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Many biological indicators related to chronological age have been proposed. Recent

studies found that epigenetic clock or DNA methylation age is highly correlated with

chronological age. In particular, a significant difference between DNA methylation age

(m-age) and chronological age was observed in cancers. However, the prediction

and characterization of m-age in pan-cancer remains an explored area. In this study,

1,631 age-related methylation sites in normal tissues were discovered and analyzed. A

comprehensive computational model named CancerClock was constructed to predict

the m-age for normal samples based on methylation levels of the extracted methylation

sites. LASSO linear regression model was used to screen and train the CancerClock

model in normal tissues. The accuracy of CancerClock has proved to be 81%, and the

correlation value between chronological age and m-age was 0.939 (P < 0.01). Next,

CancerClock was used to evaluate the difference between m-age and chronological

age for 33 cancer types from TCGA. There were significant differences between

predicted m-age and chronological age in large number of cancer samples. These

cancer samples were defined as “age-related cancer samples” and they have some

differential methylation sites. The differences between predictedm-age and chronological

age may contribute to cancer development. Some of these differential methylation sites

were associated with cancer survival. CancerClock provided assistance in estimating the

m-age in normal and cancer samples. The changes between m-age and chronological

age may improve the diagnosis and prognosis of cancers.

Keywords: chronological age, methylation age, pan-cancer, LASSO, survival

BACKGROUND

Cancer has long been a major threat to human health and age, and it is a complex disease, is often
characterized by abnormal and uninhibited cell growth (Eeghen et al., 2015; Mcguire et al., 2015;
Taber et al., 2016). Unhealthy living environment leads to delay in the repair of damaged body
cells, which accumulate with increase in individual’s chronological age, thus greatly increasing
the risk of cancer (Palmer et al., 2018). Although it has been confirmed that there is a general
correlation between individual age and the occurrence of cancer (Zinger et al., 2017), the degree of
this correlation may be different due to the age distribution of different tumor sites.
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More and more diagnostic, recurrence and prognostic
biomarkers of cancer have been identified (Zhou et al., 2015a,
2016). Many age-related biomarkers such as DNA methylation,
telomere length changes, cell metabolic factor regulation,
transcription level, and protein expression level have been
discovered and further studied (Aubert and Lansdorp, 2008;
Vilchez et al., 2014; Zubakov et al., 2016). DNA methylation
could modulate gene expression during development and cancer
progression (Wang et al., 2013; Zhang et al., 2019). In comparison
to normal somatic tissues, the cancer methylome is typically
characterized by a pattern of global hypomethylation coupled
with site-specific promoter hypermethylation (Urbano et al.,
2019). Through comparative analysis of a variety of existing
age-related biomarkers, DNA methylation has been found as
one of the most promising biomarkers for age prediction. DNA
methylation refers to the addition of a methyl group to C
at the 5th position of cytosine to promote or inhibit gene
expression (Dirk, 2015; Nwanaji-Enwerem et al., 2018). In recent
years, DNA methylation age (m-age) biomarkers has been able
to accurately estimate the age of any tissue throughout life
(Horvath, 2013). In addition, m-age biomarkers are valuable
tools for evaluating tumor process, which can be a predictor of
human health (Perna et al., 2016; Dhingra et al., 2018). However,
the differences between m-age and chronological age of different
tissues in tumor and the biological processes involved remained
to be studied.

There are many studies on the age of individuals using
DNA methylation level (Horvath, 2013; Galamb et al., 2016;
Dhingra et al., 2018). In 2013, it was proposed for the first
time to construct human multi-tissue age predictor based on
DNA methylation to measure the degree of aging in human
(Horvath, 2013). Subsequently, Weidnei et al. constructed age
predictors using three CpG sites as characteristics in 575 healthy
samples (Weidner et al., 2014; Nwanaji-Enwerem et al., 2018).
Zbiec-piekarska et al. used 5 CpG loci as characteristics in 420
healthy samples to predict age (Spólnicka et al., 2018). Due to
tissue specificity of methylation level, Stubbs et al. proposed to
construct a multi-tissue age predictor based on methylation level
in biological mice model (Stubbs et al., 2017). In addition, DNA
methylation is maintained throughout life course in multiple

Abbreviations: m-age, DNA methylation age; TCGA, The cancer genome
atlas; MSE, Mean-squared error; GO, Gene Ontology; EWAS, epigenome-
wide association study software; BLCA, Bladder urothelial carcinoma;
BRCA, Breast invasive carcinoma; COAD, Colon adenocarcinoma; ESCA,
Esophageal carcinoma; HNSC, Head and neck squamous cell carcinoma;
KICH, Kidney chromophobe; KIRC, Kidney renal clear cell carcinoma;
KIRP, Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular
carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell
carcinoma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma;
STAD, Stomach adenocarcinoma; THCA, Thyroid carcinoma; UCEC,
Uterine corpus endometrial carcinoma; CHOL, Cholangiocarcinoma; OV,
Ovarian serous cystadenocarcinoma; GBM, Glioblastoma multiforme; PAAD,
Pancreatic adenocarcinoma; CESC, Cervical squamous cell carcinoma; PCPG,
Pheochromocytoma and paraganglioma; SARC, Sarcoma; THYM, Thymoma;
SKCM, Skin cutaneous melanoma; ACC, Adrenocortical carcinoma; CCSK,
Clear cell sarcoma of the kidney; DLBC, Lymphoid neoplasm diffuse large
B-cell lymphoma; MESO, Mesothelioma; LGG, Brain lower grade glioma;
TGCT, Testicular germ cell tumors; UCS, Uterine carcinosarcoma; UVM,
Uveal melanoma.

tissues, linking many known early life factor to cancer risk
(Kristina et al., 2015). The changes in DNA methylation with age
occur at regulatory regions and contribute to tumor development
(Johnson et al., 2017). Methylation of SLFN11 is a biomarker
for poor prognosis in colorectal cancer and methylations of
SLIT1, SLIT2, and SLIT3 are abnormal in gastric cancer. F2RL3
methylation is recently identified as a biomarker closely reflecting
both current and past smoking exposure, causing lung cancer
(Yan et al., 2015; Kim et al., 2016; He et al., 2017). However, the
difference between the m-age for cancer and healthy samples is
still unknown. In addition, the effect of age-related methylation
characteristics on the survival risk of diverse cancer needs to be
further confirmed.

In the present study, we found that DNA methylation
levels were correlated with chronological age, and age-
associated methylation sites were identified in human cancers.
A comprehensive age prediction model named CancerClock
was constructed using these age-associated methylation sites.
Further, the characteristics of these age-associated methylation
sites were described from three main aspects, including GO
functions, biological phenotype, and the genomic location of the
feature. Moreover, the m-age of common types of human cancers
was described. The differences between predicted m-age and
chronological age were also identified using CancerClock. For
each cancer type, we detected a series of methylation sites, which
could influence m-age compared to healthy samples. Finally,
these differences were analyzed using cox regression model, and
their effect on tumor survival risk was analyzed. In summary, the
findings of this study would provide assistance to depict the age
clock of cancers, characterize the m-age of cancer samples, and
clinically evaluate the cancer progression.

METHODS

Clinical and Methylation Profile of Cancers
The methylation profile of IlluminaMethylation450 chip for
33 cancer types and their matched normal tissues were
obtained from the cancer genome atlas (TCGA) data portal
(TCGA Release 14.0, https://portal.gdc.cancer.gov/) (Hutter
and Zenklusen, 2018), and each sample contained 485,512
methylation sites. The values in the methylation profile represent
methylation degree of the sites ranging from 0 to 1, which is
calculated as the ratio of methylated signal. The sample age
ranged from 14 to 89 years. Totally, 8,692 samples including
7,988 tumor samples and 704 normal tissue samples were
extracted for the present study (Supplementary Table S1). The
corresponding clinical information of the samples (including
age, gender, survival prognosis, cancer stage, and type of tumor
samples) was also described.

Methylation Data Processing
First, we calculated the mean, standard deviation, and maximum
and minimum values of age for each cancer type sample without
clinical information were excluded. Methylation sites with NA
values >10% in samples were removed. Then, we imputed
the remaining NA values using 10-nearest neighbor method
with the function knnImputation in DMwR package by R.
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DNA methylation profiles of normal and tumor samples were
annotated using CpG probe annotation file from GENCODE
(Release 29, https://www.gencodegenes.org) (Frankish et al.,
2019). All processes were performed by R software (R 3.3.3).

The Segmentation and Statistics of Age for
All Cancer and Normal Samples
Human age in this study was divided into four sections according
to the novel age subsection proposed by the United Nations
and World Health Organization (WHO) after 1994: (Eeghen
et al., 2015) Young people: under 44 years old (Taber et al.,
2016), middle-aged people: between 45 and 59 years old (Mcguire
et al., 2015), older-young people: between 60 and 74 years
old, and (Palmer et al., 2018) old people: over 75 years old
(Supplementary Table S2). The chronological ages of samples
were obtained from clinical information and were divided using
above age segmentations rules (Supplementary Table S3).

Identification of Age-Associated
Methylation Sites
To identify age-associated methylation sites, Spearman
correlation coefficients (SCCs) were calculated based on
age and methylation levels based on all the normal samples
(Stubbs et al., 2017). Then, a series of methylation sites were
obtained with P < 0.05 and |SCC|>0.3. These methylation sites
were proved to be significantly correlated with age, and can be
the candidate features for constructing the model.

Construction of Age Predictor Known as
CancerClock Based on Methylation Level
in Normal Samples
To predict human age, we performed LASSO regression model
in the generalized linear mode, which through some regression
coefficients was strictly set to 0 and we obtained a model with
good performance and strong explanatory power (Hepp et al.,
2016). Firstly, we obtained a set of M∗N methylation matrix X,
in which the value in the matrix is the methylation level of the
methylation site M in N samples. Each row of X represented
the 1,631 age-associated sites, and the column represented the
normal samples. Then, we normalized the methylation values
as follows:

m
∑

i = 1

xij = 0,
m

∑

i = 1

x2ij = 1

From the formulae, i= 1,2,3. . .m, j= 1,2,3. . . n, m represents the
1,631 age-associated sites, n represents the sample size, and xij
represents the methylation level.

Next, we assumed a set of linear regression models:

mAge = β0 + β1x1 + β2x2 + β3x3 . . . + βmxm

mAge is the model prediction age, vector β is the model
coefficient, and vector x is the methylation expression level.

RSSs (residual sum of squares) with the least
square estimation:

RSS =

n
∑

i = 1



yi − β0 −

p
∑

j = 1

βjxij





2

I (n = 1, 2, 3. . .n) represents the sample size, yi describes the
actual age of sample i, and xij represents the methylation level.
The smaller the RSSs, the better the fitting effect.

LASSO-minimality:

J (β) =

n
∑

i = 1



yi − β0 −

p
∑

j= 1

βjxij





2

+ γ

p
∑

j = 1

|βj| = RSS

+ γ

p
∑

j = 1

|βj|

N means the total number of samples. γ
∑p

j = 1 |βj| represents
compressed penalty term. γ means adjustment, which controls
the influence of RSS and compressed penalty term on regression
coefficient. β0 is excluded from the compressed penalty term,
which represents the mean of response variables when xj = 0.
Next, coordinate axis descent method was used to solve the
model. The initial β values were all 0. When the βvalue was lower
than the threshold, we set the two adjacent iterations; the vector
βk would be regarded as the final feature of our model.

The CancerClock model was constructed based on GLMNET
package in R 3.3.3 (Friedman et al., 2010). We evaluated the
stability and accuracy of the model by means of 10-fold cross-
validation. All the healthy samples were randomly divided into
10 subsets, 9 of which were selected as the training set. The test
set was used in the verification of the model.

Functional Analysis and Phenotypic Traits
for Characteristics in CancerClock
With the Enrichr tool online web server (http://amp.pharm.
mssm.edu/Enrichr) using default parameters, functional
enrichment was performed for genes across core clusters
(Kuleshov et al., 2016), and we obtained enriched GO terms (P
< 0.01, FDR < 0.05). The degree of methylation at chromosomal
sites affected post-translational modification of proteins, which
in turn contributed to the expression of biological traits. In
this study, EWAS atlas, which is online analysis software, was
used in describing the selected 282 loci with biological traits.
EWAS Atlas (http://bigd.big.ac.cn/ewas) (Li et al., 2019) is a
database of epigenetic traits, which include the correlation of
information between nearly 330,000 methylation sites and 305
different biological traits through the integration and analysis of
existing literatures.

Characteristics of Genome Location
Regions for Age-Related Methylation Sties
in CancerClock
To explore the distribution of CancerClock features in genome,
we got the annotation information of the genome region from
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GENCODE database (Release 29, https://www.gencodegenes.
org) and we mapped the methylation features on the genome
using BEDTools (V2.29.0, https://bedtools.readthedocs.io/en/
latest/content/overview.html). In addition, we defined the
promoter region as the upstream and downstream 1.5 kb of TSS
(transcription start site); thus, the regions included promoter,
exon, 5′-UTR, 3′-UTR, and TSS.

Prediction of m-Age for Tumor Types
To predict human methylation age, we used 282 age-related
methylation characteristics and 704 healthy samples to construct
age prediction model. To investigate further whether tumor
causes changes in methylation age, we used the CancerClock
prediction model to predict the 33 cancer types in TCGA based
on methylation level. For cancer samples, their methylation age
and chronological age showed some difference. Among the age
prediction of cancer samples, we defined the error value as
the absolute age difference of the quarter-point after the age
prediction rank, and we showed the difference between the
biology age and methylation age for different cancer types. Thus,
some age-influenced cancer samples, in which methylation age
was significantly different from chronological age, were obtained.

Differential Analysis of Methylation Sites
Between Normal and “Age-Related Cancer
Samples”
To determine which age-related methylation sites were changed
in tumor samples, we conducted t-test for the methylation sites
in healthy samples and age-influenced cancer samples, and we
obtained significantly differential methylation sites (FDR < 0.01,
Fold Change value>2 or <0.5). These cancer samples were
defined as “age-related cancer samples” and they have some
differential methylation sites.

The Survival Analysis for Differential
Methylation Sites
An integrated pipeline was constructed to explore the
associations between these age-related differential methylation
sites and cancer survival (Zhou et al., 2019). First, we divided the
samples into two groups including hyper-methylated and hypo-
methylated sample groups according to the median methylation
level. Next, the age-related differential methylation sites of the
16 cancer types were selected to establish a cox risk regression
model for each tumor type, which was selected according to P <

0.05 (Gellar et al., 2015). The covariance matrix was composed
of the cancer stage, gender, age, and methylation level. Next, the
risk score for each cancer patient was calculated according to
the linear combination of the methylation values weighted by
the coefficient from multivariate Cox regression analysis. The
median risk score was used as the cut-off point to divide the
cancer patients into high and low risk groups. Finally, Kaplan-
Meier survival analysis was conducted for the two groups, and
statistical significance was assessed using the log-rank test. The
survival results were considered significant when P < 0.05. All
analyses were performed within the R 3.3.3 framework.

RESULTS

Correlation Between the Levels of Some
DNA Methylation Sites in Human Normal
Tissues and Chronological Age
Chronological age is referred to the real age of an individual,
which is recorded by researchers. To study age-associated
methylation levels in human over a wide range of ages and
tissues, we collected 704 normal tissue samples from 14 to 89
years (Figure 1A). We found that 145,523 DNA methylation
sites across all tissues were correlated with age (a multiple
testing corrected p < 0.05) (Figure 1B). Further, we screened
the correlations and we obtained 1,631 methylation sites that
were significantly correlated with age, which were considered
to be significantly correlated with chronological age (|cor|
>0.3). Overall, we identified up to 1,609 positive correlations,
accounting for 98.7% of the total number of methylation sites,
which suggested that in most samples, the higher the level of
age-related methylation, the older the organism in the sample
(Figure 1C). We classified tissue samples follow tissues to verify
tissue specificity of the 1,631 age-related sites stated above. We
performed correlation analysis with chronological age of each
tissue, and we compared them with all-tissue correlation scores.
The correlations of the most specific tissues were higher than the
overall correlation level. This indicated that the selected sites were
not only significantly correlated with age in all samples, but also
more highly correlated with chronological age of samples in a
single tissue (Figure 1D).Therefore, we demonstrated that these
1,631 methylation sites were related to the chronological age of
individuals not only in specific tissues but also in all samples.

Feature Selection and Model Construction
of CancerClock
CancerClock model was constructed to predict the m-age in
human normal samples based on adjacent normal tissue for each
cancer (Figure 2A, see Methods). The LASSO linear regression
model was used to screen the 1,631 age-related methylation sites
in the training set using the GLMNET package of R. Finally,
282 sites were selected from 1,631 methylation site as model
features (Figure 2B, Supplementary Table S4). According to the
least Mean-Squared Error (MSE, reflect the degree of difference
between the estimator and true value, the smaller the MSE,
the better the model fit) of LASSO linear regression model,
we found that the value β0 of the model was 34.63 when the
adjustment parameter was 0.1419941 (Figure 2C). Among the
282 methylation characteristics in the construction of model,
the levels of cg08461576, cg05923914, cg27641628, cg13221458,
cg05632420, and cg07103722 were significantly and negatively
correlated with sample age, and the linear model coefficients
of the six sites above were negative as well (Figure 2D). We
described the methylation level for these 282 methylation
characteristics and we promoted them to effectively describe the
chronological age of all normal samples through the heatmap
(Figures 2A,D). The results showed that it was difficult to
characterize themethylation age of samples by single methylation
sites, and the methylation clusters might produce a better result.
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FIGURE 1 | Identification of chronological age-related DNA methylation sites in human normal tissues. (A) The barplot shows sample distribution of four age

segments in diverse cancer types. The lighter color represents larger age of samples. (B) Distribution of correlation scores between all methylation sites and

chronological age. (C) Spearman correlation between age and methylation (P < 0.05, |cor| > 0.3). The pie chart shows the proportion of 1,631 positive and negative

methylation sites correlated with chronological age. (D) The scatter diagram shows the correlation between methylation sites (cg16867657, cg23606718) and

chronological age in KIRC and BRCA. The overall background is the methylation sites of all samples (gray color), and the blue color represents the correlation between

chronological age and methylation age in a certain type of samples such as BRCA and KIRC.

To evaluate the accuracy of the model, we used the training
set and the test set to verify the model, separately. The results
showed that the model responded well to the training set
samples, and the correlation between chronological age and
m-age was as high as 0.939 (P < 2.38e−295) (Figure 2E).
Meanwhile, for test set samples, the correlation between
chronological age and m-age predicted by the model was up
to 0.843 (P < 5.96e−20) (Figure 2E). The average accuracy

of the model was 81%. To determine the difference between
chronological age and predicted m-age in normal samples,
we ordered the absolute value of the difference between
the chronological age and predicted m-age in descending
order, and we selected the quartile as the error value.
The results showed that the age error value was 3 years,
which indicated that the prediction error of over 75% of
the sample age was controlled within 3 years, which is far
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FIGURE 2 | Feature selection and model construction of CancerClock. (A) The heatmap shows the 282 age-related methylation sites extracted by the model in all

cancer samples. The red and blue represent high and low levels of methylation sites. (B) The barplot shows the number of 282 positive and negative age-related

methylation sites. (C) The selection of thresholds in LASSO regression model. The line represents the coefficient values, and the minimum mean-square error

corresponding to log(Lambda) is−1.95197. (D) Scatter diagram shows the correlations between correlation coefficient and model weight of CancerClock. (E) The

correlation between chronological age and predicted m-age in the training set and the correlation between chronological age and predicted m-age in the test set.
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lower than the age error predicted by previous researchers
through telomeres.

Biological Processes and Phenotypic Traits
of Age-Related Methylation Sites for
CancerClock
Gene Ontology (GO) analysis of the genes for the 282
model characteristics revealed that these genes were associated
with some GO terms such as “lysine catabolic process”
(GO:0006554) and “lysine metabolic process” (GO:0006553)
(Figure 3A). A network consisting of GO terms and genes was
constructed (Figure 3B). These results indicated that age-related
methylation sites could alter many important biology processes
(Supplementary Table S5). The online analysis software of
EWAS Atlas was used to analyze the biological characteristics
enrichment of 282 selected features, and it was found that 128 of
them were significantly enriched in age traits [–log10 (p) > 318],
which wasmanifested as significantmethylation quantitative trait
loci (meQTLs) related to age. Meanwhile, 128 sites were enriched
in age ontology entry (GO:0007568). In addition, we found that
most methylation sites were enriched in human acute leukemia
[–log10 (p) > 50] (Figure 3C, Supplementary Table S6). When
we mapped these characteristics on the corresponding gene
positions, we found that most of the loci corresponded to a single
gene, while few loci corresponded to multiple genes (Figure 3D).
To describe the distribution of these features of CancerClock in
genomic regions, we determined the position of these features in
the genome. We found 37 of the 282 characteristics located in the
promoter region of genes (Figure 3E).

Predicted m-Age and Chronological Age of
Cancer Patients
To depict the difference between m-age and chronological age
in cancer samples, we utilized the CancerClock based on the
methylation levels of all the 33 tumor types. We found that
the m-age was generally different from the chronological age,
but the degree of the difference was closely related to tumor
types. Here, we ranked the absolute age differences between
chronological age and we predicted the m-age and selected the
quartile values as the age difference scores of tumors, separately
(Figure 4A, Supplementary Table S7). A number of tumors
showed higher age difference score. Uterine carcinosarcoma
(USC) had the highest age difference score, followed by
ovarian serous cystadenoma carcinoma (OV) and uterine corpus
endometrial carcinoma (UCEC). We found that the top three
diseases with the largest age difference scores were all women
tumors, suggesting that their chronological age is related to the
pathological changes of the reproductive organ, and that female
diseases affect chronological age to some extent. In addition,
the distribution of m-age compared to the chronological age
was described, separately (Figure 4B). We found that the m-
age of different disease types was specific to their chronological
age. For example, USC showed that all the 57 cancer samples
were younger than the chronological age, and 96% of 54
testicular tumors showed age decline in men. According to
our results, in the 121 and 184 samples with thymoma and

ganglioma, 95% of the m-age was below the chronological age,
respectively. In addition, in the 247 and 80 samples with renal
cell carcinoma (RCC) and melanoma, 94% had younger m-age
than chronological age, respectively.

Differential Levels of Some Methylation
Sites Between m-Age and Chronological
Age in Age-Related Cancer Samples
To explore further the difference between m-age and
chronological age, we selected 25% age-related samples with the
largest difference, and then performed differential analysis with
normal samples in each cancer type (Supplementary Table S8).
In the age-related samples of cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), there were 77
methylation sites levels that were, respectively, different (FDR
< 0.01, |log (FC)|>1) (Supplementary Table S9). Moreover,
there were 38 methylation sites with significant changes in
breast invasive carcinoma (BRCA) and 22 methylation sites with
significant changes in kidney renal clear cell carcinoma (KIRC).
The differential methylation sites of some cancers showed hyper-
methylation in tumor samples as follows: cervical squamous cell
carcinoma (CESC) and bladder urothelial carcinoma (BLCA),
breast invasive carcinoma (BRCA), colon adenocarcinoma
(COAD), kidney renal clear cell carcinoma (KIRC), lung
squamous cell carcinoma (LUSC), pancreatic adenocarcinoma
(PAAD), sarcoma (SARC), and uterine corpus endometrial
carcinoma (UCEC). It is suggested that hyper-methylation of
these age-related differences may lead to changes in m-age and
cancer development.

Association Between the Differential
Methylation Sites in Age-Related Samples
and Survival
Predicting survival state of cancer patients was critical and
challenging (Zhou et al., 2017; Bao et al., 2019). To evaluate
the influence of the methylation level on patient survival,
cox risk regression model was performed for the differential
methylation sites in age-related samples of each tumor type
(Supplementary Table S10). The patients were divided into
two groups according to median risk score. In most cancer
types, these differential methylation sites in age-related samples
were associated with survival (Figure 5). The higher the risk
scores of BRCA, COAD, esophageal carcinoma (ESCA), liver
hepatocellular carcinoma (LIHC), and stomach adenocarcinoma
(STAD), the lower the survival of the patients. The results
indicated that differential methylation sites of age-related
samples maybe could be an effective prognostic biomarker
for cancers.

DISCUSSION

DNA methylation levels were closely associated with age and
related to the occurrence of tumors (Wang et al., 2016).
In this study, we explored the correlations between DNA
methylation level and age in normal tissues. Importantly, we
established CancerClock, a predictive model of age based on
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FIGURE 3 | Biological processes and phenotypic traits of age-related methylation sites for CancerClock. (A) The barplot shows the combined score and –log

(p-values) for enrichment GO terms of 282 extracted methylation sites. Pink, green, and gray colors represent biological process (BP), molecular function (MF), and

cellular component (CC), respectively. (B) Network shows the interactions between GO terms and genes. The color of node in network indicates enrichment strength,

and the three different shapes represent different biological types of GO terms. The circle represents the genes. (C) The bar chart shows the enrichment counts and

significance P-values of each trait from EWAS atlas analysis. (D) The corresponding relationship between methylation site and the genes in which it is located. The

relationship is usually one-to-one or one-to-many. (E) The distribution of 282 features of CancerClock model in genome position.
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FIGURE 4 | The levels of some methylation sites were differential in age-related cancer samples between m-age and chronological age. (A) Age different scores

between chronological age and predicted m-age among 33 cancer types. (B) The relationship between chronological age and predicted m-age for all the 33 disease

types. Compared to the chronological age group, the pink color indicates that the predicted m-age group was down-regulated, the blue color indicates that the

predicted m-age group was up-regulated, and the gray color indicates that the predicted m-age group remained unchanged.

DNA methylation level to depict the age clock in tumors. This
predicted the age based on methylations of 282 sites from
different tumor samples and it allowed us to access the m-age
among methylation datasets. In addition, we found that the
model was affected by a variety of biological processes, which
may indicate the molecular influence of methylation on age. Age
difference score in tumor samples showed the extent to which age
affected different tumors. Meanwhile, methylation sites affecting
the m-age of these tumors were identified. Through weighted
survival analysis of cancer samples, we finally determined the
impact of these age-causing sites on tumor survival.

CancerClock model is a multi-tissue age prediction model
based on the methylation level of diverse cancer types

in TCGA. It adopted a similar way as Horvath clock
in building the age prediction model of normal samples
(Horvath, 2013). More importantly, we applied this model
to cancer samples and we depicted the difference between
m-age and chronological age. These differences between
m-age and chronological age may provide assistance to
understand cancer development. Previous study also showed that
epigenetic age acceleration is associated with colorectal cancer
molecular characteristics and can be a significant predictor
of overall survival, as well as age and tumor stage (Zheng
et al., 2019). DNA methylation-based measures of biological
age may be an important predictors of breast cancer risk
(Kresovich et al., 2019). In the present study, we depicted this

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 December 2019 | Volume 7 | Article 388

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhu et al. DNA Methylation Age Predictor in Pan-Cancer

FIGURE 5 | The differential methylation sites in age-related samples were associated with survival. Kaplan-Meier survival analysis of two groups of patients with high-

(blue line) and low- score (red line) groups. Survival days are shown along the X-axis. Overall survival rates are shown along the Y-axis.

phenomenon in multiple cancer types and we tried to explain the
mechanism by which methylation levels contribute to m-age and
cause cancers.

Many studies used expression of gene and lncRNA to
predict cancer development and prognosis (Zhou et al.,
2015b, 2018; Sun et al., 2019). In present work, m-age
was considered as cancer biomarker for development and
prognosis. CancerClock could be applied in predicting
biological age for normal samples. The differences between
biological and m-age were also could be identified. These
differences could be used to explore the roles of methylation
in cancer development and prognosis. In future work, more
samples and experiments should be used to validate the
present work.

In summary, the present study suggested that some
methylation sites were associated with chronological age.
Comprehensive age predicator CancerClock could predict
m-age for normal samples and could find the differences
between m-age and chronological age in age-related
cancer samples. We further discovered the differential
methylation sites between age-related cancer samples and
normal samples. These differential methylation sites were
associated with survival in cancers. In addition, the present
study suggested that DNA methylation-based measures
of chronological age might be important predictors of
cancer risk.
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