously
described, high CV for AMCE α, β values may negatively impact
generalization. From this, we can conclude that the color or
stain mapping from the reference image to the target set is
not consistent across all datasets. This indicates that features
or colors learned by the CNN models may be different from
set to set, and despite the fact that normalization is applied,
features can be altered thus impacting model generalization.
These observations are consistent with the segmentation metrics
in Figure 11B.

DISCUSSIONS AND CONCLUSIONS

In this work, we evaluated the impact of color normalization
on the complex task of segmenting nuclei for computational
pathology applications.We applied common color normalization
techniques to datasets that contain highly variable and unique
staining properties, and evaluated the impact of normalization
on popular baseline CNN architectures. At the same time, we
utilized recent normalization metrics and proposed a novel one,
NMH, which measures the color intra-variability of an image
population. In addition, we proposed an ensemble segmentation
method which uses individual CN models as weak learners to
make joint predictions.

Our results demonstrate that coupling the NMH with the
metrics proposed by Roy et al. (2019) can reveal interesting
patterns which reflect the impact of color normalization on
segmentation using CNN architectures. Observing variable
AMCE and NMH values could be an indication if a CN method
would result in desirable segmentation results. Only analyzing
the NMI, which is traditionally used, does not indicate the color
variability of an image population and may not be a desirable
metric for quantifying the quality of color normalization.

However, despite the observed variability in the color
normalization validationmetrics, CNNmodels, especially UNET,
are able to effectively segment nuclei especially when an ensemble
prediction is used. The ensemble method outperformed all
other models on average across all the datasets. In addition,
our results reveal, that color normalization impacts CNN
generalization, possibly as a result of features modified by
the CN methods. For future works, more data for CycleGAN
normalization, and additional architectures are desirable. By
expanding this experimentation and investigating the many
different CNN architectures, a better understanding of CNN
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features can be realized and tasks such as segmentation could be
better understood.
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