
REVIEW
published: 26 November 2019
doi: 10.3389/fbioe.2019.00358

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 November 2019 | Volume 7 | Article 358

Edited by:

Jie Sun,

Wenzhou Medical University, China

Reviewed by:

Xianxiao Zhou,

Icahn School of Medicine at Mount

Sinai, United States

Desi Shang,

Harbin Medical University, China

*Correspondence:

Lixin Cheng

easonlcheng@gmail.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 29 September 2019

Accepted: 11 November 2019

Published: 26 November 2019

Citation:

Liu X, Li N, Liu S, Wang J, Zhang N,

Zheng X, Leung K-S and Cheng L

(2019) Normalization Methods for the

Analysis of Unbalanced Transcriptome

Data: A Review.

Front. Bioeng. Biotechnol. 7:358.

doi: 10.3389/fbioe.2019.00358

Normalization Methods for the
Analysis of Unbalanced
Transcriptome Data: A Review
Xueyan Liu 1†, Nan Li 2†, Sheng Liu 1, Jun Wang 1, Ning Zhang 1, Xubin Zheng 3,

Kwong-Sak Leung 3 and Lixin Cheng 1*

1Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medicine College of Jinan

University, Shenzhen, China, 2Department of Stomatology Center, Shenzhen People’s Hospital, Second Clinical Medicine

College of Jinan University, Shenzhen, China, 3Department of Computer Science and Engineering, The Chinese University of

Hong Kong, Hong Kong, Hong Kong

Dozens of normalization methods for correcting experimental variation and bias in

high-throughput expression data have been developed during the last two decades.

Up to 23 methods among them consider the skewness of expression data between

sample states, which are even more than the conventional methods, such as loess and

quantile. From the perspective of reference selection, we classified the normalization

methods for skewed expression data into three categories, data-driven reference,

foreign reference, and entire gene set. We separately introduced and summarized these

normalization methods designed for gene expression data with global shift between

compared conditions, including both microarray and RNA-seq, based on the reference

selection strategies. To our best knowledge, this is the most comprehensive review of

available preprocessing algorithms for the unbalanced transcriptome data. The anatomy

and summarization of these methods shed light on the understanding and appropriate

application of preprocessing methods.
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INTRODUCTION

The aim of normalization methods for large scale expression data, including microarray and RNA-
seq, is to eliminate systematic experimental bias and technical variation while preserving biological
variation. Dozens of normalization methods for correcting non-linear experimental differences
between arrays have been developed during the last two decades (Dillies et al., 2013). Among
them, quantile (Bolstad et al., 2003) and lowess (Berger et al., 2004) are well-adopted for analyzing
microarray expression data. For the RNA-seq data, which generates short reads from fragmented
RNAmolecules and the reads number is proportional to the abundance of the transcripts (Ledford,
2008; Fu et al., 2009), the most frequently used normalization methods are “Reads Per Kilobase
of transcripts per Million mapped reads” (RPKM) (Mortazavi et al., 2008) and Trimmed Mean of
M-values (TMM) (Robinson and Oshlack, 2010). Some methods like quantile (Bolstad et al., 2003)
and median normalization (Anders and Huber, 2010) are also employed for RNA-seq expression
data, although these methods originate from the usage of microarray (Zhou et al., 2015a; Sun et al.,
2019).
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Invalidated Conditions
Although a large number of normalization methods for high-
throughput expression data have been proposed, most of which
assume that (i) a majority of genes are equally expressed in
each experimental unit and (ii) symmetrical distribution of
genes between over-and under-expressed (Quackenbush, 2002;
Robinson and Oshlack, 2010; Lovén et al., 2012). Hence, the
application of these methods results in samples of similar or
even identical distribution of gene expression intensities, which
may not be biologically correct in many cases, e.g., arrays under
comparison show unbalanced or global shifts in the transcripts
population. Here we summarize the necessary conditions against
the basic assumptions:

a) When arrays under comparison are collected from different
tissues or developmental stages. Different tissues contain
different amounts of RNA. For instance, embryonic stem
cells and fibroblasts show a significant difference in mRNA
levels (around 5.5-fold; Aanes et al., 2014). Also, cancer cells
generally contain more total RNA than normal cells and
unbalanced gene regulation is common when investigated
cancer samples (Lovén et al., 2012; Wang et al., 2012; Cheng
et al., 2016a).

b) A fraction of genes is enhanced or suppressed in the same
direction as occurs in interspecific hybridization.When arrays
are applied to strains that are inconsistent with the strain used
to design the array, the probe intensities are all relatively lower
than the standard strain at polymorphic sites.

c) Small arrays tailored to specific applications or designed for
a small-scale molecule, such as miRNA (Wu et al., 2013), of
which the gene or feature number is too small to satisfy the
statistical hypothesis (Handschuh et al., 2018; Wang et al.,
2019). Usually, all of the features detected in small arrays
are crucial to specific purposes and thereby they are likely to
change in some specific patterns.

All of these three conditions, either under natural or
experimental conditions, invalidate the critical assumption
of equal expression levels between arrays under comparison.
Instead, the total impact of biological variation and the
percentage of genes containing gene effects are expected to
be substantially large, which may to some extent mislead the
downstream statistical inference and biological interpretation
(Lovén et al., 2012; Cheng et al., 2016a). Notably, the realization
of this issue has boosted the development of normalization
methods for the shifted expression data. More than 20 methods,
which are free of or based less on the basic assumptions, have
been proposed during the last two decades (Table 1).

Normalization Methods for Unbalanced
Data
For the normalizations in the case of being global shifted and
unbalanced, they need a reference set of transcripts of genes
that expected invariant or not vary intensely between samples.
The underlying idea of selecting invariant features as a reference
subset for normalization originates from using housekeeping
genes for preprocessing qPCR data (Suo et al., 2010). Most

conventional methods make use of the whole set of genes as
the reference set, such as quantile and loess. With regard to
the reference selecting strategy, the normalization methods for
skewed expression data can be divided into three categories, i.e.,
data-driven reference, foreign reference, and the entire gene set.

(i) Data-driven procedures. A subset of genes that do not vary
or vary least across samples is first identified as the data-
driven housekeeping genes to train processingmodel. Genes
whose array-to-array variability is below a given threshold
are regarded as the reference set.

(ii) Extra negative controls. External native controls have been
designed in a number of experiments, such as spike-in
probes. These native controls can be used as the foreign
reference for signal correction.

(iii) All genes in an array. Several algorithms consider the whole
genome as a reference like quantile normalization, but they
measure samples according to different references. Each
compared sample group generates its own reference.

We briefly review the main features of each method in the
listed categories above. Table 1 summarizes the characteristics
of each method, including original platform, core algorithm,
and available software. Hopefully, this is helpful for the readers
who are interested in using tools for normalizing unbalanced
expression datasets.

Generally, two types of techniques, microarray and RNA-seq,
are used for quantifying the expression level of genes in high-
throughput. Microarray normalization methods can be roughly
categorized as single-color, two-color, andmiRNA ones, although
the two-color platforms are rarely used currently. Since the
unbalanced expression pattern is frequently detected in certain
conditions regardless of the selection of technique, we do not
describe normalization methods from the aspect of techniques
or platforms. However, the original platforms these methods
designed for are listed, even practically all of which claimed its
potential of trans-platform. Overall, we give a brief overview of 23
normalization procedures proposed for unbalanced expression
data, including microarray, miRNA array, and RNA-seq, with a
concentration on the reference selection in this survey. We wish
to provide some basic recommendations for researchers to carry
out the analytical steps. Further, a comprehensive evaluation of
these methods is in process and some possible improvements on
each step will be studied in order to present a more powerful
normalization method.

BRIEF REVIEWS OF AVAILABLE METHODS

The three main categories of normalization methods, namely
(i) data-driven procedures, (ii) external controls, and (iii)
all-gene reference, are reviewed in the following sections
Data-Driven Reference Normalization to All-Gene Reference
Normalization, respectively.

Data-Driven Reference Normalization
Methods in this category are generated based on the idea of rank-
invariant transcripts presented by Li and Hung Wong (2001).
They are designed to first identify an Invariant Transcript Set
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TABLE 1 | A summary of 23 normalization methods developed for unbalanced transcriptome data.

No. Method Full name or description Platform

(Original)

Reference

selection

Normalization

method

Software

1 GRSN (Pelz et al., 2008) Global rank-invariant set

normalization

Oligo array Subset Lowess R

2 Xcorr (Chua et al., 2006) Cross-correlation normalization cDNA array, Oligo

array

Subset Non-linear regression Matlab

3 NVSA (Ni et al., 2008) Non-parametric variable selection and

approximation

Oligo array Subset Non-linear regression Matlab

4 KDWL (Hsieh et al., 2011) Kernel density weighted loess

normalization

Oligo array Subset Loess SAS

5 KDQ (Hsieh et al., 2011) Kernel density quantile normalization Oligo array Subset Quantile SAS

6 IRON (Welsh et al., 2013) Iterative rank-order normalization Oligo array Subset Loess C

7 LVS (Calza et al., 2008) Least-variant set normalization Oligo array Subset Non-linear regression R

8 LVSmiR (Suo et al., 2010) Modified least-variant set

normalization

Oligo miRNA array Subset Non-linear regression R

9 Invariants normalization

(Pradervand et al., 2009)

Invariants normalization Oligo miRNA array Subset Non-linear regression R

10 HMM-normalization (Landfors

et al., 2011)

HMM assisted normalization Microarray, RNA-seq Subset Further subset

normalization

R

11 BSN (Aanes et al., 2014) Biological scaling normalization RNA-seq Subset R

12 SVR (Fujita et al., 2006) Support vector regression cDNA, Oligo array Subset Non-linear regression

13 ISN (Li and Hung Wong, 2001) Invariant set normalization (in dChip) Oligo array Subset – R

14 Spike-in controls (Choe et al.,

2005; Lovén et al., 2012)

Spike-in standards Microarray, RNA-seq Negative controls – –

15 wlowess (Oshlack et al., 2007) Weighted lowess normalization cDNA array, Oligo

array

Negative controls Loess R

16 wcloess (Wu et al., 2013) Weighted cyclic loess normalization Oligo miRNA array Negative controls Loess R

17 SQN (Wu and Aryee, 2010) Subset quantile normalization Oligo array Negative controls Quantile R

18 loessM (Risso et al., 2009) loessM two-color miRNA array Entire set (median) Loess R

19 GPA normalization (Xiong et al.,

2008)

Generalized procrustes analysis cDNA array Entire set (median) GPA

20 Non-normalization (Klinglmueller

et al., 2011; Wang et al., 2012)

Using data that are background

adjusted but not normalized

Oligo miRNA array Entire set None R

21 WPRMA (Kim et al., 2007) RMA using within-pedigree pool Oligo array Entire set Quantile R

22 CrossNorm (Cheng et al., 2016a) Cross normalization Oligo array Entire set Quantile R

23 ICN (Cheng et al., 2016b) Informative cross normalization Oligo array Entire set Quantile R

(ITS) expressed consistently across all arrays as a reference for
further normalization in a dataset. Then non-linear regression
methods, e.g., loess, lowess, or variance stabilizing normalization
(VSN), are employed to fit a smooth curve for each array
only using the data-driven reference. Finally, the fitted curve
is used to map intensities of all the genes of each array,
such as the horizontal line of the MA-plot. Unlike the
conventional normalizations, this type of methods is expected to
be applicable in most of situations as they require fewer or even
no assumptions.

GRSN

Global rank-invariant set normalization (GRSN) is based on the
general idea of selecting rank-invariant transcripts (Pelz et al.,
2008). Assuming the expression rank on each array is not affected
by the technique artifacts, GRSN first identifies an ITS that
roughly show the same rank order of expression intensity on
each array. All transcripts are ranked on each array according

to the summarized expression intensity. Then, transcripts with
high-rank variance are removed iteratively, removing one fourth
each time and performing four times by default. The underlying
assumption is that a high proportion of DEGs can lead to a
global shift of transcript rank order, so the shift could be reduced
because the most DEGs are discarded after a couple of iterations.
The remaining transcripts are defined as subset reference and
named “Global Rank-invariant Set” (GRiS). After that, the
trimmed mean of all arrays for each transcript is determined as
a common reference array. MA-plots are generated to compare
each array to this common reference. For each array, a lowess
curve is fitted by comparing the GRiS intensities to that of the
common reference array, and then each array is centered to the
A axis of the MA-plot, where M equals 0. It is claimed that using
the trimmed mean values of the GRiS as the reference provides
a robust average across all arrays, which can keep the linearity
of the normalized data and avoid affections of outliers, such
as DEGs.
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Xcorr Normalization

Cross-correlation has been widely used for pattern recognition
(Barucca et al., 2015; Stone and Veatch, 2015). Suppose we
have two discrete time sequences, cross-correlation measures
the similarity between one sequence and shifted copies of one
another as a function of the lag. Cross-correlation (Xcorr) is
adopted for normalization, which makes use of peak matching
to minimize the effects of DEG points located in the tails
of the distribution in MA-plot, with the assumption that the
distribution peak of normalized expression value should be closer
to zero (Chua et al., 2006).

Suppose the template be the distribution of M-values t(M)
calculated from normalized expression value on an array, then we
can match the s(M, A) of the expression value for all transcripts
within a particular range of A-values (intensity window) with
the template. The Cross-correlation of s(M, A) with t(M) can be
maximized by tuning the matching parameter m. Specifically, the
exact steps are described as “the optimal m is the one that can
maximize the following formula,

J(m) =

∫ M2

M1
s(M −m,A)t(M)dM

which is assigned as the normalization factor k(A), where
M1 is the lower bound and M2 is the upper bound of M
component. In a MA-plot, all points are first segmented into n
windows according to their A-values. Then s(M, Ai) and K(Ai)
are calculated for each window, e.g., i in this case. The final
normalization factor k(A) is calculated by fitting a spine function
according to all k(Ai).”

NVSA

Non-parametric Variable Selection and Approximation (NVSA)
was developed for normalization of Affymetrix microarrays with
a substantially large fraction of DEGs (Ni et al., 2008). NVSA
operates a strategy of unique peak selection to identify and ITS
prior to non-linear curve fitting. In a MA-plot, the method fits
kernel density to the M component to points within an intensity
window on the A component. The mode of one-dimensional
kernel estimation is used to represent the bias of effect size on
non-DEGs within each window, and the normalization curve is
generated by connecting the modes across a series of windows
of A with smoothing splines. NVSA is a complex algorithm with
complicated program execution. It requires several individual
steps and heuristic settings as well as several empirical parameters
to select modes. Besides, its performance depends heavily on
seed selection.

KDWL

Unlike NVSA measuring density solely on the M component,
Kernel Density Weighted Loess normalization (KDWL) jointly
fits kernel density in both the M and A components. loess
regression is then applied to generate normalization curves
locally for all data points in the MA-plot (Hsieh et al., 2011).
When fitting the loess curve, points close to each other along the
A component collectively determine the curve trend and different
weights are assigned to the data points merely according to the
estimated kernel density. The author applied the estimated kernel

density to the power of 4 as the weight of the corresponding
transcript, whereas transcripts that are far from the major
group are down-weighted. This weighting strategy allows the
normalization process to rely on the ITS heavily, although all of
the transcripts are considered throughout the process.

KDWL only assuming that non-DEGs are distributed more
closely than others. But the Golden Spike experiment violates
this requirement as which includes two types of non-DEGs,
unchanged transcripts, and empty transcripts. First, a common
reference is generated using the average expression value for each
transcript over all the arrays. Each array is normalized against the
reference by fitting the weighted loess curve to the MA-plot using
the A component as reference.

KDQ

Kernel density estimation (Fu et al., 2005) can also be exploited
to select ITSs, including both non-DEGs and null genes.
Accordingly, the conventional normalization method, such as
quantile normalization, can be adapted for asymmetric data
using kernel density estimation. Kernel Density Quantile (KDQ)
normalization was proposed for this purpose and it typically
consists of the three steps, ITS selection, quantile normalization
with the ITS, and scoring the non-ITS transcripts (Hsieh et al.,
2011).

To select the ITS, kernel density estimation is conducted
to the MA-plot between the common reference array and
each individual array. Each individual array or the average
intensity of all arrays could be simply selected as the common
reference array. As with KDWL, the A component represents
the common average among all arrays while the M component
was assigned as the variation between each individual array and
the reference array. The density estimation score represents the
relative importance of each data point in the MA-plot. The ITS
was defined as the set of transcripts with high scores. After that,
quantile was used to normalize the ITS for all arrays, and then
the transcripts in the variant set are scored according to the ITS.
Finally, “linear interpolation is applied within each array for the
invariant transcripts whereas linear extrapolation is adopted for
the other transcripts based on a small set of data at the boundary
of the invariant set of transcripts.” This size of ITS is predefined
but quite sensitive and data-dependent. It is recommended to be
set lower than but close to the unknown percentage of non-DEGs.

Iron

Iterative Rank-Order Normalization (IRON) performs a pairwise
normalization for each array against a common reference array
iteratively (Welsh et al., 2013). For each pairwise normalization,
a piecewise linear fit is implemented against an ITS. The
fitted normalization curve is then used to non-linearly scale
the array intensities. A common reference array is selected by
first calculating root mean squared distance (RMSD) (Jewett
et al., 2003) between a given array and all the other ones.
The array with the smallest sum of RMSD is chosen as the
common reference array and is used throughout normalization.
After that, each array is processed independently. First, a set
of probes is identified as ITS to train the normalization curve.
Iterative rank-order pruning is then performed together with
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the common reference array to eliminate the most highly rank-
divergent probes, until a convergence of 1% rank-invariance.
The remaining points are regarded as the ITS and are simply
scattered on the X and Y-axis representing the compared arrays,
rather than the regular MA-plot. These data points are sorted
by log(X∗Y), where X and Y are the intensity on the reference
array and the sample array to be normalized. A sliding window
is then used to train weighted least-squared lines of log(X/Y) and
log(X∗Y). Finally, every transcript is normalized using the final
correction factor relative to the nearest point on the fitting curve.

IRON iteratively identifies the training set for fitting
regression curve and the common reference array is selected
by implementing all possible comparison between arrays. It is
emphasized that the fitting step outperforms the commonly used
loess regression.

LVS

The least-variant set (LVS) normalization for mRNA arrays
models a function considering both array effect and probe effect
(Calza et al., 2008). The procedure contains two steps. Transcripts
with the smallest array-to-array variation, called LVS transcripts,
which is quite similar as ITS, are selected first as the reference set
for further normalization. The step of selecting LVS transcripts
allows the estimation of the component of variance due to
array-to-array variability. The second step involves a non-linear
fit of the LVS transcripts from individual arrays against those
from a reference array. Once the LVS transcripts are identified,
the normalization algorithm fits a smooth spline between the
individual arrays and a reference array. Finally, the LVS-fitted
smooth spline is used to scale intensities of all the transcripts in
each array. The reference array is usually set as a pseudo-median
array or any user-specified array.

LVSmiR

As with miRNA arrays, the transcript volume is much smaller
than that of mRNA arrays. Therefore, the basic assumptions
are not satisfied and traditional mRNA array normalization
methods may not fit miRNA arrays well. However, some
procedures originally applied on mRNA platforms with global
shift could be extended to themiRNA framework, such as the LVS
normalization (Calza et al., 2008). LVSmiR is an adapted version
of the LVS normalization for miRNA arrays, which has a more
complex model to identify the least variant set (LVS) of miRNA
(Suo et al., 2010). The model is based on a linear model fitting
of the probe level data considering the high effect of miRNA,
but it requires several parameters to make ideal inferences from
the data to choose the low-variance miRNAs (similar as ITS)
as reference for normalization. LVSmiR normalization first fit
a linear model for the raw data to estimate the component of
variance due to between-array variability for each probe. Based
on a quantile regression of the between-array variability vs. the
residual standard deviation, the algorithm selects a set of low-
variance miRNAs among arrays. Then these miRNAs are used to
normalize each array to a reference array using either a variance
stabilizing normalization (VSN) or a smooth spline. LVSmiR
exploits all information at the probe level by simply computing

the array-to-array variability accounting for the heterogeneity of
probe-to-probe variances within a miRNA.

Invariants Normalization

Pradervand et al. developed an algorithm to normalize miRNA
array named Invariants normalization, which first selects
invariant miRNAs and then uses them to compute linear
regression normalization coefficients using a mixture model of
the mean and variance distributions (Pradervand et al., 2009).
The invariant miRNAs (ITS of miRNAs) are defined as ones with
medium-high mean intensity and low variance across arrays.
(1) Considering background correction, the log intensity of
each array was centered on the modal value of its data density
distribution, because a large number of miRNAs are expressed
at a very low level or even not expressed, and its modal value
of the intensity distribution corresponds to that of all miRNAs
on the array. (2) To identify ITS of miRNAs. It first removes the
standard deviation (SD) vs. mean trend and then selects invariant
probes from the mean and corrected SD. All the data points in
the SD-mean plot are used to fit a loess curve that corresponds
to the trend of SD as the function of the mean. (3) For each
array, transcript intensity values were scaled using regression
coefficients that were obtained from an M estimator with Huber
influence function with default tuning constant. This algorithm
avoids a large proportion of probes near or at the background
signal level and just assumes a model-based low-SD/high-mean
population. The loess curve before the removal of the SD vs.
mean trend is indicative of the between-array variability.

HMM-Normalization

HMM-normalization is a type of invariant method using a
HiddenMarkov Model (HMM) (Ghavidel et al., 2015) to identify
a set of non-DEGs that can be jointly operated with the standard
normalization methods (Landfors et al., 2011). The workflow
consists of four steps: (1) Normalize the raw data using one
standard method, such as quantile. (2) Calculate the average
intensities of the compared groups as well as theM-value for each
transcript. Identify DEGs and detect whether its distribution is
skewed using the Detection of Skewed Experiments (DSE) test.
(3) An HMM with two states, variant and invariant, is applied to
the M-values. Transcripts with the minimum absolute value of
mean M are determined as ITS. (4) Normalize the data using a
standard normalization only based on the ITS.

BSN

RPKM (Mortazavi et al., 2008) and TMM (Robinson and
Oshlack, 2010) are the most commonly used normalization
methods for RNA-seq. Similar as microarray studies, these
algorithms are based on the basic assumptions. However,
biological scaling normalization (BSN) tries to retain biological
differences between arrays and assumes that RNAs detected at a
particular stage would have a global upward shift (Aanes et al.,
2014).

BSN takes advantage of polyA+ RNA amounts as scales to
normalize the RNA-seq data. The transcript concentration and
the average library size are two important parameters. A pseudo
library size is represented by the product of the average library

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 November 2019 | Volume 7 | Article 358

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Liu et al. Normalization Methods for Unbalanced Expression Data

size and a stage specific scaling factor that can be obtained
mathematically or experimentally. After that, the pseudo library
sizes are assigned to each transcript based on the previously
estimated expression value to obtain the normalized data. BSN
is generated from the TMM normalization and they have similar
main ideas, i.e., both of them have scales to represent the change
in total expression. Specifically, the TMM scales use trimmed
means of M-values on the read counts, whereas the BSN scales
were based on measurements of polyA+ RNA content per
embryo. The TMM scales are merged when estimating transcript
concentrations, while BSN conducts this step later.

SVR

Support Vector Machine (SVM) can be adopted to both
classification and regression problems (Zhou et al., 2019).
Similar to loess normalization, Support Vector Regression (SVR)
normalization take advantage of the regression algorithm of SVR
to normalize microarray data (Fujita et al., 2006). One of the key
ideas in SVR is that presenting the solution using only a small
subset of training data points and hence it is extremely efficient.
Existence of the global minimum and optimization of reliable
generalization bound are guaranteed using the epsilon intensive-
loss function. The SVR can fit reliable regression curves because
it is not sensitive to DEGs and the selected training data points
could be considered as an ITS. Generally, it is also a type of
data-driven regression method.

ISN

The ISN procedure selects the reference genes in a pairwise
fashion, which is implemented by identifying non-DEGs with a
consistent rank between each array and a reference distribution,
e.g., a pseudo-median array (Li and Hung Wong, 2001). It is
expected that a probe of a non-DEGs in two arrays to have similar
ranks in terms of intensity. ISN uses an iterative procedure to
select non-DEGs that are the basis for fitting a normalization
curve. Specifically, the running median curve is piece-wise
linearly fitted in the scatterplot of probe intensities of two arrays,
where Y-axis represents the baseline array and X-axis represents
the array to be normalized. Then all the data points in the array
on X-axis are adjusted to get the normalized value, while Y-axis
is not changed as it is the baseline array. For each data point,
its intensity on the Y-axis is assigned as the value of the fitted
curve according to the specific intensity on the X-axis. Iteratively
selecting rank-invariant gene set between any pair of arrays may
reduce the phenotype effect between normal and cancer samples.

Extra-Control Reference Normalization
Normalization methods developed for unbalanced array data
usually first train regression curves using data-driven Invariant
Transcript Set (ITS) that are expected to produce consistent
measurements across arrays. Better still, ITS could be achieved
by using the foreign controls, if the controls are designed to be
embedded on the arrays. Several types of external controls have
been developed for this purpose, including housekeeping genes,
spike-in controls and microarray array pool (MSP) controls
(Chua et al., 2006). The intensities of the negative controls are
not affected by biological factors, but systematic factors affecting

the entire array, such as labeling efficiency, scanner setting, batch
effect, hybridization and washing conditions. Therefore, they
are ideal reference for normalization and their intensities are
expected to be constant across arrays even in the case of huge
biological variation.

Spike-in Controls

External control technologies have been developed as a
replacement for housekeeping genes. Spike-in experiments
are expected to be the leading strategy to establish current
normalization schemes, not only due to its powerful performance
but also for its simplicity, involving only a few spike-in genes
(Choe et al., 2005; Lovén et al., 2012).

In this approach, several mRNA transcripts with a series of
intensities are spiked in arrays with equal amount. These spiked
transcripts play a role as “anchors” that are ideal normalization
features. For microarray, this technique first uses the MAS5
procedure to summarize raw probe intensities and obtain the
expression values at the probe set level (Bolstad et al., 2003).
Then, for each pair of arrays, these expression values are fitted
using the loess regression only considering the spike-in probe
sets. For RNA-seq, on the other hand, the RPKM was computed
first for all the transcripts, including both real transcript and
control transcript (spike-in RNA). Similar as microarray, a
loess curve was then fitted on the RPKM values by using
only the spike-in values for each pair of experiments. Finally,
an expression matrix was generated with the entry indexes
normalized RPKM values.

The spike-in technique is quite powerful to achieve relatively
accurate measurements for experiments of both microarray and
RNA-seq. A couple of modifications and thenmost of the existing
normalization methods will work well for experiments with
spike-in controls. However, the technique is not widely used
merely due to extensive preparation works.

wlowess

wlowess normalization is developed for custom-made boutique
arrays that may contain only a small number of printed probes
of particular interest (Oshlack et al., 2007). wlowess employs
whole microarray transcript pool (MSP) probes to normalize
boutique arrays, which is expected to be robust against the bias
of probe selection at a different range of intensities. Unlike spike-
in control probes, MSP probes do not require extra added RNA
on the arrays. The algorithm applies all the probes for lowess
normalization but MSP probes are assigned higher weight in
comparison with the real gene probes. This approach modifies
the lowess fitting model on MA-plot by assigning a series of
weights to every probe, including both real gene probes and
control probes. Control probes are assigned higher weight in
comparison with real gene probes. It is stressed that wlowess is
able to smoothly utilize any composition of control probes and
gene probes regardless of the intensity-dependent basis.

wcloess

Unlike mRNA arrays, the data of miRNA arrays normalized by
assumption-free methods may improve identification of truly
down-regulated miRNAs as well as reduce detection of false
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positive discoveries of up-regulated miRNAs. The key idea of
weighted cyclic loess (wcloess) is to normalize arrays employ
cyclic loess normalization relying on the external control probes
(Wu et al., 2013).

Cyclic loess is a non-linear method applied to arrays in
pairwise fashion and can transform the transcript intensities on
theM component on theMA-plot. As with the wcloess algorithm,
distinct weights are attributed to control probes and real miRNA
probes in the loess curves. Specifically, it gives an extremely
lower weight to the miRNA probes while gives much higher
weight to control probes on each array. The external non-miRNA
probes and miRNA probes are assigned with a weight of 100 and
0.001, respectively. The other probes are attributed a weight of 1,
including GC control, spike-in, and hybridization control.

Cyclic loess cyclically executes loess to normalize any possible
pairwise combination of arrays. The process will be rather time-
consuming as it may repeat for thousands of iterations when
more than 50 arrays are investigated.

SQN

Subset quantile normalization is developed for array dataset
with negative controls and is a modified version of quantile
normalization. Subset quantile normalization (SQN) is the
relative term of complete quantile normalization (CQN) (Bolstad
et al., 2003); SQNmakes the intensity distributions of the control
probes equal whereas CQN makes the intensity distributions of
the whole array identical (Wu andAryee, 2010). As with SQN, the
quantiles of the negative control probes on each array are used
as “anchors” that should be constant among each array. Then
probe intensities on each array are normalized according to their
relationship to the quantiles of control probes on the same array.
One limitation of SQN is it requires a series of embedded control
probes. It is not powerful for arrays only have a few control
probes because of the stability of intensity quantile.

All-Gene Reference Normalization
Loessm (miRNA)

loessM simply scales expression data on the global median
expression on the basis of loess, in contrast to the typical
scaling for whole-genome arrays on zero, which loosens the basic
assumption (Risso et al., 2009). The miRNA expression data were
characterized by a large number of DEGs and often skew in one
single direction.

Generally, loess related algorithms adopt a non-linear
regression technique based on robust local regression on the
array-array scale or the M-A scale. loess normalization first fit
a smooth curve according to all data points in the MA-plot and
then adjust the curve to the A component, so that all the data
points are scaled toward zero on the M component, i.e., M equals
0. However, the scaling procedure performs poorly when most
of the features are under-expressed or over-expressed. Scaling
expression values toward the overall median expression values,
rather than zero, is proposed in this paper. The “M” in loessM
represents the median of M on the microarray experiment.

GPA Normalization (cDNA)

Generalized Procrustes Analysis (GPA) is a method of statistical
analysis and is widely applied to normalize data shapes (Xiong

et al., 2008). GPA consists of three transformations, i.e.,
translation, rotation, and scaling. The optimal transformation
of the GPA procedure is the one that has a minimum sum
of the squared deviation among corresponding data points in
the MA-plot.

Specifically, GPA is used to minimize the deviation of
transcript intensities among arrays. Firstly, a reference array is set
as the median intensity of each transcript over all arrays. Then, in
the MA-plot, data points in each array are translated in order to
make their centroid point the same as that of the reference array.
Then the data points of each array are rotated and scaled to obtain
a minimum residual discrepancy with the reference array.

The transformations (translation, rotation, and scaling) are
based on global optimization rather than local optimization.
In terms of choosing the reference array, GPA normalization
employs median values across all arrays as the common reference
array, which is further verified to be a right choice and perform
better than the individual array. Another advantage of using GPA
for normalization over other methods is that it assumes nothing
about data distributions, which makes it applicable for all types
of data.

Non-normalized Data

This method stressed that normalization is not necessary for
microarray studies for which traditional normalization methods
may produce more false positive discoveries (Klinglmueller
et al., 2011). Non-normalized data were compared to normalized
data, in the context of a microarray titration experiment,
which is designed for producing reliable biological data with a
proportion of DEGs larger than what can be simulated using
spike-in experiments. They provide an alternative way to study
the robustness of conventional normalization methods against
violations of the basic assumptions.

The titration experiment highlights some of the pitfalls of
microarray data analysis and some evaluating measurements
for normalization methods are provided. Non-normalized data
provided higher accuracy and agreement in the titration
experiment in comparison with the normalized data.
Normalization procedures pose a tradeoff between accuracy and
agreement as well as repeatability and power, when the processed
array data contain a large partition of DEGs.

Wang et al. also suggested applying the raw data to identify
DEGs as a complement to improve the power of DEG detection
(Wang et al., 2012). As with non-normalized data, however, it
is difficult to tell the difference between biological variation and
the technical variation caused by batch effect, limited sampling,
probe hybridizing conditions, or scanning power. So most of the
researchers still claim normalization is a necessary step before
downstream array analysis.

WPRMA (Within Pool RMA)

WPRMA assumes only family members within a pedigree
share the same distribution and utilizes RMA to arrays within
pedigrees separately (Kim et al., 2007). Performing RMA
normalization to each pedigree pool separately allows for the
same number of distributions as pedigrees, instead of only one
reference distribution.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 November 2019 | Volume 7 | Article 358

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Liu et al. Normalization Methods for Unbalanced Expression Data

RMA eliminates technical variation using quantile
normalization, which assumes that the transcript intensities
on each array are from the same distributions and the intensity
values are then normalized according to a reference distribution.
However, the selection of optimal reference is quite artificial for
family data in genomics studies.

The familial similarity within pedigree is fundamental in
linkage analysis. Also, pedigree data are chartered by more
homogeneity within pedigrees than between pedigrees for the
studied traits. Therefore, traditional normalization methods
may improperly adjust the trait values by imposing identical
distributions across pedigrees, which ignores the pedigree
property in linkage analysis. The procedure of normalizing
arrays in each pedigree separately maintains the individual
familial distributions.

CrossNorm

From the perspective of gene expression direction, CrossNorm
(Cheng et al., 2016a) illustrates that the standard normalization
methods usually reverse the expression direction of thousands
of genes in cancers, whereas CrossNorm makes full use of
the raw signal and detects the regulation direction more
precisely. CrossNorm first divided the expression matrix into
two submatrix, cancer matrix and normal matrix, with rows
represent genes while columns represent samples. Then, the two
matrixes were combined by samples to generate a cross-matrix.
After that, a traditional normalization method, such as Quantile,
was applied to process the cross-matrix. Finally, the normalized
matrix was reverted to the original format.

CrossNorm guarantees the columns of the combined
expression matrix have the same intensity distribution, which
is exactly the basic assumption of the traditional methods. The
shortcoming of this method is that it is very fit for the datasets
with case-control paired samples, but time-consuming for the
datasets without the matching information.

ICN

Informative CrossNorm (ICN) (Cheng et al., 2016b) performs
the CrossNorm on the expression matrixes concentrating on the
informative transcripts or genes, as a fraction of transcripts are
not informative, some of which express insufficient or even not
express in specific tissues. ICN selects informative transcripts
using I/NI-calls (Talloen et al., 2007), which is able to efficiently
eliminate false positives, such as noise and biologically irrelevant
transcripts. Basically, ICN combines I/NI-calls and CrossNorm
to cross normalize the informative transcripts. It can improve the
statistical power for the identification of differentially expressed
genes, since some transcripts or genes filtered out by I/NI-
calls would be determined as significantly differentially expressed
otherwise (Calza et al., 2007).

DISCUSSION

General Steps for Normalizing Strewed
Gene Expression Data
The normalization steps, including identifying invariant
transcript, selecting common reference, and regression, are

FIGURE 1 | General steps of the preprocessing methods for skewed

transcriptome data. The core step of normalization is the selection of

reference, which was summarized into three categories, data-driven invariant

subset, foreign subset, and the entire set. Sometimes summarization is after

normalization.

of vital importance for all the preprocessing procedures
of expression data. Figure 1 illustrates the general steps of
processing the strewed gene expression data. It is noted that the
global normalization methods developed for balanced expression
data also follow these steps, like lowess and quantile, make use
of the whole array as Invariant Transcript Set (ITS), instead of
preselecting a subset, and then the intensities on each array are
transformed using non-linear regression or scaling algorithms
considering all the features.

Optimal Hybridization of Existing
Normalization Steps
For the step of identifying ITS or data-driven sub reference, 13
methods have been proposed, including GRSN, Xcorr, NVSA,
KDWL, KDQ, IRON, LVS, LVSmiR, Invariants-normalization,
HMM-normalization, BSN, SVR, and ISN. All of them based
on distinct statistic models or kernel algorithms, such as GRiS
in GRSN, LVS in LVS normalization, HMM model in HMM-
normalization, etc. Four other methods based on external
negative controls are quite similar to the methods in the
invariant-set family, with the foreign controls as the predefined
invariant-set instead of driving from data. lowess, SQN, wlowess,
and wcloess are in this category. The other six methods,
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namely loessM, GPA, WPRMA, CrossNorm, ICN, and non-
normalization, make use of all the features of an experiment and
focus on the property of global shift rather than the ITS.

As with common reference selection, several approaches are
applied among these normalization methods, such as the root
mean squared distance (RMSD) between all array pairs, average
expression value for each transcript over all the arrays, or the
trimmed mean for each transcript among all arrays. When
the ITS and common reference array are set well, non-linear
regression approaches are implemented to adjust all the data
points, such as loess, lowess, weighted lowess, piecewise spline,
and LVS.

Therefore, a series of models and approaches have been
conducted for normalizing a given expression data. A tuned
combination of them is expected to show a higher performance,
e.g., GRiS + RMSD + LVS, which is the combination of the
three steps, identifying ITS, selecting common reference, and
regression analysis. Consequently, an optimal hybridization of
normalization steps is expected to maximize the power of these
available methods.

Potential Improvement of the
Normalization Steps
Although more than 20 normalization methods have been
developed for the skewed expression data, most of them have
their own assumptions and suffer from similar problems. No real
assumption-free methods exist but methods based on reasonable
and adaptive assumptions are always highly required. Therefore,
we stress that an in-depth understanding of data property
is critical before conducing normalization. In addition, the
interactions between different approaches among these steps
should be noted. In other words, the result of one step may affect
the other steps heavily, either the parallel or subsequent ones.
Besides, it still calls for novel methods for RNA-seq data as for
which limited solutions are proposed. Hopefully some existing
methods originally developed for arrays can be employed after
some sophisticated adaptions.

Impact on lncRNA Transcriptome and
Coexpression Analysis
The normalization algorithms we summarized are equally
important for mRNAs and lncRNAs, because it is common to
perform secondary analyses of lncRNAs by leveraging previously
published gene expression data including both microarray
and RNA-seq (Zhou et al., 2015a,b, 2017, 2018, 2019; Cheng
and Leung, 2018a,b). In the present study, we studied the

skewness between samples in different states, such as disease
or normal, with a special emphasize. As for as we know,
no normalization algorithms have been specifically developed
for lncRNA expression data for this purpose. Recently, Assefa
et al. summarized and compared a total of 25 methods for
detecting differential expression lncRNAs concentrating on
the low expression abundance (Assefa et al., 2018). They
concluded that no methods compared can outperform other
tools. For the differential analysis of lncRNAs, all tools exhibit
substandard performance. They also concluded that large sample
size is necessary for accurate differential expression inference
of lncRNAs.

Normalization methods impact little to the coexpression
analysis, mainly because the gene expression samples in
different state or subgroups used to be stratified first and then
perform the coexpression analysis. In this case, the skewness
or difference between distinct biological states is not taken
into account. Like the protein interaction network (Cheng
et al., 2017a,b, 2018, 2019), module identification is also a
common way for studying gene coexpression network. Similarly,
normalization methods have little effect on the identification of
gene coexpression modules. Overall, the impact of normalization
methods on coexpression analysis is not as much as
differential analysis.

CONCLUSION

Normalizationmethods developed for the unbalanced expression
data were summarized into three classes based on the expression
reference, data-driven reference, extra negative controls, and all
genes. To our best knowledge, this is the most comprehensive
review of available preprocessing algorithms for the unbalanced
transcriptome data. The anatomy and summarization of these
algorithms shed light on the understanding and appropriate
application of preprocessing methods.

AUTHOR CONTRIBUTIONS

LC and XL wrote the paper. NL, SL, JW, NZ, and XZ provided the
literature and algorithms. LC and K-SL contributed to the overall
paper design.

FUNDING

This work was supported by Health and Family Planning
Commission of Shenzhen Municipality (SZXJ2017027 to XL).

REFERENCES

Aanes, H.,Winata, C.,Moen, L. F., Østrup, O.,Mathavan, S., Collas, P., et al. (2014).

Normalization of RNA-sequencing data from samples with varying mRNA

levels. PLoS ONE 9:e89158. doi: 10.1371/journal.pone.0089158

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence

count data. Genome Biol. 11:R106. doi: 10.1186/gb-2010-11-10-r106

Assefa, A. T., De Paepe, K., Everaert, C., Mestdagh, P., Thas, O., andVandesompele,

J. (2018). Differential gene expression analysis tools exhibit substandard

performance for long non-coding RNA-sequencing data. Genome Biol. 19:96.

doi: 10.1186/s13059-018-1466-5

Barucca, P., Rocchi, J., Marinari, E., Parisi, G., and Ricci-Tersenghi,

F. (2015). Cross-correlations of American baby names. Proc.

Natl. Acad. Sci. U.S.A. 112, 7943–7947. doi: 10.1073/pnas.15071

43112

Berger, J. A., Hautaniemi, S., Järvinen, A. K., Edgren, H., Mitra, S. K., and Astola,

J. (2004). Optimized LOWESS normalization parameter selection for DNA

microarray data. BMC Bioinformatics 5:194. doi: 10.1186/1471-2105-5-194

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 November 2019 | Volume 7 | Article 358

https://doi.org/10.1371/journal.pone.0089158
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/s13059-018-1466-5
https://doi.org/10.1073/pnas.1507143112
https://doi.org/10.1186/1471-2105-5-194
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Liu et al. Normalization Methods for Unbalanced Expression Data

Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). A

comparison of normalization methods for high density oligonucleotide

array data based on variance and bias. Bioinformatics 19, 185–193.

doi: 10.1093/bioinformatics/19.2.185

Calza, S., Raffelsberger, W., Ploner, A., Sahel, J., Leveillard, T., and Pawitan, Y.

(2007). Filtering genes to improve sensitivity in oligonucleotide microarray

data analysis. Nucleic Acids Res. 35:e102. doi: 10.1093/nar/gkm537

Calza, S., Valentini, D., and Pawitan, Y. (2008). Normalization of oligonucleotide

arrays based on the least-variant set of genes. BMC Bioinformatics 9:140.

doi: 10.1186/1471-2105-9-140

Cheng, L., Fan, K., Huang, Y., Wang, D., and Leung, K. S. (2017a). Full

characterization of localization diversity in the human protein interactome. J.

Proteome Res. 16, 3019–3029. doi: 10.1021/acs.jproteome.7b00306

Cheng, L., and Leung, K.-S. (2018a). Identification and characterization of

moonlighting long non-coding RNAs based on RNA and protein interactome.

Bioinformatics 34, 3519–3528. doi: 10.1101/261511

Cheng, L., and Leung, K. S. (2018b). Quantification of non-coding RNA target

localization diversity and its application in cancers. J. Mol. Cell Biol. 10,

130–138. doi: 10.1093/jmcb/mjy006

Cheng, L., Liu, P., and Leung, K.-S. (2017b). “SMILE: a novel procedure

for subcellular module identification with localization expansion,” in

Proceedings of the 8th ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics (Boston, MA: ACM), 754–755.

doi: 10.1145/3107411.3110415

Cheng, L., Liu, P., and Leung, K. S. (2018). SMILE: a novel procedure for

subcellular module identification with localisation expansion. IET Syst. Biol. 12,

55–61. doi: 10.1049/iet-syb.2017.0085

Cheng, L., Liu, P., Wang, D., and Leung, K. S. (2019). Exploiting locational and

topological overlap model to identify modules in protein interaction networks.

BMC Bioinformatics 20:23. doi: 10.1186/s12859-019-2598-7

Cheng, L., Lo, L. Y., Tang, N. L., Wang, D., and Leung, K. S. (2016a). Crossnorm: a

novel normalization strategy for microarray data in cancers. Sci. Rep. 6:18898.

doi: 10.1038/srep18898

Cheng, L., Wang, X., Wong, P. K., Lee, K. Y., Li, L., Xu, B., et al.

(2016b). ICN: a normalization method for gene expression data considering

the over-expression of informative genes. Mol. Biosyst. 12, 3057–3066.

doi: 10.1039/C6MB00386A

Choe, S. E., Boutros, M., Michelson, A. M., Church, G. M., and Halfon,

M. S. (2005). Preferred analysis methods for affymetrix genechips

revealed by a wholly defined control dataset. Genome Biol. 6:R16.

doi: 10.1186/gb-2005-6-2-r16

Chua, S. W., Vijayakumar, P., Nissom, P. M., Yam, C. Y., Wong, V. V., and Yang,

H. (2006). A novel normalization method for effective removal of systematic

variation in microarray data. Nucleic Acids Res. 34:e38. doi: 10.1093/nar/

gkl024

Dillies, M. A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant,

N., et al. (2013). A comprehensive evaluation of normalization methods for

Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14,

671–683. doi: 10.1093/bib/bbs046

Fu, Q., Borneman, J., Ye, J., and Chrobak, M. (2005). “Improved probe selection

for DNA arrays using nonparametric kernel density estimation,” in Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society. IEEE Engineering in Medicine and Biology Society, Vol. 1 (Shanghai),

902–905.

Fu, X., Fu, N., Guo, S., Yan, Z., Xu, Y., Hu, H., et al. (2009). Estimating

accuracy of RNA-Seq andmicroarrays with proteomics. BMCGenomics 10:161.

doi: 10.1186/1471-2164-10-161

Fujita, A., Sato, J. R., Rodrigues Lde, O., Ferreira, C. E., and Sogayar, M. C.

(2006). Evaluating different methods of microarray data normalization. BMC

Bioinformatics 7:469. doi: 10.1186/1471-2105-7-469

Ghavidel, F. Z., Claesen, J., and Burzykowski, T. (2015). A nonhomogeneous

hidden markov model for gene mapping based on next-generation sequencing

data. J. Comput. Biol. 22, 178–188. doi: 10.1089/cmb.2014.0258

Handschuh, L., Kazmierczak, M., Milewski, M. C., Góralski, M., Łuczak, M.,

Wojtaszewska, M., et al. (2018). Gene expression profiling of acute myeloid

leukemia samples from adult patients with AML-M1 and -M2 through

boutique microarrays, real-time PCR and droplet digital PCR. Int. J. Oncol. 52,

656–678. doi: 10.3892/ijo.2017.4233

Hsieh, W. P., Chu, T. M., Lin, Y. M., and Wolfinger, R. D. (2011). Kernel

density weighted loess normalization improves the performance of detection

within asymmetrical data. BMC Bioinformatics 12:222. doi: 10.1186/1471-2105-

12-222

Jewett, A. I., Huang, C. C., and Ferrin, T. E. (2003). MINRMS: an

efficient algorithm for determining protein structure similarity

using root-mean-squared-distance. Bioinformatics 19, 625–634.

doi: 10.1093/bioinformatics/btg035

Kim, Y., Doan, B. Q., Duggal, P., and Bailey-Wilson, J. E. (2007). Normalization of

microarray expression data using within-pedigree pool and its effect on linkage

analysis. BMC. Proc. 1(Suppl 1):S152. doi: 10.1186/1753-6561-1-s1-s152

Klinglmueller, F., Tuechler, T., and Posch, M. (2011). Cross-platform comparison

of microarray data using order restricted inference. Bioinformatics 27, 953–960.

doi: 10.1093/bioinformatics/btr066

Landfors, M., Philip, P., Rydén, P., and Stenberg, P. (2011). Normalization of high

dimensional genomics data where the distribution of the altered variables is

skewed. PLoS ONE 6:e27942. doi: 10.1371/journal.pone.0027942

Ledford, H. (2008). The death of microarrays? Nature 455:847.

doi: 10.1038/455847a

Li, C., andHungWong,W. (2001).Model-based analysis of oligonucleotide arrays:

model validation, design issues and standard error application. Genome Biol.

2:Research0032. doi: 10.1186/gb-2001-2-8-research0032

Lovén, J., Orlando, D. A., Sigova, A. A., Lin, C. Y., Rahl, P. B., Burge, C. B.,

et al. (2012). Revisiting global gene expression analysis. Cell 151, 476–482.

doi: 10.1016/j.cell.2012.10.012

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008).

Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat.

Methods 5, 621–628. doi: 10.1038/nmeth.1226

Ni, T. T., Lemon, W. J., Shyr, Y., and Zhong, T. P. (2008). Use of normalization

methods for analysis of microarrays containing a high degree of gene effects.

BMC Bioinformatics 9:505. doi: 10.1186/1471-2105-9-505

Oshlack, A., Emslie, D., Corcoran, L. M., and Smyth, G. K. (2007). Normalization

of boutique two-color microarrays with a high proportion of differentially

expressed probes. Genome Biol. 8:R2. doi: 10.1186/gb-2007-8-1-r2

Pelz, C. R., Kulesz-Martin, M., Bagby, G., and Sears, R. C. (2008). Global

rank-invariant set normalization (GRSN) to reduce systematic distortions in

microarray data. BMC Bioinformatics 9:520. doi: 10.1186/1471-2105-9-520

Pradervand, S., Weber, J., Thomas, J., Bueno, M., Wirapati, P., Lefort, K., et al.

(2009). Impact of normalization on miRNA microarray expression profiling.

RNA 15, 493–501. doi: 10.1261/rna.1295509

Quackenbush, J. (2002). Microarray data normalization and transformation. Nat.

Genet. 32(Suppl.), 496–501. doi: 10.1038/ng1032

Risso, D., Massa, M. S., Chiogna, M., and Romualdi, C. (2009). A modified

LOESS normalization applied to microRNA arrays: a comparative evaluation.

Bioinformatics 25, 2685–2691. doi: 10.1093/bioinformatics/btp443

Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method

for differential expression analysis of RNA-seq data. Genome Biol. 11:R25.

doi: 10.1186/gb-2010-11-3-r25

Stone, M. B., and Veatch, S. L. (2015). Steady-state cross-correlations for live

two-colour super-resolution localization data sets. Nat. Commun. 6:7347.

doi: 10.1038/ncomms9319

Sun, J., Zhao, H., Lin, S., Bao, S., Zhang, Y., Su, J., et al. (2019). Integrative analysis

frommulti-centre studies identifies a function-derived personalizedmulti-gene

signature of outcome in colorectal cancer. J. Cell. Mol. Med. 23, 5270–5281.

doi: 10.1111/jcmm.14403

Suo, C., Salim, A., Chia, K. S., Pawitan, Y., and Calza, S. (2010). Modified

least-variant set normalization for miRNA microarray. RNA 16, 2293–2303.

doi: 10.1261/rna.2345710

Talloen, W., Clevert, D. A., Hochreiter, S., Amaratunga, D., Bijnens, L., Kass,

S., et al. (2007). I/NI-calls for the exclusion of non-informative genes: a

highly effective filtering tool for microarray data. Bioinformatics 23, 2897–2902.

doi: 10.1093/bioinformatics/btm478

Wang, D., Cheng, L., Zhang, Y., Wu, R., Wang, M., Gu, Y., et al. (2012).

Extensive up-regulation of gene expression in cancer: the normalised

use of microarray data. Mol. BioSyst. 8, 818–827. doi: 10.1039/c2mb0

5466c

Wang, K. Y. X., Menzies, A. M., Silva, I. P., Wilmott, J. S., Yan, Y., Wongchenko,

M., et al. (2019). bcGST-an interactive bias-correction method to identify

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 November 2019 | Volume 7 | Article 358

https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/nar/gkm537
https://doi.org/10.1186/1471-2105-9-140
https://doi.org/10.1021/acs.jproteome.7b00306
https://doi.org/10.1101/261511
https://doi.org/10.1093/jmcb/mjy006
https://doi.org/10.1145/3107411.3110415
https://doi.org/10.1049/iet-syb.2017.0085
https://doi.org/10.1186/s12859-019-2598-7
https://doi.org/10.1038/srep18898
https://doi.org/10.1039/C6MB00386A
https://doi.org/10.1186/gb-2005-6-2-r16
https://doi.org/10.1093/nar/gkl024
https://doi.org/10.1093/bib/bbs046
https://doi.org/10.1186/1471-2164-10-161
https://doi.org/10.1186/1471-2105-7-469
https://doi.org/10.1089/cmb.2014.0258
https://doi.org/10.3892/ijo.2017.4233
https://doi.org/10.1186/1471-2105-12-222
https://doi.org/10.1093/bioinformatics/btg035
https://doi.org/10.1186/1753-6561-1-s1-s152
https://doi.org/10.1093/bioinformatics/btr066
https://doi.org/10.1371/journal.pone.0027942
https://doi.org/10.1038/455847a
https://doi.org/10.1186/gb-2001-2-8-research0032
https://doi.org/10.1016/j.cell.2012.10.012
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1186/1471-2105-9-505
https://doi.org/10.1186/gb-2007-8-1-r2
https://doi.org/10.1186/1471-2105-9-520
https://doi.org/10.1261/rna.1295509
https://doi.org/10.1038/ng1032
https://doi.org/10.1093/bioinformatics/btp443
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1038/ncomms9319
https://doi.org/10.1111/jcmm.14403
https://doi.org/10.1261/rna.2345710
https://doi.org/10.1093/bioinformatics/btm478
https://doi.org/10.1039/c2mb05466c
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Liu et al. Normalization Methods for Unbalanced Expression Data

over-represented gene-sets in boutique arrays. Bioinformatics 35, 1350–1357.

doi: 10.1093/bioinformatics/bty783

Welsh, E. A., Eschrich, S. A., Berglund, A. E., and Fenstermacher, D. A. (2013).

Iterative rank-order normalization of gene expression microarray data. BMC

Bioinformatics 14:153. doi: 10.1186/1471-2105-14-153

Wu, D., Hu, Y., Tong, S., Williams, B. R., Smyth, G. K., and Gantier, M. P. (2013).

The use of miRNA microarrays for the analysis of cancer samples with global

miRNA decrease. RNA 19, 876–888. doi: 10.1261/rna.035055.112

Wu, Z., and Aryee, M. J. (2010). Subset quantile normalization using negative

control features. J. Comput. Biol. 17, 1385–1395. doi: 10.1089/cmb.2010.0049

Xiong, H., Zhang, D., Martyniuk, C. J., Trudeau, V. L., and Xia, X. (2008). Using

generalized procrustes analysis (GPA) for normalization of cDNA microarray

data. BMC Bioinformatics 9:25. doi: 10.1186/1471-2105-9-25

Zhou, M., Guo, M., He, D., Wang, X., Cui, Y., Yang, H., et al. (2015a). A potential

signature of eight long non-coding RNAs predicts survival in patients with non-

small cell lung cancer. J. Transl. Med. 13:231. doi: 10.1186/s12967-015-0556-3

Zhou, M., Hu, L., Zhang, Z., Wu, N., Sun, J., and Su, J. (2018). Recurrence-

associated long non-coding RNA signature for determining the risk of

recurrence in patients with colon cancer.Mol. Ther. Nucleic Acids 12, 518–529.

doi: 10.1016/j.omtn.2018.06.007

Zhou, M., Zhao, H., Wang, X., Sun, J., and Su, J. (2019). Analysis of

long noncoding RNAs highlights region-specific altered expression patterns

and diagnostic roles in alzheimer’s disease. Brief. Bioinform. 20, 598–608.

doi: 10.1093/bib/bby021

Zhou, M., Zhao, H., Wang, Z., Cheng, L., Yang, L., Shi, H., et al. (2015b).

Identification and validation of potential prognostic lncRNA biomarkers for

predicting survival in patients with multiple myeloma. J. Exp. Clin. Cancer Res.

34:102. doi: 10.1186/s13046-015-0219-5

Zhou, M., Zhao, H., Xu, W., Bao, S., Cheng, L., and Sun, J. (2017). Discovery

and validation of immune-associated long non-coding RNA biomarkers

associated with clinically molecular subtype and prognosis in diffuse large B

cell lymphoma.Mol. Cancer 16:16. doi: 10.1186/s12943-017-0580-4

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Liu, Li, Liu, Wang, Zhang, Zheng, Leung and Cheng. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 November 2019 | Volume 7 | Article 358

https://doi.org/10.1093/bioinformatics/bty783
https://doi.org/10.1186/1471-2105-14-153
https://doi.org/10.1261/rna.035055.112
https://doi.org/10.1089/cmb.2010.0049
https://doi.org/10.1186/1471-2105-9-25
https://doi.org/10.1186/s12967-015-0556-3
https://doi.org/10.1016/j.omtn.2018.06.007
https://doi.org/10.1093/bib/bby021
https://doi.org/10.1186/s13046-015-0219-5
https://doi.org/10.1186/s12943-017-0580-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Normalization Methods for the Analysis of Unbalanced Transcriptome Data: A Review
	Introduction
	Invalidated Conditions
	Normalization Methods for Unbalanced Data

	Brief Reviews of Available Methods
	Data-Driven Reference Normalization
	GRSN
	Xcorr Normalization
	NVSA
	KDWL
	KDQ
	Iron
	LVS
	LVSmiR
	Invariants Normalization
	HMM-Normalization
	BSN
	SVR
	ISN

	Extra-Control Reference Normalization
	Spike-in Controls
	wlowess
	wcloess
	SQN

	All-Gene Reference Normalization
	Loessm (miRNA)
	GPA Normalization (cDNA)
	Non-normalized Data
	WPRMA (Within Pool RMA)
	CrossNorm
	ICN


	Discussion
	General Steps for Normalizing Strewed Gene Expression Data
	Optimal Hybridization of Existing Normalization Steps
	Potential Improvement of the Normalization Steps
	Impact on lncRNA Transcriptome and Coexpression Analysis

	Conclusion
	Author Contributions
	Funding
	References


