
ORIGINAL RESEARCH
published: 14 November 2019
doi: 10.3389/fbioe.2019.00339

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 November 2019 | Volume 7 | Article 339

Edited by:

Min Tang,

Jiangsu University, China

Reviewed by:

Xiao Chang,

Children’s Hospital of Philadelphia,

United States

Guang Wu,

Guangxi Academy of Sciences, China

*Correspondence:

Tao Huang

tohuangtao@126.com

Yu-Dong Cai

cail_yud@126.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 09 September 2019

Accepted: 30 October 2019

Published: 14 November 2019

Citation:

Pan X, Zeng T, Yuan F, Zhang Y-H,

Chen L, Zhu L, Wan S, Huang T and

Cai Y-D (2019) Screening of

Methylation Signature and Gene

Functions Associated With the

Subtypes of Isocitrate

Dehydrogenase-Mutation Gliomas.

Front. Bioeng. Biotechnol. 7:339.

doi: 10.3389/fbioe.2019.00339

Screening of Methylation Signature
and Gene Functions Associated With
the Subtypes of Isocitrate
Dehydrogenase-Mutation Gliomas

XiaoYong Pan 1,2,3†, Tao Zeng 4†, Fei Yuan 5, Yu-Hang Zhang 6, Lei Chen 7,8, LiuCun Zhu 1,

SiBao Wan 1, Tao Huang 6* and Yu-Dong Cai 1*

1 School of Life Sciences, Shanghai University, Shanghai, China, 2 Key Laboratory of System Control and Information

Processing, Ministry of Education of China, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong

University, Shanghai, China, 3 IDLab, Department for Electronics and Information Systems, Ghent University, Ghent, Belgium,
4 Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai,

China, 5Department of Science and Technology, Binzhou Medical University Hospital, Binzhou, China, 6 Shanghai Institute of

Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, 7College

of Information Engineering, Shanghai Maritime University, Shanghai, China, 8 Shanghai Key Laboratory of PMMP, East China

Normal University, Shanghai, China

Isocitrate dehydrogenase (IDH) is an oncogene, and the expression of a mutated IDH

promotes cell proliferation and inhibits cell differentiation. IDH exists in three different

isoforms, whose mutation can cause many solid tumors, especially gliomas in adults.

No effective method for classifying gliomas on genetic signatures is currently available.

DNA methylation may be applied to distinguish cancer cells from normal tissues. In this

study, we focused on three subtypes of IDH-mutation gliomas by examining methylation

data. Several advanced computational methods were used, such as Monte Carlo feature

selection (MCFS), incremental feature selection (IFS), support machine vector (SVM),

etc. The MCFS method was adopted to analyze methylation features, resulting in a

feature list. Then, the IFS method incorporating SVM was applied to the list to extract

important methylation features and construct an optimal SVM classifier. As a result,

several methylation features (sites) were found to relate to glioma subclasses, which

are annotated onto multiple genes, such as FLJ37543, LCE3D, FAM89A, ADCY5,

ESR1, C2orf67, REST, EPHA7, etc. These genes are enriched in biological functions,

including cellular developmental process, neuron differentiation, cellular component

morphogenesis, and G-protein-coupled receptor signaling pathway. Our results, which

are supported by literature reports and independent dataset validation, showed that our

identified genes and functions contributed to the detailed glioma subtypes. This study

provided a basic research on IDH-mutation gliomas.
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INTRODUCTION

Isocitrate dehydrogenase (IDH) exists in three different isoforms.
IDH1 and DH2 catalyze the same reaction and use NADP+
as a cofactor instead of NAD+. IDH3 converts NAD+ to
NADH in the mitochondria. IDH is an oncogene, and the
expression of mutated IDH promotes cell proliferation and
inhibits cell differentiation. Mutant IDH-derived (R)-2HG is
a potential malignant substance and unwanted byproduct of
cellular metabolism. 2HG dehydrogenase (2HGDH) prevents
2HG from accumulating in cells, and its intracellular levels in
normal cells are maintained at <0.1mM. The transformation
induced by (R)-2HG is effective and reversible, suggesting
that inhibiting 2HG has efficacy in the treatment of IDH
mutant cancers. Mutations at Arg132 of IDH1 are present
in five of six secondary glioblastoma (GBM) subtypes, and
IDH mutations have been found in many other solid tumors
(Losman and Kaelin, 2013).

Glioma in adults includes three main categories, namely,
glioblastoma (GBM), astrocytoma, and oligodendroglioma. They
are determined by genetic and histologic features. IDH1 and
IDH2 mutations are generally detected in astrocytoma and
oligodendroglioma but not in the GBM subtype. Thus, IDH-
mutation is an important marker for glioma classification.
Different subtypes of glioma have different mutation patterns.
Mutations in ATRX and TP53 are usually identified in
astrocytomas with mutant IDH, but TRET promoter variations
and chromosome abnormality are generally identified in
oligodendrogliomas (O-IDH) (Cancer Genome Atlas Research
Network et al., 2015). Thus, A-IDH and O-IDH are two major
subtypes of IDH-mutant gliomas distinguished by co-occurring
genetic signatures and histopathology (Venteicher et al., 2017).

No effective method for classifying gliomas on genetic
signatures is currently available. By contrast, DNA methylation
is used to distinguish cancer cells from normal tissues (Delpu
et al., 2013). DNA methylation is a part of the normal epigenetic
modification with potential regulatory significance, such as
regulating gene expression patterns. In this study, we focused
on three subtypes of IDH-mutation gliomas by methylation
data, including astrocytomas with IDH mutations (A-IDH),
astrocytoma with IDH mutation and enriched HG (A-IDH-
HG), and oligodendrogliomas with IDH mutations (O-IDH).
Our analyzing procedures used several advanced computational
methods, like Monte Carlo feature selection (MCFS; Draminski
et al., 2008), incremental feature selection (IFS; Liu and
Setiono, 1998), and support machine vector (SVM; Cortes and
Vapnik, 1995), etc. A feature list was produced by applying
the MCFS method on the methylation data. Then, the IFS
method followed to extract important methylation features
by evaluating the performance of SVM on different feature
subsets that consisted of top features in the list. As a result,
we accessed some key methylation features (sites) related to
the classification of gliomas annotated onto multiple genes,
such as FLJ37543, LCE3D, FAM89A, ADCY5, ESR1, C2orf67,
REST, EPHA7, etc. Furthermore, we obtained several biological
functions related to the classification of glioma subtypes, which
are also related to genemethylation and corresponding functions,

such as cellular developmental process, neuron differentiation,
cellular component morphogenesis, and G-protein-coupled
receptor signaling pathway. We then validated these methylation
signatures, genes, and functions on an independent dataset. We
identified a group of methylation sites, genes, and functions by
using our screening analysis method. This study provided a basic
research on the detailed classification of A-IDH andO-IDH cases.

MATERIALS AND METHODS

Data Sources
We downloaded the methylation profiles of patients with IDH-
mutation glioma from GEO (Gene Expression Omnibus) under
accession numbers GSE90496 and GSE109379, which were
originally generated by Capper et al. (2018). The GSE90496
dataset was used as a training dataset, and the GSE109379 dataset
was used as an independent test dataset. The training dataset
had samples of 78 A-IDH subclasses, 46 high-grade astrocytoma
(A-IDH-HG) subclasses, and 80 1p/19q co-deleted O-IDH
subclasses. The test dataset had 94 A-IDH, 41 A-IDH-HG, and
83 O-IDH samples. The overlapped 42,383 methylation probes
between training and test datasets were used to encode IDH-
mutation glioma in each patient to investigate the methylation
difference among different IDH-mutation glioma subclasses.

Feature Selection
In this study, we first used MCFS (Chen et al., 2018a, 2019a,b;
Pan et al., 2018, 2019a,b; Li et al., 2019) to rank the input features,
and the ranked features were further selected through IFS (Zhang
et al., 2015; Zhou et al., 2015; Chen et al., 2017b,c, 2018b; Wang
et al., 2017; Li and Huang, 2018; Zhang T. M. et al., 2018) with a
supervised classifier SVM (Cortes and Vapnik, 1995).

MCFS is a supervised feature selection method based on
multiple decision trees (Draminski et al., 2008). We used it to
generate m bootstrap sample sets and t feature subsets from
original data. One decision tree was grown on the basis of each
combination of bootstrap sets and feature subsets. A total of m
× t decision trees was obtained. According to these trees, we
calculated relative importance (RI) score for each feature. The
main criterion is that the more frequent a feature is involved in
splitting nodes of growing the m × t trees, the more important
the feature will be; the accuracy of each decision tree is also
considered for evaluating the importance of this feature. In detail,
the RI score for one feature f is computed by

RIf =

m×t∑

τ=1

(wAcc)uIG(nf (τ ))(
no.in nf (τ )

no.in τ

)

v

,

where wAcc stands for the weighted accuracy, nf (τ ) represents
a node of f in decision tree τ , the information gain of nf (τ )
is denoted as IG(nf (τ )), no.in nf (τ ) stands for the number of
samples in nf (τ ), no.in τ indicates the number of samples in τ .
u and v are weighting factors, which were set to one in this study.
After accessing the RI scores of all features, we ranked them in a
list in terms of the decreasing order of their RI scores.

MCFS only ranked the input features but could not remove
redundant features. The feature selection by an arbitrary cutoff
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of RI score was not the best method. Thus, IFS, which is a feature
selection method with a supervised classifier, was further used to
identify the optimum number of features for classification. IFS
first generated a series of feature subsets with a step of 10 based on
the ranked features fromMCFS. The first feature subset consisted
of the top 10 features, the second feature subset comprised the
top 20 features, and so on. A supervised classifier was built
and evaluated on the samples consisting of the features from
each feature subset through 10-fold cross-validation. Lastly, we
selected the optimum feature subset with the best performance.

Supervised Classifiers
We integrated IFS with SVM. To compare the performance
baseline, we also evaluated the IFS with random forest (RF;
Ho, 1995) and repeated incremental pruning to produce error
reduction (RIPPER; Cohen, 1995).

SVM is a supervised classification algorithm based on
statistical theory (Cortes and Vapnik, 1995). It finds a hyperplane
with the maximummargin between two classes. SVM can handle
linear and non-linear data. For non-linear data, SVM first maps
the original data into a high-dimensional space by using kernels
in which new data can be linearly separable. SVM is designed
for binary classification, and one-vs.-the-rest strategy is used for
multi-class classification. Multiple SVMs are trained, and each
SVM is trained on positive samples from one class and negative
samples from the remaining classes. A new sample is assigned
a predicted class label corresponding to the highest probability
score from one SVM.

RF is a supervised meta-classifier based on multiple decision
trees (Ho, 1995). It grows multiple decision trees from bootstrap
sets, and each decision tree is trained on a randomly selected
feature subset. In contrast to SVM, RF can be directly applied to
multiclass classification.

RIPPER is a rule-based classifier that greedily produces
classification rules (Cohen, 1995). It first finds a good rule to
cover training samples as much as possible and then removes
the covered samples from the training set for mining the next
rule. RIPPER repeats the above process until all the samples are
covered by the produced classification rules.

To quickly implement above-mentioned three classification
algorithms, three tools “SMO,” “RandomForest,” and “JRip” in
Weka (Witten and Frank, 2005) were employed. Their default
parameters were used.

GO- and KEGG-Based Enrichment Analysis
To investigate whether the selected methylation probes were
significantly enriched onto certain biological functions, we
did the GO and KEGG enrichment analysis. The identified
methylation probes were mapped onto genes based on the probe
annotations of Illumina HumanMethylation450 BeadChip at
GEO under the accession number GPL13534. The genes were
enriched onto GO and KEGG terms by using hypergeometric
test. We used R function phyper to perform the hypergeometric
test. The KEGG database Release 86.0 was retrieved using
R/Bioconductor package KEGGREST (https://bioconductor.org/
packages/KEGGREST/) and the GO database with date stamp
of 2017-Nov01 was provided in R/Bioconductor package

org.Hs.eg.db (https://bioconductor.org/packages/org.Hs.eg.db/).
The hypergeometric test P-values were adjusted to obtain their
false discovery rate (FDR). The GO terms and KEGG pathways
with FDR smaller than 0.05 were considered as significant
and analyzed.

Performance Evaluation
We used a multiclass classifier to classify samples from A-IDH,
A-IDH-HG, and O-IDH and evaluated the trained classifiers by
using 10-fold cross-validation (Kohavi, 1995; Chen et al., 2017c,
2018b; Li et al., 2019; Zhang et al., 2019; Zhou et al., 2019)
on the training set. To further demonstrate the generalization
ability of model learning, we examined the trained classifiers
on an independent test set. We also considered Matthews
correlation coefficient (MCC; Matthews, 1975; Gorodkin, 2004;
Chen et al., 2017a; Zhao et al., 2018, 2019; Cui and Chen, 2019),
accuracies of individual classes, and overall accuracy to measure
model performance.

RESULTS

In this study, we adopted several advanced computational
methods to investigate the methylation profiles of patients with
three IDH-mutation glioma subclasses. The entire procedures are
illustrated in Figure 1.

We first ranked 42,383 features (e.g., methylation sites) as the
input by using MCFS. The RI scores of the input features are
given in Table S1. A total of 19,692 features have RI scores >0,
and the remaining 22,691 features have no any discriminative
ability to classify samples from A-IDH, A-IDH-HG, and O-IDH.
Thus, only 19,692 features were used for the tasks below.

Next, we evaluated the IFS with an SVM on the training set
by using 10-fold cross-validation. Table 1 shows that we yielded
the best MCC value of 0.977 when the top 750 features were
used, with an overall accuracy of 0.985. The accuracies on three
subclasses were 0.987, 0.957, and 1.000, respectively, indicating
the good performance of SVM based on top 750 features.
Figure 2B illustrates that the MCCs of SVMs changed with the
number of the involved features. To justify why we selected SVM
as the final classifier of IFS, we also evaluated the performance
of IFS with RF and RIPPER. In Table 1, Figures 2A,C, IFS with
RF yielded the best MCC value of 0.962 and an overall accuracy
of 0.975 when the top 1,330 features were used. The accuracies
on three subclasses were 0.987, 0.913, and 1.000, respectively.
RF used more features but yielded a lower performance than
SVM did. By contrast, the rule-based method RIPPER yielded
lower performance than SVM and RF did, thereby achieving the
MCC of 0.895 when the top 19,270 features were utilized. The
accuracies on three subclasses were also lower than those of SVM
and RF (see the last row ofTable 1). RIPPERwas worse than SVM
and RF because RIPPER is a rule-basedmethod that considers the
balance between detecting interpretable classification rules and
obtaining the high classification performance of “black-box.” The
performance corresponding to the number of features of SVM,
RF, and RIPPER is given in Table S2.

To further demonstrate the generalizability of our learned
models, we further evaluated the IFS with SVM, RF, and RIPPER
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FIGURE 1 | The entire procedures for investigating the methylation profiles of patients with three IDH-mutation glioma subclasses.

TABLE 1 | The 10-fold cross-validation performance of IFS with different

classifiers on the training set.

Classifier Number of

optimum

features

Accuracy Overall

accuracy

MCC

A-IDH A-IDH-HG O-IDH

SVM 750 0.987 0.957 1.000 0.985 0.977

SVM 20 1.000 0.913 1.000 0.980 0.970

RF 1,330 0.987 0.913 1.000 0.975 0.962

RIPPER 19,270 0.962 0.848 0.950 0.931 0.895

on the independent test set. Table 2 shows their performance on
the independent test set, where the same number of optimum
features identified on the training set was used for each classifier.
The MCCs yielded by SVM, RF, and RIPPER were 0.899, 0.907,
and 0.972, respectively. The three methods achieved a high
performance, demonstrating the generalizability of the trained
models. RIPPER yielded the lowest 10-fold cross-validation
performance on the training set, but it yielded the highest
performance on the independent test set. This result indicated
that the simple rule-basedmethod RIPPERmight not easily suffer
model overfitting compared with that of complicated classifiers
SVM and RF, but too many features were used in this classifier.

As mentioned above, SVM with top 750 features yielded
the best performance on the training set. However, when top

20 features were used, the SVM generated the MCC of 0.970,
which was only 0.007 lower than that obtained by the SVM with
top 750 features. Considering the efficiency of SVM, SVM with
top 20 features was a more proper choice. Its performance on
three classes is listed in Table 1, which was almost at the same
level compared with that of the SVM with top 750 features.
Furthermore, its performance on the test set is listed in Table 2,
which was still acceptable.

DISCUSSION

We found 750 optimal features for distinguishing A-IDH,
A-IDH-HG, and O-IDH with the help of SVM. However,
considering the efficiency, SVM with top 20 features was a more
suitable choice. Thus, it is believed that these 20 features were
extremely important. Here, we gave an extensive discussion on
these 20 features (Table 3), which were supported by previous
studies. In addition, we further identified a group of detailed
biological functions associated with different IDH-mutation
glioma subclasses.

Genes Associated With Glioma Subclasses
The top probe was cg04437966, marking gene FLJ37543. Also
known as C5orf64, such gene has been widely reported to
participate in tumorigenesis (Aschebrook-Kilfoy et al., 2015).
As for its potential contribution on distinguishing different
IDH subtypes, it has been reported to participate in multiscale
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FIGURE 2 | Performance of SVM, RF, and RIPPER that changed with the corresponding number of features. (A) RF performance, (B) RIPPER performance, and (C)

SVM performance.

TABLE 2 | The performance of IFS with different classifiers on the independent

test set.

Classifier Number of

features

Accuracy Overall

accuracy

MCC

A-IDH A-IDH-HG O-IDH

SVM 750 0.947 0.780 1.000 0.936 0.899

SVM 20 0.926 0.756 0.964 0.908 0.855

RF 1,330 0.968 0.756 1.000 0.940 0.907

RIPPER 19,270 0.957 1.000 1.000 0.982 0.972

modeling of oligodendrocytes in physical and pathological
conditions, but not other neural cell subtypes (Mckenzie et al.,
2017). Therefore, the expression level of such gene may actually
contribution to the subtyping processes.

The next probe was cg14159026, identifying gene BVES.
Encoding a specific member of the POP family of protein, such
gene has been widely reported to participate in cell adhesion
processes (Wada et al., 2001). As for its specific contribution on
IDH-dependent glioma subtyping, it has been reported that such
gene can participate in the development of different neural cells
and functionally related to IDH (Lord et al., 1997; Ton et al.,
2002). Therefore, although no direct reports confirmed its unique
classification potentials for glioma subtyping, it is reasonable for
us to regard such gene as a reference for IDH-dependent glioma
subtyping. Apart from such probe, another effective probe named
as cg17398252 is also designed to detect the methylation status of
such gene, further confirming above results.

The third probe was cg22519158, detecting the methylation
status of gene LCE3D. LCE3D is also a specific development
associated gene, participating in the formation of stratum
corneum (Bergboer et al., 2011). As for its potential relationship
with IDH and its contribution on such subtyping, it has been
reported that such gene is related to the expression of IDH and
different subtypes of glioma at methylation level, corresponding
with our results (Zhang M. et al., 2018).

FAM89A, as the following identified target gene is marked
by the fourth probe, named cg12450347. There are no detailed
reports on the biological functions of FAM89A. However, the
abnormal expression level of such gene has also been screened
out on some glioma gene expression profiling studies (Mascelli

TABLE 3 | Top features (methylation probes) and their targeting genes.

Rank Feature Targeting gene RI

1 cg04437966 FLJ37543 0.5637

2 cg14159026 BVES 0.4719

3 cg22519158 LCE3D 0.3781

4 cg12450347 FAM89A 0.3505

5 cg17482114 ADCY5 0.3397

6 cg08415493 ESR1 0.3244

7 cg12760041 C2orf67 0.3119

8 cg12930304 – 0.2875

9 cg26694713 REST 0.2846

10 cg04360458 REST 0.2591

11 cg17398252 BVES 0.2497

12 cg21552709 EPHA7 0.2374

13 cg20138711 ARHGEF3 0.2327

14 cg11902641 – 0.2271

15 cg03903398 MIR1275 0.2052

16 cg19681793 THBS2 0.1916

17 cg24215279 TPO 0.1889

18 cg05427966 EPHA7 0.1797

19 cg11235583 CLCNKB 0.1766

20 cg14158583 PVRL4 0.1739

et al., 2013; Xie et al., 2017). Therefore, our screened-out probe
definitely contributes to the IDH-dependent subtyping of glioma.

The next gene ADCY5, detected by probe cg17482114, is
an enzyme that interacts with RGS2 in humans. ADCY5 is
associated with various neurological syndromes in non-cancer
tissues and can cause chorea, a type of neurological syndrome
(Walker, 2016). The SNPs of ADCY5 are associated with elevated
fasting glucose and increased type 2 diabetes risk. The DNA
hypermethylation of ADCY5 induces a low mRNA expression
pattern in malignant tissue samples (Sato et al., 2013).

ESR1, detected by probe cg08415493, was also identified
to participate in IDH-dependent glioma subtyping. Encoding
an estrogen receptor, such gene has been widely reported
to participate in hormone related cell proliferation and
differentiation (Dalvai and Bystricky, 2010; Mascelli et al.,
2013). In glioma, such gene has been reported to be a specific
biomarker for glioma subtyping on expression and methylation
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level (Uhlmann et al., 2003). Considering that such gene has
also been identified to be functionally related to IDH, it is quite
reasonable to regard such gene as a potential marker for such
subtyping (Richardson et al., 2019).

C2orf67, as the target of probe cg12760041,was also identified
in this study. According to recent publications, such gene has
been reported to be effective as a serum metabolite measurement
parameter (Ohyama et al., 2016; Aibara et al., 2018). As for
the methylation status and expression pattern of such gene in
different glioma subtypes, it has been identified as one of the
potential markers reflecting the activation status of EGF signaling
pathway (Trang et al., 2010). Considering that different IDH-
dependent glioma subtypes have different EGF activation status
(Roth and Weller, 2014; Thorne et al., 2016), it is reasonable to
identify such gene and its targeted probe as one of the potential
markers for such IDH-dependent subtyping.

REST, targeted by probes named as cg26694713 and
cg04360458, is also predicted to participate in IDH-dependent
glioma subtyping. REST is actually a transcriptional regulatory
factor for neuronal genes (Zuccato et al., 2003). Apart from that,
REST has also been identified as a specific marker for glioma
subtyping due to its epigenetic alteration pattern (Zuccato et al.,
2003). In the same report, the mutation status of IDH has also
been validated to be functionally related to such methylation
alteration (Zuccato et al., 2003).

The next two probes, named as cg21552709 and cg05427966,
target Ephrin type-A receptor 7 (EPHA7). EPHA7, as a member
of the ephrin receptor superfamily, mediates developmental
events, particularly in the nervous system. During the embryonic
development of the central nervous system, Ephs and ephrins
have defined functions, such as axon mapping, neural crest
cell migration, hindbrain segmentation, synapse formation, and
physiological and abnormal angiogenesis. Eph and ephrins are
frequently overexpressed in different tumor types, including
GBM. An increased EphA7 expression is correlated with adverse
outcomes in patients with primary and recurrent glioblastoma
multiforme (Wang et al., 2008).

The next probe cg20138711 targetingARHGEF3was screened
out in our study, which were deemed to contribute to IDH-
dependent glioma subtyping. ARHGEF3 is a regulator for
RhoA and RhoB GTPases (Hilgers and Webb, 2005). According
to recent publications, mediating RhoA associated biological
processes, ARHGEF3 has been confirmed to interact with IDH
(Okada et al., 2003; Kloth et al., 2005) and has uniquemethylation
status in glioma (Northcott et al., 2009). Therefore, it is quite
reasonable to summary that such probe actually targets an
effective regulatory gene for IDH-dependent glioma subtyping.

Probe cg03903398 is another informant feature targeting
effective microRNA, coding gene named as MIR1275. MIR1275
is a functional microRNA coding gene, which has been directly
reported to participate in multiple sclerosis (MS; Angerstein
et al., 2012). As for its specific role for glioma subtyping,
similar with gene ARHGEF3, such microRNA participates in
TGF-beta signaling pathway (Yan et al., 2013) and has been
validated to have different methylation status together with
expression pattern in different IDH expression glioma subtypes
(Kondo et al., 2014).

The following four probes cg19681793 (targeting THBS2),
cg24215279 (targeting TPO), cg11235583 (targeting CLCNKB),
and cg14158583 (targeting PVRL4) have also been confirmed
to target effective genes with different methylation status in
different IDH-dependent glioma subtypes. Apart from above-
discussed eighteen probes, cg12930304 and cg11902641 were
also identified to be significant for subtyping. However, according
to the annotation, no actual genes are presented in such region,
which may be induced by incomplete annotation reference or
prediction redundancy. All in all, most genes corresponding

TABLE 4 | The significantly enriched GO/KEGG functions with FDR < 0.05.

GO/KEGG function FDR p-value

GO:0048731 system development 5.02E-05 3.18E-09

GO:0030154 cell differentiation 9.78E-05 1.88E-08

GO:0032502 developmental process 9.78E-05 2.13E-08

GO:0048869 cellular developmental process 9.78E-05 2.48E-08

GO:0007275 multicellular organism development 0.0001 4.69E-08

GO:0048856 anatomical structure development 0.0001 4.33E-08

GO:0048513 animal organ development 0.0002 1.06E-07

GO:0009653 anatomical structure morphogenesis 0.0003 1.98E-07

GO:0032501 multicellular organismal process 0.0003 1.92E-07

GO:0007399 nervous system development 0.0004 2.52E-07

GO:0048518 positive regulation of biological process 0.0005 3.44E-07

GO:0030182 neuron differentiation 0.0009 7.14E-07

GO:0048699 generation of neurons 0.0010 7.99E-07

GO:0022008 neurogenesis 0.0011 9.80E-07

GO:0051239 regulation of multicellular organismal

process

0.0028 2.61E-06

GO:0048468 cell development 0.0050 5.02E-06

GO:0009887 animal organ morphogenesis 0.0054 5.86E-06

GO:0048598 embryonic morphogenesis 0.0066 7.53E-06

GO:0000904 cell morphogenesis involved in

differentiation

0.0084 1.01E-05

GO:0050793 regulation of developmental process 0.0088 1.11E-05

GO:0001501 skeletal system development 0.0094 1.25E-05

GO:0051240 positive regulation of multicellular

organismal process

0.0108 1.51E-05

GO:0048534 hematopoietic or lymphoid organ

development

0.0117 1.70E-05

GO:0002520 immune system development 0.0124 1.95E-05

GO:0035295 tube development 0.0124 1.96E-05

GO:0000902 cell morphogenesis 0.0129 2.13E-05

GO:0048522 positive regulation of cellular process 0.0160 2.73E-05

GO:0009790 embryo development 0.0224 3.97E-05

GO:0009888 tissue development 0.0253 4.64E-05

GO:0007187 G-protein coupled receptor signaling

pathway, coupled to cyclic nucleotide second messenger

0.0352 6.91E-05

GO:0032989 cellular component morphogenesis 0.0352 6.92E-05

GO:0032736 positive regulation of interleukin-13

production

0.0356 7.21E-05

GO:0048871 multicellular organismal homeostasis 0.0418 8.73E-05

GO:0030097 hemopoiesis 0.0459 9.88E-05

GO:0046703 natural killer cell lectin-like receptor binding 0.0481 1.04E-05
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to top ranked probes can be confirmed to have differential
methylation patterns and corresponding contributions to A-IDH
and O-IDH cases, validating the reliability of our findings.

GO and KEGG Enrichment Associated With
Glioma Subclasses
The SVM with top 750 features yielded the best performance.
These 750 features (methylation probes) were mapped onto
genes, on which a GO and KEGG enrichment analysis was
performed. Table 4 lists the significantly enriched GO/KEGG
functions with FDR < 0.05. This section analyzed some of them.

Cellular development with hypergeometric test p-value of
2.48E-8 and FDR of 9.78E-5, is an important biological function
that can be a marker to classify different glioma subclasses. The
tyrosine kinase Fyn is an Src kinase family member essential
for normal myelination and implicated in oligodendrocyte
development (Ma et al., 2005). Fyn regulates oligodendroglial
cell development in oligodendroglioma, considering that the
neurogenesis of an adult brain is generally regulated by glial cells.

Neuron differentiation with hypergeometric test p-value of
7.14E-8 and FDR of 0.0009, can be another marker for classifying
different glioma subclasses. The suppression of NSC (neural
stem cells) differentiation and the promotion of its self-renewal
capacity are controlled by the upregulation of PLAGL2. The
inhibition of Wnt signaling partially restores the differentiation
capacity of PLAGL2-expressing NSC (Zheng et al., 2010).
These functions are consistent with a well-known hallmark of
glioblastoma, e.g., strong self-renewal potential and immature
differentiation state.

Cellular component morphogenesis with hypergeometric test
p-value of 6.92E-5 and FDR of 0.0352, varies in different
types of gliomas. Tumor cell metastasis mediated by abnormal
extracellular matrix (ECM) regulations contributes to the rapid
progression of GBM. As such, ECM may play an irreplaceable
role during the invasion of GBM (Ulrich et al., 2009). Thus,
cellular component morphogenesis may be a functional signature
for characterizing different subtypes of gliomas.

G-protein-coupled receptor signaling pathway with
hypergeometric test p-value of 6.91E-5 and FDR of 0.0352,
coupled to a cyclic nucleotide second messenger, is an important
pathway related to GBM. This pathway regulates glioma cells
by interfering with calcium signaling processes. Its components,
namely, P2Y1 and P2Y2 receptors, coexist in glioma C6 cells as
an effective molecular identity of P2Y receptors (Ulrich et al.,
2009). In terms of the specific role of this pathway in malignant
diseases, Rho GTPase activation and angiogenesis are two
typical pathological processes of the identified pathway to trigger
tumorigenesis. Therefore, our enriched pathway may be effective

and significant for the identification of different glioma subtypes
(O’hayre et al., 2014).

The qualitatively analyzed genes help distinguish different
glioma subclasses, and all the identified genes are supported
by recent literature and related independent expression profiles.
The functional enrichment of these genes further validates
the differential functional characteristics of gliomas. Therefore,
our new analysis method can help determine (methylation)
signatures for glioma subclasses and establish a basis for further
studying the detailed pathological mechanisms of these glioma
subtypes at multiple omics levels.
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