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Cystic fibrosis (CF) is a genetic disease affecting today nearly 70,000 patients worldwide

and characterized by a hypersecretion of thick mucus difficult to clear arising from the

defective CFTR protein. The over-production of the mucus secreted in the lungs, along

with its altered composition and consistency, results in airway obstruction that makes

the lungs susceptible to recurrent and persistent bacterial infections and endobronchial

chronic inflammation, which are considered the primary cause of bronchiectasis,

respiratory failure, and consequent death of patients. Despite the difficulty of treating the

continuous infections caused by pathogens in CF patients, various strategies focused

on the symptomatic therapy have been developed during the last few decades, showing

significant positive impact on prognosis. Moreover, nowadays, the discovery of CFTR

modulators as well as the development of gene therapy have provided new opportunity

to treat CF. However, the lack of effective methods for delivery and especially targeted

delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the

treatments. Nanomedicine represents an extraordinary opportunity for the improvement

of current therapies and for the development of innovative treatment options for CF

previously considered hard or impossible to treat. Due to the peculiar environment

in which the therapies have to operate characterized by several biological barriers

(pulmonary tract, mucus, epithelia, bacterial biofilm) the use of nanotechnologies to

improve and enhance drug delivery or gene therapies is an extremely promising way

to be pursued. The aim of this review is to revise the currently used treatments and to

outline the most recent progresses about the use of nanotechnology for the management

of CF.
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INTRODUCTION

Cystic fibrosis (CF) is the most common autosomal recessive disease, affecting today nearly 70,000
patients worldwide (Savla and Minko, 2013; da Silva et al., 2017; Haque et al., 2018), while ∼1,000
new cases are diagnosed every year (Cystic Fibrosis Foundation, 2018). The disease is caused by
mutations in the gene located on chromosome 7, that encodes the cystic fibrosis transmembrane
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conductance regulator (CFTR) protein. CFTR protein works as
a chloride channel on the apical membrane of epithelial cells
(Turcios, 2005; Høiby, 2011; Robinson et al., 2018), and it is
responsible for the regulation of chloride ions secretion and
sodium ions reabsorption (Ibrahim et al., 2011b). Since the
identification of CFTR gene in 1989, more than 1,500 mutations
have been described, each leading to CF disease (Ratjen, 2009).
Those mutations have been initially classified in five major
classes according to their effect on CFTR function (Figure 1):
(i) mutations interfering with protein synthesis, (ii) mutations
affecting protein maturation, (iii) mutations altering channel
regulation, (iv) mutations affecting chloride conductance, and
(v) mutations reducing the level of normally functioning CFTR
at the apical membrane (Fanen et al., 2014). This classification
system has been updated by De Boeck and Amaral (2016),
which introduced two more classes: class (vi) includes mutations
which destabilize CFTR at the cell surface, while mutations
of class (vii), called “unrescuable” have the same outcomes as
class (i) (i.e., the absence of CFTR protein), but they cannot
be rescued by corrective therapy (Amaral, 2015; De Boeck and
Amaral, 2016) (Figure 1). Among all the mutations, the most
common is named F508del, which, through the deletion of
phenylalanine at position 508 of the CFTR protein (O’Sullivan
and Freedman, 2009; Gaspar et al., 2013; McNeer et al., 2015),
prevents the protein from trafficking to the cell surface, thus
significantly reducing CFTR function. It was estimated that
90% of CF patients carry at least one copy of this mutated
form (Cartiera et al., 2010).

The consequence of mutations on CFTR results in impaired
chloride ions secretion and hyper-absorption of sodium ions
across epithelia (Cristallini et al., 2019), causing a hypersecretion

FIGURE 1 | Schematic representation of the mutations on CFTR leading to CF disease: (A) CFTR works normally (no mutations); (B) Class I and VII mutation; (C)

Class II mutations; (D) classes III and IV mutations; (E) Class V mutation; (F) class VI mutations.

of thick mucus difficult to clear. The over-production of the
mucus secreted in the lungs, along with its altered composition
and consistency, results in airway obstruction that makes the
lungs susceptible to recurrent and persistent bacterial infections
(Bahadori and Mohammadi, 2012) and endobronchial chronic
inflammation, which are considered the primary cause of
bronchiectasis, respiratory failure, and consequent death of
patients (Henke and Ratjen, 2007). The presence of abnormal
thick and viscous mucus impairs the mucociliary clearance and
favors the bacterial colonization. The microorganisms residing
inside the immobile mucus find a perfect environment to settle
and are shielded against immune response as well as against
antimicrobial drugs. Although the most severe problems related
to CF, in terms of symptoms and treatments, involve the lungs
(Davies et al., 2007), patients affected by CF often suffer of
several other diseases occurring within other epithelial-lined
organs such as small intestine bacterial overgrowth, pancreatic
exocrine insufficiency, cirrhosis of the liver and progressive
hepatic dysfunction, and infertility (Ramsey, 1996).

The most common pathogen affecting the airways in
CF patients is Pseudomonas Aeruginosa (PA), although
other microorganisms may play an important role on the
pathogenesis of lung function declines, such as Haemophilius
influenzae, Staphilococcus aureus, Stenotrophomonas maltophilia,
Burkholderia cepacian (Rowe et al., 2005; Döring et al., 2012;
d’Angelo et al., 2014) and the filamentous fungus Aspergillus
fumigatus which often co-colonizes the lungs with PA (Zhao
et al., 2018). This set of pathogens are frequently acquired
in an age dependent sequence (Figure 2): S. Aureus and H.
Influenzae are the most prevalent bacterial pathogens in younger
patients, while PA chronically infects 80% of CF patients by
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FIGURE 2 | Prevalence of microorganisms in the lungs of CF patients as a function of age.

late adolescence. Other pathogens, such as B. Cepacia and S.
Maltophilia are less frequent but particularly troublesome in
CF patients due to their multi-drug resistant phenotypes. The
frequency of infections caused by these species increases with
patient age, resulting in a significant health risk to CF patients
surviving to adulthood (Pompilio et al., 2018). The U.S. patent
registry reported that in 2017 the median age at death was 30.7
years, while about 15% of deaths occurred before 20 years of age
(Cystic Fibrosis Foundation, 2018).

PA belongs to the family of Gram-negative organisms
(Alikhani et al., 2018). Due to its wide genetic diversity, it can
persist in CF patients’ lungs and, if established, remains very
difficult to eradicate. The initial infection usually involves a “non-
mucoid” strain of the pathogen that can be cleared by the host or
eradicated with an aggressive antibiotic treatment. Over time, as
the colonization advances, PA colonies alter their pattern of gene
expression in the CF lung and start producing a mucoid coating
made of alginate which protects the bacteria against antibiotics
and phagocytosis (Turcios, 2005; O’Sullivan and Freedman, 2009;
Gaspar et al., 2013; Bhagirath et al., 2016). In this mucoid form,
PA is able to form a biofilm which makes the pathogen up to 100
times more tolerant to antimicrobial treatments (Al-Obaidi et al.,
2018; Ernst et al., 2018; Kłodzinska et al., 2018; Lu et al., 2018).
Besides, the ability of PA to establish drug resistant biofilms is
thought to be facilitated by the hypersecretion of the thick and
viscous mucus layer in the CF airway, which provides a low
oxygen environment (Moreau-Marquis et al., 2008). Essentially,
both the presence of thick bronchiolar mucus and bacterial
biofilm contribute to poor lung penetration of antimicrobial
agents, thus leading to clinical aggravation and inefficacy of
the therapies.

CURRENT THERAPIES

Despite the difficulty of treating the continuous infections caused
by PA and other pathogens in CF patients, various treatment
strategies have been developed during the last few decades,
showing significant positive impact on prognosis (Heijerman
et al., 2009).

Together with other organs, such as skin and intestines, the
lungs are in direct contact with the external environment (Yang
et al., 2008). Systemic delivery of drugs via inhalation routes (oral
and nasal) constitutes an effective alternative to parenteral drug
delivery to treat pulmonary disease. There are several advantages
in drug administration via pulmonary route, including rapid
onset of action, non-invasive nature, high permeability of the
lungs (Sung et al., 2007), rapid absorption (Paranjpe and Müller-
Goymann, 2014) and improved patient compliance. Hence, this
strategy has been used for local delivery of several types of
drugs, from antibiotics to chemotherapeutics, from peptides to
vaccines (Muralidharan et al., 2015). Nowadays all the most
used antimicrobials for CF such as tobramycin, colistimethate
sodium, and aztreonam lysine (Littlewood et al., 2012) have
been developed as inhalation formulations, as reported below in
more details.

For long time the research for CF treatment was mainly
focused on the symptomatic therapy, aimed at attenuating
disease progression and delaying the onset of lung damage
through different types of drugs. However, most of these
therapies only treat the symptoms of CF, without correct the
underlying causes of the disease (Savla and Minko, 2013).
Nowadays, the discovery of CFTR modulators that aim to
increase or potentially restore the function of the disease-causing
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TABLE 1 | Main characteristics of the devices currently used for pulmonary delivery.

Device Mechanism Characteristics Disadvantages

Nebulizer Nebulization by air-jet • Vibrating mesh technology

• Aerosol droplets generated from liquids

• Long inhalation times

• Cleaning times

• Frequent administration

Pressurized metered dose

inhaler (pMDI)

Use of propellant • Aerosol droplets generated from a drug

suspension in volatile liquid

• Inexpensive

• Correct size of particles deposited in the lungs

• Lung deposition efficacy<60%

• Propellant requirement

Dry powder inhaler (DPI) Dry powder • High stability and sterility

• Small portable devices

• Short administration

• High inspiratory effort to

be efficient

CFTR protein (Lopes-Pacheco, 2016) as well as the development
of gene therapy have provided new opportunities to treat CF
(Perry et al., 2017).

Symptomatic Therapy
Currently, antibiotics and anti-inflammatory drugs are widely
used for the symptomatic treatment of CF related infections
and inflammations. In addition, bronchodilators, mucolytics and
osmotic agents are administered to improve airway and sputum
clearance. As the airways are a major therapeutic target in the
treatment of CF, many drugs are delivered by inhalation by
using nebulizers, pressurized metered dose inhalers (pMDIs) and
dry powder inhalers (DPIs). Nebulizers were the first devices
that appeared in the market followed by pMDIs and DPIs.
Characteristics of these devices are reported in Table 1. The main
benefit of topical inhalation is the delivery of relatively high doses
of the drug directly to the target site, while minimizing the risk
of ototoxicity and nephrotoxicity (Abramowsky and Swinehart,
1982; Ramsey, 1996; Geller, 2009; Agent and Parrott, 2015).

Antibiotics

Tobramicyn
Tobramicyn is an aminoglycoside antibiotic that has been widely
used to treat various types of bacterial infections, especially those
caused by gram-negative bacteria, such as PA (Geller et al.,
2003; Van Westreenen and Tiddens, 2010). Tobramycin acts as
a bactericidal drug by irreversibly binding to the 30S bacterial
ribosome, thus inhibiting protein synthesis (Heijerman et al.,
2009). The first formulation of tobramycin was approved in 1998
as tobramycin inhalation solution (TIS) (TOBI R©, Novartis AG,
Switzerland; Bramitob R©, Chiesi Farmaceutici S.p.A, Italy) (Geller
et al., 2011b). Since then, new dry powder formulations have
been developed such as the tobramycin inhalation powder (TIP)
(TOBI R© Podhaler R©, Novartis AG, Switzerland) that is the first
marketed dry powder inhaled antibiotic. This dry powder has
been manufactured using a technology, termed PulmoSphere R©

(Novartis AG, Switzerland) (VanDevanter and Geller, 2011),
and has been shown to be even more effective as compared to
TIS (Smyth et al., 2014; Hamed et al., 2017). Despite the fact
that tobramycin is usually well-tolerated, some of the patients
treated with TIP experienced cough, bronchospasm, moderate
tinnitus and dysphonia (Heijerman et al., 2009; Shteinberg and
Elborn, 2015). The approved dose for TIS is 300mg of antibiotic

nebulised by a jet nebulizer twice a day every other month
(Cheer et al., 2003; Somayaji and Parkins, 2015), while for TIP
the treatment consists in 112mg (four 28mg capsules) inhaled
twice a day in alternating cycles of 28-day on/off treatment
(Döring et al., 2012). These capsules are composed of low-density
porous particles, whose absorption is improved using a portable
DPI, named Podhaler R© that improves flow and dispersion of
formulation. The administration by inhalation of dry powder
is preferred to aerosolized solution because it is simpler and
shorter and significantly improves the quality of patient’s daily
life. Moreover, the recommended dose of TIP has showed a
significant improvement in lung function compared to TIS
(Gaspar et al., 2013).

Aztreonam Lysine
Aztreonam is an antibiotic belonging to the family of monocyclic
β-lactams. It is active against Gram-negative bacteria by
inhibiting the synthesis of their cell wall (Heijerman et al.,
2009). The first formulation of intravenous aztreonam was
developed in 1980s, and its excellent activity against PA and
other pathogens made this antibiotic a promising drug for the
treatment of chronic bacterial infections. However, several side-
effects were registered in CF patients, such as rash, nausea,
vomiting and diarrhea. Moreover, the intravenous formulation
contained the arginine salt, which induced airway inflammation
and caused bronchoconstriction. The substitution of arginine salt
with lysine salt was subsequently made in order to develop a
safer formulation of aztreonam for aerosolized use (Kirkby et al.,
2011). Aztreonam lysine (AZLI) (Cayston R©, Gilead Sciences
Inc., USA) was approved in 2010 and the recommended dose
is 75mg inhaled thrice daily, in an alternate off/on cycle of 28
days. In several clinical studies it has been demonstrated that
AZLI significantly improves clinical outcomes in CF, including
lung function, quality of life, nutritional status and reduced
bacterial density in sputum by efficaciously suppressing chronic
PA infections (Döring et al., 2012; Heirali et al., 2019).

Colistin
Colistin, also known as polymyxin E, is a cyclic polypeptide
antibiotic derived from Bacillus polymyxa varietas colistinus.
Among the five different polymyxins discovered in 1947, only
two of them have been used for clinical purposes, polymyxin
B (known as colomycin) and polymyxin E (colistin) (Storm
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et al., 1977). The bactericidal action of colistin against gram-
negative bacteria is given by its cationic nature (Heijerman
et al., 2009). The cationic polypeptides of colistin interact with
the anionic lypopolysaccharides in the outer membrane of the
pathogen, causing an imbalance within the cell membrane and
a subsequent change in permeability which ultimately causes cell
death (Schwarz, 2015). Colistin was first marketed in the 1950s.
Historically, it was administered intravenously, but reports of
nephrotoxicity and neurotoxicity discouraged its use, especially
after the appearance of other less toxic antimicrobials, such as
tobramycin. However, the lack of treatment options for multi-
drug resistant pathogens has led to the recovery of colistin as
an antimicrobial agent, especially in its inhaled formulation (Lim
et al., 2010). Polymyxin E is commercially available in two forms:
colistin sulfate (for topic use) or as colistimethate sodium salt,
an inactive prodrug given via intravenous or inhalation (Van
Westreenen and Tiddens, 2010). While colistimethate sodium
salt is currently used to treat chronic PA infection and is generally
well-tolerated by inhalation, colistin sulfate is not suitable for
treating CF patients due to several side effects, such as throat
irritation, cough and severe bronchoconstriction (Gaspar et al.,
2013). Colistin dry inhalation powder (CDPI) formulation is
commercially available as Colobreathe R© (Forest laboratories Inc.,
USA), which contains a dose of 125mg colistimethate sodium
salt to be administrated through a hand-held inhaler named
Turbospin R© (Forest laboratories Inc., USA). The recommended
dose is a 125mg capsule twice daily (Schuster et al., 2013).
CDPI shows several advantages over the nebulized solution
form, including shorter administration (1min) and an enhanced
portability (Conole and Keating, 2014). Colistin is often used in
combination with other antimicrobials, such as ciprofloxacin and
tobramycin, in order to improve the patient’s conditions.

Fluoroquinolones
Fluoroquinolones belong to the family of quinolones, a group of
molecules that is widely used as antibiotic because of their large
spectrum of bactericidal activity, excellent bioavailability, rapid
cellular uptake (Drusano, 1997; Wise and Honeybourne, 1999)
and tolerance (Grillon et al., 2016). The bactericidal mechanism
of action of fluoroquinolones consists in the inhibition of DNA
replication and transcription by interacting with the DNA-
gyrase complex (Young et al., 2013). This class of antibiotics are
currently in a phase III of clinical trials (Maselli et al., 2017) as
drugs to be administered during the “off” circle of TIS, in order to
improve patient outcomes and to avoid drug resistance (Gaspar
et al., 2013).

Ciprofloxacin and levofloxacin are the most investigated
fluoroquinolones for the treatment of CF infections, due
to their bactericidal activity against Gram-negative bacteria
and their prolonged post-antibiotic effect (Andersson, 2003).
Ciprofloxacin (first marketed as Cipro R©, Bayer AG, Germany) is
a second-generation fluoroquinolone. It is active against Gram-
negative and Gram-positive bacteria, and it can be administered
via oral or intravenous route, although inhalation formulations
are under investigation and have reached the final phases of
development. A phase II study on ciprofloxacin as dry powder
for inhalation given at two doses levels (32.5 and 48.75mg) twice

daily for 28 days, has showed a significant decrease in PA density
compared to placebo (Döring et al., 2012). The main side effects
of ciprofloxacin are cartilage toxicity, sunlight sensitivity rash and
emergence of resistance.

Levofloxacin is a third-generation fluoroquinolone with
higher activity against Gram-positive pathogens compared to
ciprofloxacin (Young et al., 2013). It can be administered either
orally and intravenously, and recently also via inhalation with
a novel liquid formulation (MP-376 or AeroquinTM, Mpex
Pharmaceuticals, Inc., USA), that has reached the phase II study
(Geller et al., 2011a). AeroquinTM showed a reduced need for
other antibiotics against PA for different doses given, which are
120 or 240mg every day, and 240mg twice a day for 28 days,
respectively. AeroquinTM exhibit a good degree of tolerance in
patients treated with the antibiotic with respect to placebo, and
is currently being studied in phase III of clinical trials (Ballmann
et al., 2011; Döring et al., 2012).

Fosfomycin
Fosfomycin (first marketed as MonurilTM, Zambon S.p.A, Italy)
is a broad-spectrum antimicrobial active agent against Gram-
negative and Gram-positive bacteria, and it is particularly
effective against multidrug-resistant PA (Mirakhur et al., 2003;
Spoletini et al., 2018). This drug exhibits bactericidal activity
by inhibiting the initial step in cell wall synthesis, and it is
commercially available in intravenous formulation as fosfomycin
disodium, or in oral formulation as fosfomycin disodium and
fosfomycin trometamol (Van Westreenen and Tiddens, 2010;
Gaspar et al., 2013). Due to the easy development of drug
resistance when the same antibiotic is administered repeatedly,
fosfomycin is often used in combination with other antibiotics in
order to prevent cross-resistance (Trapnell et al., 2012). Studies
have shown that the intravenous administration of fosfomycin
combined with other antimicrobials to patients colonized by
multi-resistant PA resulted in a general improvement of the
patients status with low side effects (Mirakhur et al., 2003). A
combination of fosfomycin and tobramycin in a 4:1 ratio (FTI,
Gilead Sciences Inc., USA) has reached phase III study, in which
the safety and efficacy of FTI treatment followed by a 28 days
course of AZLI has been evaluated. These studies demonstrated
an improvement of clinical conditions in CF patients infected by
PA.Moreover, the preliminary results obtained from this research
suggest that fosfomycin could be used not only for the treatment
of PA, but also for the treatment of other pathogens detected in
the CF population (Ballmann et al., 2011; Döring et al., 2012).

Anti-inflammatory Drugs
CF patients often suffer from chronic airway inflammation,
which ultimately leads to several physiological and metabolic
changes, including weight loss, anorexia and metabolic
breakdown. Hence, anti-inflammatory therapy represents an
additional option to antibiotic treatments to avoid a decline
in lung function (Heijerman et al., 2009). Several clinical trials
have proven that anti-inflammatory therapies have positive
outcomes; however, the related side effects have limited the
use of these drugs for CF treatments (Konstan and Davis,
2002). The first anti-inflammatory drugs studied in CF were
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systemic corticosteroids and high-dose ibuprofen (Ibrahim et al.,
2011b). Corticosteroids are used in CF to reduce endobronchial
inflammation, but they also produce increases in the incidence
of diabetes, cataracts, and growth failure. New inhalation
formulations of these drugs have been developed in order to
minimize systemic adverse side effects, although one potential
disadvantage of inhaled corticosteroids is their difficulty in
penetrating the sticky mucus within the CF patient’s airways
(Dinwiddie, 2005).

Compared to corticosteroids, the non-steroidal ibuprofen
offered promising results in CF patients. Ibuprofen has been
studied as a treatment for CF due to its ability to inhibit the
migration and activation of neutrophils (Ramsey, 1996). These
studies also demonstrated the effective benefit of ibuprofen
therapy on CF patients, especially when the treatment is started
before the development of severe inflammation and pathological
changes in the lung (O’Sullivan and Freedman, 2009) and in
children 5–13 years old with mild lung disease. The main
disadvantage of the ibuprofen therapy is related to its narrow
therapeutic window, which results in a particular carefulness
in drug dosage; in fact, while low concentrations might not
be sufficient to inhibit neutrophils migration in the lung, high
dosage leads to an increased risk of gastrointestinal and renal
toxicity (Turcios, 2005).

Other molecules primarily employed as antibiotics or
mucolytics show ancillary anti-inflammatory activities with
positive effects on CF treatment. As an example, studies carried
out on oral administration of azithromycin, an antibiotic
belonging to macrolides also employed as anti-inflammatory
drug, have demonstrated an improvement of lung function
(Friedlander and Albert, 2010). Leukotriene modifiers, oral N-
Acetylcysteine, and inhaled glutathione are other kinds of anti-
inflammatory drugs that were tested for CF. However, the CF
Foundation has determined that there is not enough evidence
to recommend for or against these drugs in patients with
CF (Dasenbrook and Chmiel, 2017). Immunoglobulins and
dornase alpha (DNase) (Sepe et al., 2019) are also used as anti-
inflammatory agents in addition to their mucolytic activity.

Mucolytics and Bronchodilators
As reported above, CF airways are characterized by the presence
of a thick, viscousmucus. Hence, mucolytics and bronchodilators
are often administered to improve airway clearance (Ong
et al., 2019). Two main muco-active agents are administered
via aerosol: N-acetylcysteine (NAC), which disrupts disulphide
bonds in mucus, and DNase (Pulmozyme R©, Genentech), which
acts on enzymatically break down DNA in airway secretions.
NAC lowers mucus viscosity and elasticity by substituting
sulfhydryl groups for the disulphide bonds connecting mucin
proteins. Differently, DNase mucolytic activity consists in its
ability to reduce the size of DNA released in the sputum.
In infected airways, in fact, the degeneration of neutrophils
causes the release of DNA, which further increases the viscosity
of secretions (Henke and Ratjen, 2007). In 2014 Charrier
et al. developed a new cysteamine-based mucoactive agent with
antimicrobial and antibiofilm features, marketed as Lynovex R©

(Novabiotics ltd., UK). This drug, which is already used for

the treatment of cystinosis, has successfully completed a phase
IIb clinical trial for oral formulation in acute infectious CF
exacerbations, with positive top line data reported. Clinical
studies are expected in 2019 (Charrier et al., 2014).

β-adrenergic agents, such as salmeterol, are the most
commonly prescribed bronchodilators (Halfhide et al., 2016).
They act by broadening the airways and relaxing airway muscles,
then making easier to breathe. Other bronchodilators currently
in use are anticholinergics.

CFTR Modulators
Since the identification of the mutations in the gene coding the
CFTR protein, several new drugs were developed to target the
disease at the CFTR level by improving the defective or deficient
activity of the mutated protein. Recently, a new and promising
class of drugs called CFTR modulators has entered the CF
therapeutic landscape. These drugs differ from prior therapies in
that they aim to improve the production, intracellular processing,
and/or function of the defective CFTR protein. Currently, five
types of CFTRmodulators have been developed: (i) read-through
agents, which rescue protein synthesis; (ii) correctors, which
enhance conformational stability of CFTR, thus rescuing the
trafficking of the mature protein to the plasma membrane (PM);
(iii) potentiators, which improve CFTR channel activity; (iv)
stabilizers, which anchor CFTR channel at the PM and decrease
protein degradation rate, thereby correcting the instability; (v)
amplifiers, which work by increasing the amount of CFTR
protein on the cell surface providing additional substrate for
correctors and potentiators to act upon (Lopes-Pacheco, 2016).
Several clinical trials are examining all these different classes to
increase or restore the activity of the mutated CFTR protein in
patients (Clancy et al., 2019).

Besides the general overlook of the main CFTR modulators
reported in this section, many other therapeutic agents based on
correctors and potentiators are undergoing various pre-clinical
and clinical studies, and are extensively described by Rafeeq and
Murad (2017).

CFTR Read-Through Agents and Amplifiers
CFTR amplifiers are novel mutation-independent compounds
that work by increasing immature CFTR protein expression by
stabilizing CFTRmRNA. These amplifiers, that act synergistically
with correctors and potentiators to augment therapeutic benefits,
can effectively overcome any “substrate” limitation. There are
two types of amplifiers which have showed promising results in
pre-clinical and clinical trials, PTI-428 and PTI-CH (Proteostasis
Therapeutics Inc., USA), even though they are not yet available
on the market (Kym et al., 2018; Haq et al., 2019). Read-
through agents could benefit CF patients affected by class I
mutations, since thismutation causes the presence of a premature
stop codon which precludes the synthesis of full-length CFTR
protein. Among read-through agents, Ataluren (also known as
PTC124, PTC therapeutics Inc., USA) emerged as a mutation-
based treatment for approximately 10% of patients bearing non-
sense premature stop mutations that disrupt the production of
full-length functional CFTR. Ataluren act by inducing premature
termination codon (PTC) read-through and hence restores CFTR
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expression at the PM. In a phase II clinical trial Ataluren showed
an improvement in the forced expiratory volume in 1 s (FEV1),
although subsequent trials confirmed a slight improvement in
FEV1 only in a subgroup of patients (Tosco et al., 2018).
Other read-through agents have shown promising results in
preclinical trials when combined to ivacaftor, including Ataluren
derivatives and the FDA-approved natural herbal agent, escin
(Mutyam et al., 2016).

Ivacaftor
Ivacaftor (KalydecoTM, Vertex Pharmaceuticals Ltd, UK), also
known as VX-770, is a CFTR potentiator that increases CFTR
channel opening on apical cell membrane (Thompson, 2016),
allowing chloride ion to flow through the CFTR protein on the
surface of epithelial cells. It has been used initially to restore
CFTR function for G551D, the most common class III mutation,
although its efficacy has been demonstrated for other less
common mutations (such as G1244E, G1349D, G178R, G551S,
S1251N, S1255P, S549N, and S549R) (Ponzano et al., 2018; Tosco
et al., 2018). Being approved by FDA in 2012, Ivacaftor is the first
commercially available treatment to target the basic defects in CF
(Pettit, 2012). The efficacy and safety of Ivacaftor has been proved
by several studies (Ramsey et al., 2011; De Boeck et al., 2014),
where it was demonstrated a meaningful increase in FEV1 and a
reduction in sweat chloride to a value below the usual diagnostic
threshold for CF. Ivacaftor is generally well-tolerated by patients.
The most occurring complication is represented by an elevation
of liver enzymes, whose levels, however, return to baseline after
drug discontinuation (Haq et al., 2019).

Lumacaftor
Lumacaftor (Vertex Pharmaceuticals Ltd, UK), also known as
VX-809, has been approved by FDA in 2015 as a CFTR corrector
for class II mutations, especially the F508del. This molecule
improves CFTR maturation, thus allowing the protein to reach
the cell membrane and transport chloride ions. In a large
number of in vitro studies, Lumacaftor showed good efficacy and
tolerability, although the treatment by itself showed a significant
decrease only in sweat chloride levels and no improvements in
FEV1 in a phase II trial with F508del-homozygous patients. In
order to reach greater effects, accurate studies were carried out in
combinations with correctors; compared to monotherapies, the
combined therapy offers an enhancement of the CFTR rescuing
in patients bearing F508del, as well as other II class mutations.

OrkambiTM and SymdekoTM

Due to the multi-domain structure and folding of CFTR,
a single modulator is usually insufficient to act positively
on different protein misfoldings. Despite an increased CFR
modulators availability, ∼40% of patients with CF are without
effective therapy. To overcome this limitation, newer modulator-
based therapies are made of a combination of drugs (Rafeeq
and Murad, 2017). The first double formulation, consisting
in a combination of Ivacaftor and Lumacaftor (OrkambiTM,
Vertex Pharmaceuticals Ltd, UK), have been approved in
2015 by FDA and EMA for patients who are homozygous
for the F508del CFTR mutation. It has been found to be

safe and effective, with a significant improvement in FEV1

and a reduction in exacerbations (Wainwright et al., 2015).
The combination of Tezacaftor and Ivacaftor (SymdekoTM

Vertex Pharmaceuticals Ltd, UK) is currently in phase III of
clinical trials, and although it shows weak effectiveness in
patients with F508del paired with another minimal function
CFTR mutation, it has demonstrated to be more effective in
patients homozygous for F508del or other heterozygous F508del
individuals (Paranjape and Mogayzel, 2018).

Triple Therapy
Different combinations of CFTR modulators, along with the
simultaneous administration of different drugs, are the key
points of the precision medicine. This emerging paradigm,
which combines preventive and therapeutic strategies, takes into
account differences among individuals, and focuses on a patient-
centered rather than mutation-centered approach (Maiuri et al.,
2017). The newer and most promising research involves the use
of first-generation potentiators and correctors in combination
with a next-generation drugs, such as VX-152, VX-440, VX-445,
and VX-659 (Vertex Pharmaceuticals Ltd, UK). This therapeutic
approach, called triple therapy, has shown promising results
for the restoration of the most common CFTR mutations.
A phase II study of VX-440 in combination with Tezacaftor
and Ivacaftor in CF patients having one F508del mutation
and one minimal function mutation, as well as patients with
two copies of the F508del mutation, reported an efficacy in
the range of 9.6–12% improvement in FEV1 at the highest
dosage in trials ranging from 2 to 4 weeks for both F508del
homozygous and heterozygous patient populations (Chaudary,
2018; Haq et al., 2019). Following these positive responses,
new formulations are currently under development. Recently,
a new combination therapy has been approved by FDA as
TrikaftaTM (Vertex Pharmaceuticals Ltd, UK). It combines the
action of two correctors (Elexacaftor and Tezacaftor) and a
potentiator (Ivacaftor). This triple therapy showed increased
therapeutic effects with respect to OrkambiTM or SymdekoTM. In a
randomized phase 3 study, Taylor-Cousar et al. developed a triple
combination of next-generation correctors (VX-659 and VX-
445) with Tezacaftor and Ivacaftor for patients with one or two
F508del CFTR alleles. The results obtained showed an enhanced
therapeutic activity that triple combinations provide in patients
with F508del/F508del genotype (Taylor-Cousar et al., 2019).

CFTR Modulators That Act by Regulating

Proteostasis and Autophagy
Recent evidences indicate that CFTR does not act only as
ion chloride channel, but is involved in the epithelial stress
response, influences the proteostatic network (the cellular
processes which regulate the fate of a protein inside the cell)
and modulates autophagy. Autophagy is the most important
mechanism for protein turnover and is essential in promoting
cellular clearance from protein aggregates and ROS sources.
Defective autophagy and impaired cellular proteostasis leads
to a worsening of chronic CF lung disease. Thus, novel
intervention strategies aim to correct the underlying proteostasis
and autophagy impairments by rescuing F508del-CFTR to the
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PM. Lately, studies on proteostasis modulators and autophagy
inducers reported encouraging results in preclinical phases
(Bodas and Vij, 2019). Cysteamine, a proteostasis regulator
FDA-approved 30 years ago for nephropathic cystinosis, has
shown promising results in CF treatment (Charrier et al., 2014).
Marketed in oral formulation as CystagonTM (Recordati S.p.A,
Italy) and ProcysbiTM (Horizon Therapeutics plc, Ireland), it
acts by targeting transglutaminase 2 (TG2, a multifunctional
intermediary in cell autophagy). The TG2 inhibition increases the
expression of CFTR and restores its function. A phase II trial of
cystamine in combination with epigallocatechin gallate has been
completed in homo and heterozygous CF patients with F508del
(De Stefano et al., 2014; Tosco et al., 2016). The results showed
decreased chloride concentrations, increased CFTR function,
autophagy restoration and improvement in FEV1.

Gene Therapy
For many years, the main CF treatment strategies were focused
on the downstream effects of CFTR dysfunction, such as airway
obstruction, infection and inflammation. However, after the
identification and cloning of the gene encoding the CFTR
in 1989, along with an increased knowledge on how CFTR
dysfunction causes lung disease, new targets and approaches for
the CF treatment have been investigated (Ratjen, 2009). Hence,
the novel strategies aim to restore or replace the CFTR gene
rather than treating the pathologies associated with its defect
(d’Angelo et al., 2014; Davies et al., 2019).

In general, gene therapy consists in delivering nucleic acids
into a cell to replace or repress genes or biological functions.
Due to its monogenic and autosomal nature, CF was one of the
first diseases considered for this approach (Ibrahim et al., 2011b;
Savla and Minko, 2013). In fact, in this pathology, the CFTR
gene is the only gene affected, and the correction of only one
of the two alleles is sufficient to revert the disease (Villate-Beitia
et al., 2017). Furthermore, a small increase in CFTR expression
may be beneficial to CF patients, since studies has shown that
even in normal patients the protein is not expressed in high
amounts (20–100 CFTR protein/cell). Several vectors have been
tested and among these, viral systems are the most widely used,
although non-viral vectors recently emerged as safer, easier and
cheaper options with respect to viral vectors (Smith, 1997; Ratjen,
2009) (Figure 3). Finally, the CRISPR/Cas9 approach which is
emerging as a powerful tool for engineering the genome in
diverse organisms, is another interesting method for the gene
theory of CF (Figure 3).

Viral Vectors
Adenoviral vectors (AV) were the first systems used for gene
therapy clinical trials in 1993 by Zabner et al. (1993). The aim
of this study was to evaluate the correction of the chloride
transport defect, characteristic of CF-affected epithelia, by using
an E1-deficient adenovirus, which expresses CFTR protein in
airway epithelial cells. The target organ was the nasal epithelium,
since the composition of this latter is similar to the lower
airways but of much easier access. The results obtained by testing
the therapy in three patients showed an effective correction
of the chloride transport defects, without evidence of severe

side effects. Even though the low number of treated subjects
made difficult to establish the real efficacy of this approach, this
study paved the way for subsequent investigations on AV for
the treatment of CF. In fact, in the following years, more AV
trials were carried out showing a partial efficacy of the therapy
which was, however, lower than originally predicted by the pre-
clinical trials (Griesenbach and Alton, 2009, 2013). Moreover,
this transduction efficiency in most tissues was counterbalanced
by adverse effects, such as inflammatory responses in the
host organism. Hence, other gene delivery systems have been
developed, such as adeno-associated viral vectors (AAVs).

AAVs exhibit several features suitable for gene delivery, such
as high transduction efficiency, and broad serotype-dependent
tissue tropism. Although a large number of serotypes have
been identified, the most extensively investigated is the serotype
AAV2. Several studies were carried out in which the vector was
administered to the nose, sinuses and lungs of CF patients. Moss
et al. (2004) confirmed the safety and tolerability of repeated
doses of aerosolized AAV2 containing CFTR complementary
DNA (cDNA). However, further studies on a larger number
of patients showed a lack of improvement in lung function
for repetitive administration (Moss et al., 2007). One of the
possible reasons of these discouraging results may be attributed
to the limited packaging of AAV, resulting in a low expression of
the CFTR cDNA. Although AAVs present some disadvantages,
arising mainly from the use of viruses as carriers, the ongoing
research is trying to address and improve these limitations and
develop novel and safer formulations (Griesenbach and Alton,
2012; Guggino and Cebotaru, 2017).

Non-viral Vectors
Non-viral vectors have the potential to overcome some
limitations of viral vectors, due to their easy scale-up processing,
safety and stability. They are constituted of two components,
the nucleic acid (which, for CF, is a plasmid carrying the
CFTR cDNA) and a carrier molecule which binds to the
DNA. The recent advances in the field of material science
and nanotechnology have prompted the development of
nanomaterials which can be used as carriers for non-viral gene
transfer formulations (Villate-Beitia et al., 2015, 2017). The two
main classes of nanocarriers currently employed in non-viral
vectors, cationic lipids and cationic polymers, act similarly by
binding to negatively charged DNA. These classes of nanocarriers
will be discussed in detail within section Nanotechnology for
CF Treatment.

CRISPR/Cas9 Approach
The CRISPR/Cas9 approach (Clustered Regularly Interspaced
Short Palindromic Repeats) is a gene-editing strategy in
which the specific mutated sequence of the defective CFTR
gene is corrected by introducing changes in the DNA,
allowing a permanent correction of genetic defects underlying
disease (Pranke et al., 2019). This system is based on the
bacterial CRISPR immune system, which confers resistance and
adaptation. CRISPR are DNA sequences composing bacteria’s
genomes derived from DNA fragments of viruses that have
infected the prokaryotic cell, which allow to prevent subsequent
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FIGURE 3 | Methods for gene editing and therapy for the treatment of CF.

infections of the host organism (Doudna and Charpentier, 2014;
Barrangou, 2015). Cas9 (CRISPR-associated protein 9) is an
enzyme that uses CRISPR sequences as a guide to recognize and
cleave specific strands of DNA complementary to the CRISPR
sequence (Brouns et al., 1993; Ran et al., 2013). Engineered
Cas9 cleaves the DNA in a sequence-specific mode and creates
a specific double-stranded break, so the cell can fill the excised
portion with the correct gene sequence. One of the most
promising applications of CRISPR/Cas9 is given by its possible
use as a technology for treating genetic disorder, including CF.
This approach has been already tested in canine models for the
treatment of Duchenne Muscular Dystrophy (Amoasii et al.,
2018; Lim et al., 2018), and despite it has not been tested
in animal models for the treatment of CF, it has been found
effective in correcting CFTR defects (Hsu et al., 2014). The
first studies on CRISPR/Cas9 on CF were carried out in 2013
by Schwank et al. (2013), in which they tested the recovery
of functional CFTR in intestinal organoids obtained from CF
patients, and proved the repairing of the mutation at the CFTR
locus with CRISPR/Cas9 gene editing. More studies were carried
out to investigate the potential of this gene editing approach,
even though there are concerns about its applicability in vivo
directly to the lungs: in fact, since Cas9 has bacterial origins
(mainly Staphylococcus aureus) it is potentially immunogenic
especially in CF patients whose lungs are colonized by this
pathogen. Moreover, CRISPR/Cas9 can be destroyed by the
cellular immune response, thus reducing its therapeutic effect
(Miah et al., 2019).

NANOTECHNOLOGY FOR CF TREATMENT

The rapid progress of nanomedicine creates new perspectives to
enhance the efficacy of inhalation treatment for lung diseases.
In general, the application of nanotechnology to the design of
drug delivery systems mainly allows a more effective delivery
of therapeutics within the target site, thus preventing several
adverse side effects of tissues and cells. Other important
advantages include the achievement of enhanced therapeutic
effects with lower drug doses, and the possibility to deliver
hydrophobic molecules while ensuring the protection of the
compounds from degradation (da Silva et al., 2017). Nano-sized
structures, such as nanoparticles (NPs) and nanodevices, exhibit
peculiar physical, chemical and biological properties (Zhang
et al., 2010). In addition, nano-sized structures have dimensions
comparable to those of biological molecules such as proteins and
carbohydrates, hence they can easily interact with them inside
and outside cells (Bahadori and Mohammadi, 2012). Drugs can
be delivered to target sites either as entrapped or encapsulated
within the NPs structure, or as adsorbed/attached on the NPs
surface (Sung et al., 2007).

In the case of CF, the use of NPs could be a valid approach
to overcome the thick mucus layer that is formed within the
alveolar region as well as the bacterial biofilm (Ong et al.,
2019). The CF mucus contains less water than normal mucus
and presents mucin fibers (70–80%), DNA, actin and other
macromolecules, which form a cross-linked network where the
mesh size is reduced from above 500 nm (in healthy patients)
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to 300–100 nm in CF patients, depending on their conditions
and on the disease stage (Ensign et al., 2012; Liu et al., 2014;
Leal et al., 2018). This significant change in mucus structure
and composition leads to an increased viscoelasticity (Ibrahim
et al., 2011b; Ong et al., 2019), along with the formation of
hydrophobic and electrostatic barriers that strongly inhibit NPs
penetration. Small NPs are able to diffuse through the network of
themucus while larger ones are trapped in themeshes by physical
size exclusion effect. However, penetration strongly depends also
on NPs surface properties that influence the interaction with
mucus such as superficial charge and hydrophobicity. It was
demonstrated that the interaction between NPs and the mucus
can be also decreased by modulating the particle surface charge,
which needs to be as neutral as possible (with ζ-potential values
in the ±10mV range). Positively charged NPs tend to interact
electrostatically with the mucins and the abundant amounts of
free DNA and filamentous actin that are all negatively charged,
while negatively charged NPs are repelled from the mucus by
the hydrophobic domains on the mucins. Thus, neutral particles
show good permeation properties due to lacking electrostatic
interactions. Two common strategies to overcome the CF mucus
barrier are the coating of NPs surface with a dense layer
of the so-called “muco-inert” polymers [i.e., low-molecular-
weight polyethylene glycol (PEG)] to eliminate both electrostatic
and hydrophobic interactions or the use of mucolytic agents
[i.e., N-acetylcysteine (NAC)] to reduce mucosal viscoelasticity
(Savla and Minko, 2013; Ong et al., 2019).

Despite all the advantages of a NPs mediated therapy for the
treatment of pulmonary disease, it is worth to highlight that
the development of NPs formulations suitable for administration
to the lungs by inhalation is not straightforward due to
the complexity of lung anatomy and physiology and to NPs
deposition mechanisms.

In order to be effective, when inhaled NPs must reach the deep
airways and penetrate the mucus covering the alveoli. Hence,
their dimension is a fundamental parameter to be considered in
order to predict their deposition. The size of NPs must be small
enough to penetrate the mucus and meanwhile big enough to
avoid rapid exhalation. It has been proved that the optimal range
that allows a good deposition in the alveolar region of the lungs
is between 1 and 3µm (Sung et al., 2007) (in which NPs deposit
with gravitational sedimentation) and below 500 nm (in which
NPs deposit in the deeper lung by a Brownian diffusion). Besides
NPs size, however, there are other parameters that affect the
deposition efficacy, such as particle morphology and the surface
properties (Paranjpe and Müller-Goymann, 2014).

Nebulization can be used to overcome some NPs-to-lung
delivery issues. Nebulizers generate aerosol from solutions
or suspensions and create droplets with appropriate size for
pulmonary delivery. However, the biggest limitation of this
approach arises from the difficulty of developing long term
stable nano-suspensions in order to avoid NPs aggregation
and degradation. Moreover, most nebulizers show practical
disadvantages from patient’s point of view, such as limited
portability, time-consuming application, low efficiency and
high bacterial contamination. Hence, dry powder formulations
are usually preferred (Newhouse et al., 2003). A well-known

approach for the administration of NPs with DPI consists in
the formation of nano-embedded microparticles (NEMs). These
nano-in-micro systems [also called Trojan particles (Tsapis et al.,
2002)] are able to transport and efficaciously release NPs within
the lungs after the dissolution of the microparticle matrix,
allowing NPs penetration within the mucus barrier. The most
common technique used to convert NPs suspensions into stable,
inhalable microparticles is the spray drying (Ruge et al., 2016).
Recent studies have highlighted how the tuning of process
parameters and the use of excipients can ensure a good re-
dispersibility of NEM powders (Tomoda et al., 2008; Kho and
Hadinoto, 2010). Several researches have focused on NEMs
approach; the most widely used materials are biocompatible and
biodegradable polymers as PLGA (Lebhardt et al., 2011; Ungaro
et al., 2012b), chitosan (Grenha et al., 2005), gelatin (Sham
et al., 2004), PCL (Kho et al., 2010), and polyacrylate (Hadinoto
et al., 2007), usually coupled to mannitol, lactose or cyclodextrins
as excipients.

The template-assisted technique is another method to prepare
NEMs. In this approach, the cylindrical pores of a membrane
serve as templates for the formation of elongated NPs, which can
be released upon membrane’s dissolution. Despite the template-
assisted deposition is specific for conducting materials, which are
usually insoluble in water and thus are difficult to be employed
for drug delivery applications, it represents an innovative and
promising approach to prepare NEMs with elongated shape,
which are expected to better deposit in deeper lung regions than
spherical NPs (Kohler et al., 2011; Tscheka et al., 2015).

Over the last decade, different types of NPs have been studied
as nanocarriers for gene and drug delivery in CF treatment.
Among these, liposomes, polymeric NPs, solid lipid NPs, and
dendrimers (Zhang et al., 2010) represent the major classes of
NPs for inhalation therapy that have been tested for CF treatment
and that are described in the next paragraphs (Figure 4) and the
listed in Table 2.

Liposomes
Liposomes, whose structure was first described in 1965, are
spherical lipid vesicles with size ranging from 20 nm to 20µm,
formed by a bi-layered membrane consisting of amphiphilic
lipid molecules. Depending on their structure, liposomes can
be classified in unilamellar vesicles (formed by a single bilayer
membrane, size range from 25 nm to 1µm) or multilamellar
vesicles (constituted of several bilayer membranes, size range
from 0.1 to 20µm) (Rudokas et al., 2016). Due to their
amphiphilic nature, lipid vesicles can entrap both lipophilic
(within the bilayer) and hydrophilic drugs (within the aqueous
core) (Moreno-Sastre et al., 2015). Liposomes have been
extensively tested as inhalation delivery systems for many drugs,
vitamins and nucleic acids for several diseases and pathological
conditions (Kuzmov and Minko, 2015). One of the greatest
advantages of these carriers is given by the design versatility that
allows to obtain structures with the desired size and properties.

Antibiotic-loaded liposomes have been extensively studied
to improve their pharmacokinetics and bioavailability, decrease
their toxicity and achieve target selectivity (Drulis-Kawa and
Dorotkiewicz-Jach, 2010). Liposomal antibiotics have the
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FIGURE 4 | Types of nanotechnological platforms currently used for CF treatments. Advantages and disadvantages are highlighted.

important advantage to overcome bacterial drug resistance
of extracellular pathogens, along with their ability to protect
the antibiotic molecules from enzymatic inactivation and
degradation (Alipour et al., 2009). Lipid composition,
size, charge, and drug/lipid ratio all influence the drug
carrying capacity, the release rate and the lung deposition
of liposomes (Cryan, 2005). Some phospholipids currently
used as drug delivery systems are phosphatidylcholines (PC),
phosphatidylglycerols (PG), phosphatidylethanolamines (PE),
phosphatidylinositols (PI), dipalmitoyl-phosphatidylcholine
(DPPC), distearoylphosphatidylcholine (DSPC), dimyristoyl-
phosphatidylglycerol (DMPG), dimyristoyl-phosphatidylcholine
(DMPC), and dioleoyl-phosphatidylethanolamine (DOPE)
(Cryan, 2005; d’Angelo et al., 2014).

Liposomes can be prepared for inhalation both in liquid and
in dry formulations, and several researches have proved their
efficacy and safety when administered by inhalation. Some of
the first studies on liposomal formulations were carried out
in the 90s by Omri et al., who investigated the redemption
(Omri et al., 1994), efficacy and toxicity (Beaulac et al., 1996,
1997) of liposome-encapsulated tobramycin in a comparative
study on healthy and PA infected rats. The results showed a
significant increase in drug residence time for both healthy and
infected rats as compared to free tobramycin administration. The
effects of liposomal composition on the drug release kinetics
and efficacy were evaluated by the development of the so-
called fluidosomes R© [liposomes composed of DPPC: DMPG
(10:1 to 15:1 ratio)] loaded with tobramycin. The administration
of tobramycin-loaded fluidosomes in infected rats led to a

complete eradication of the pathogen as compared to solid
liposomes and free antibiotic. Furthermore, the detection of low
levels of drug in the kidneys after fluidosomal administrations
compared to free tobramicyn suggested a potential reduced
nephrotoxicity. Drulis-Kawa et al. (2006) tested several liposomes
loaded with meropenem (a β-lactame antibiotic) against PA
strains, and demonstrated an improved efficacy of the drug
loaded in two different cationic liposomes (PC/DOPE/SA 4:4:2
and PC/DOTAP/Chol 5:2:3). Subsequent studies confirmed that
drugs encapsulated within cationic liposomes exhibits greater
antibacterial efficacy, probably due to their ability to target
bacteria biofilms through electrostatic interactions, thus allowing
the drug release close to the pathogen. Messiaen et al. (2013)
reached the same results by encapsulating tobramycin in neutral,
anionic and cationic liposomes. The greater efficacy of drugs
loaded within liposomes was confirmed by Mugabe et al. (2005),
who encapsulated the antibiotic gentamicin within liposomes
of different composition (DPMC, DPPC, and DSPC). Results
showed an increased efficacy of drug activity against PA as
compared to free gentamicin.

Joshi and Misra (2001) carried out a study on liposomal
(EPC-Chol) budesonide (an anti-inflammatory corticosteroid)
in a dry powder formulation. This system was found to keep
the desired drug levels in the lungs for a prolonged time,
possibly allowing a better drug efficacy and lower adverse effect.
Although positively charged liposomes showed better results on
the increase of drug activity against several pathogens, they were
found to be more toxic for human lung cells than uncharged
or negatively charged systems (d’Angelo et al., 2014; Kuzmov
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TABLE 2 | Examples of nanotechnological formulations for the CF treatment.

Nanocarrier Composition/material Drug Key finding References

Liposomes and

Lipoplexes

DPPC/Chol Polymyxin B Increased bioavailability and bactericidal activity against PA Omri et al., 2002

DSPC/DMPG Tobramycin Increase of drug persistence in situ and higher local

concentration

Omri et al., 1994

DSPC/DMPG Tobramycin Increased drug activity in vivo when encapsulated in fluid

liposomal formulation compared with free drug and

drug-loaded rigid liposomes

Beaulac et al., 1996, 1997

DSPC/DPPC Sachetelli et al., 1999, 2000

DSPC/DPPC

DPPC/DMPG

DPPC/Chol Amikacin Improved penetration within PA biofilm Meers et al., 2008;

Okusanya et al., 2009

PC/DOPE/SA Meropenem Higher drug efficacy when encapsulated within cationic

liposomes

Drulis-Kawa et al., 2006

PC/DOTAP/Chol

DPPC/Chol Amikacin

Gentamicin

Tobramycin

Improved drug efficacy when encapsulated within cationic

liposomes

Mugabe et al., 2006

DSPC/Chol Amikacin

Tobramycin

Enhanced antibiotic penetration into the bacteria cell

membranes

Halwani et al., 2007

PC/Chol/DOTAP

PC/DOPE/DOTAP

Gentamicin

Ciprofloxacin

Meropenem

Increased drug activity for lower concentration administered

and better drug penetration within bacterial strains

Gubernator et al., 2008

DMPC/Chol Gentamicin Better pseudomonal activity compared to free drug Rukholm et al., 2006

DPPC/Chol

POPC/Chol

Polymyxin B Better drug penetration and efficacy within bacterial cells Alipour et al., 2008

EPC/Chol Budesonide Increased drug persistence in the lungs Joshi and Misra, 2001

PC/Chol/DSPG Amikacin Prolonged drug persistence and activity Fielding et al., 1998

PC/Chol/DSPE Gentamicin Increased therapeutic efficacy, increased survival rate of rates Schiffelers et al., 2001

DPPC, DOPC, DPPG Tobramycin Better drug penetration when encapsulated in cationic

liposomes, increased drug efficacy

Messiaen et al., 2013

DOTMA/DOPE siRNA Efficient restoring of mucus hydration and airway clearance Manunta et al., 2017

DOTMA/DOPE siRNA Effective correction of mucociliary defects Tagalakis et al., 2018

GL76A pGM169 Increase in FEV1 and lung function stabilization Alton et al., 2015

DC-Chol/DOPE CFTR cDNA Partial restoration of Chloride secretion Alton et al., 1993; Middleton

et al., 1994

DOTAP pCMV-CFTR Effective gene transfection with no side effects Porteous et al., 1997

DOPC/Chol Colistin Good stability of liposome/drug complex Wallace et al., 2012

Solid Lipid

Nanoparticles

SA/PC Myriocin Significant reduction of lung inflammation Caretti et al., 2014

Chol/lecithin Tobramycin Better drug deposition within the lungs Pilcer et al., 2006, 2008

DSPC Ciprofloxacin Reduced adverse effects compared to oral and intravenous

ciprofloxacin

Stass et al., 2013a,b

DMA/DSPC/Chol/DMG cmCFTR Positive CFTR restoration Robinson et al., 2018

GMS Budenoside Good drug dispersion within the Lipid matrix Zhang et al., 2011

Albumin

Gelatin

Chitosan

Ciprofloxacin Sustained and controlled drug release Jain and Banerjee, 2008

Amikacin Higher drug concentration in the lungs with lower side effects Varshosaz et al., 2010,

2013; Ghaffari et al., 2011

Dendrimers PAMAM G4 siRNA Excellent cellular uptake and gene silencing Conti et al., 2014

Bielski et al., 2017

Agnoletti et al., 2017

PAMAM-DENCYS Cysteamine PA infection and growth reduced and rescue of CFTR protein Brockman et al., 2017

(Continued)
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TABLE 2 | Continued

Nanocarrier Composition/material Drug Key finding References

Polymeric

nanoparticles and

microparticles

PLGA Curcumin Improved drug bioavailability and efficacy compared to free

drug

Cartiera et al., 2010

PLGA/PEG PS-341 Sustained and more effective drug release and penetration Vij et al., 2010

PLGA Ciprofloxacin Drug antimicrobial activity and improved mucus penetration Günday Türeli et al., 2017

PEG/PLGA Tobramycin Improved mucus penetration, enhanced antimicrobial activity Ernst et al., 2018

PLGA/chitosan cmRNA Reduced chloride secretion and restoration of lung functions Haque et al., 2018

PVA-Alg/PLGA

Chitosan-Alg/PLGA

Tobramycin Deposition of NPs in the lungs depends on NPs size and

composition

Ungaro et al., 2012a

PGA/PLGA

Dextran/PLGA

DNase Enhanced mucolytic activity on CF sputum Osman et al., 2013

PLGA Plasmid DNA PLGA-mediated gene transfer can produce prolonged gene

expression, despite gene transfer efficiency must be improved

Stern et al., 2003

PLGA dec-ODN Inhibition of NF-κB transcriptional activity and reduction of

chronic lung inflammation

De Stefano et al., 2011,

2013

PEI

Chitosan

miRNA Better efficiency of PEI in facilitating miRNa uptake compared

to chitosan

McKiernan et al., 2013

PEI Plasmid DNA Improved penetration and transport in CF mucus, reduced

activity due to aggregation

Ibrahim et al., 2011a

PEG/PEI Plasmid DNA Efficient mucus penetration, improved distribution and

retention of NPs, enhanced gene transfer and delivery without

significant toxicity

Suk et al., 2014

Polixamines mRNA

plasmid DNA

Enhanced mRNA and pDNA expression without exhibiting

toxicity

Guan et al., 2019

DPPC, dipalmitoyl-phosphatidylcholine; Chol, Cholesterol; DSPC, distearoylphosphatidylcholine; DMPG, dimyristoyl-phosphatidylglycerol; PC, phosphatidylcholine; DOPE, dioleoyl-

phosphatidylethanolamine; SA, stearylamine; DOTAP, dioleoyltrimethylammonium propane; DMPC, dimyristoylphosphatidylcholine; EPC, egg phosphatidylcholine; POPC,

palmitoyloleoylphosphatidylcholine; DOPC, dioleoylphosphatidylcholine; DPPG, dipalmitoylphosphatidylglycerol; DSPE, istearoyl-sn-glycero-phosphoethanolamine; DSPG, distearoyl-

sn-glycerophosphoglycerol; DOTMA, dioleyloxypropyl-trimethylammonium chloride; GL67, Genzyme lipid; PEG, poly(ethlenglycol); PEI, poly(ethylenimine); PLGA, poly(lactic-co-

glycolic acid.

and Minko, 2015); this evidence opened to the development of
new strategies in order to design new liposomal formulations
with less adverse effects on lung cells. Currently, two more
antibiotics have been developed as liposomal formulations. The
first is amikacin liposome inhalation suspension (Arikayce R©,
Insmed, Monmouth Junction, NJ, USA), which has completed
the phase III of clinical trials and it has been approved
by FDA in 2018. It consists of neutral liposomes (DPPC:
Chol), with a mean size of 0,3µm, provided as a sterile
aqueous liposomal suspension administrated through an eFlow R©

Nebulizer. The second is liposomal ciprofloxacin (Pulmaquin R©

and Lipoquin R©, Aradigm Corp., Hayward, CA, USA), which
has completed phase II of clinical trials, showing a superior
drug efficacy with respect to non-encapsulated ciprofloxacin
(Paranjpe and Müller-Goymann, 2014; Moreno-Sastre et al.,
2015). Due to the intrinsic structure of liposomes, a further
step on the development of new liposomal formulations has
been the encapsulation of more than one drug within the
bi-layered structure (Van Rijt et al., 2014). Halwani et al.
(2008) in 2008 tested the antimicrobial efficacy of a liposomal
gentamicin formulation with Gallium metal (Lipo-Ga-GEN).
Results indicated an improved efficacy of this multidrug
formulation with respect to gentamicin alone in eradicating
antibiotic-resistant PA.

As reported previously in this review, cationic liposomes
are the most widely investigated systems to deliver DNA

intracellularly. Manunta et al. (2017) developed a self-assembling
nano-complex constituted of a DOTMA:DOPE liposome, an
epithelial targeting peptide and siRNA (small interfering RNA,
which represents an attractive approach for the treatment of
several pulmonary diseases characterized by an over-expression
of genes) against the α-subunit of epithelial sodium channel
(ENaC), thus modulating sodium hyperabsorption and helping
to restore the mucus hydration and the airway clearance. The
authors showed the promising chance to use this approach as
co-adjuvant therapy for CF.

Tagalakis et al. (2018) developed siRNA nanocomplexes that
could mediate silencing of airway epithelial sodium channel
(ENaC) with functional correction of epithelial ion transport.
Receptor-targeted nanocomplexes (RTNs) are made of cationic
liposomes and targeting peptide mixed with siRNA. In this study
it was observed that NPs mediated delivery of siRNA offered an
effective delivery by correcting mucociliary defects in human CF
cells in vivo. A phase IIb clinical trials testing the efficacy of a
non-viral gene therapy for CF has been carried out by Alton et al.
(2015). In this study, the author complexed the plasmid DNA
pGM169 with GL67A liposome and administered the complex
to CF patients once a month for 1 year through a nebulizer.
The results showed a statistically significant increase in FEV1,
suggesting lung function stabilization and demonstrating the
good potential of the pGM169/GL67A formulation as a safe,
non-viral strategy for CF gene therapy (Trial ID: NCT00789867).
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The main issues about liposomes as drug delivery for the
treatment of pulmonary chronic diseases, such as CF, arise
from the need to develop inhalable formulations which have
to be delivered through nebulizers (d’Angelo et al., 2014). In
fact, the nebulization process may affect liposomes stability and
causes their aggregation. For this aim, several strategies are being
investigated, such as lyophilisation (Chen et al., 2010), spray
drying (Willis et al., 2012) and supercritical fluid technology
(Misra et al., 2009), in order to stabilize liposomes and possibly
achieve DPI liposomal formulations; some of these have shown
promising potentials for pulmonary drug administration, but are
still in an early development stage.

Solid Lipid Nanoparticles
Solid lipid nanoparticles (SLNs) are lipophilic particulates (Yang
et al., 2008) which have been studied as drug delivery systems
since 1990s. In contrast to liposomes, they don’t have a bi-layered
structure, but are made of lipids which form a crystalline matrix,
solid at room and body temperature, with mean diameters
ranging from 40 to 1,000 nm (Weber et al., 2014).The most used
solid lipids are fatty acids, triglycerides, steroids, phospholipids
and waxes (Zhang et al., 2010; Paranjpe and Müller-Goymann,
2014). The most remarkable advantages of SLN are physical
stability and low cytotoxicity, along with the possibility of easy,
solvent free scaling-up processes (Mehnert and Mäder, 2012;
Weber et al., 2014). However, their main limitation is represented
by a low drug loading capacity, which is caused by an increased
rigidity of the matrix during the storage (Müller et al., 2000).

The second generation of lipid nanoparticles, called lipid
nanocarriers (NLC), consists of a solid lipid matrix made of
more than one component, reducing NLC rigidity and allowing
a higher drug loading. Even though these systems have been
extensively studied for oral (Pinto and Müller, 1999; Müller
et al., 2006), dermal (Wissing and Müller, 2001; Müller et al.,
2002; Pardeike et al., 2009), parenteral (Joshi and Müller, 2009),
and ocular (Araújo et al., 2010) administrations, pulmonary
applications are still in early development. Various drugs have
been encapsulated within SLNs for the treatment of CF and other
pulmonary diseases, such as budesonide (Zhang et al., 2011) and
ciprofloxacin (Jain and Banerjee, 2008). Amikacin loaded SLNs
were developed by Varshosaz et al. (2010, 2013) and Ghaffari et al.
(2011). After optimizing the particles morphology and size, they
compared the efficacy of amikacin loaded SLNs with respect to
the free drug. The results of these studies showed an increased
efficacy of the loaded drug, which could be administered in lower
doses (or longer intervals) when encapsulated in SLNs.

In 2018, Robinson et al. (2018) developed lipid-based NPs
(LNPs) for packaging and delivery of chemically modified
CFTR mRNA (cmCFTR) to restore chloride secretion. They
demonstrated that cmRNA delivered by LNPs is effectively
translated to a protein product that successfully reach cells
membrane. Hence, LNP-cmRNA, whose mechanism of action
(i.e., increase of CFTR channel opening on apical cell membrane)
and efficacy are comparable with those observed for ivacaftor,
represent a promising platform for the correction of CF. Finally,
although studies on SLNs and NLCs as pulmonary carriers

are in the first stages of research, they have shown good
therapeutic potential.

Dendrimers
Dendrimers are highly ordered, branched macromolecules
that possess a tree-like architecture. Three regions can be
distinguished in their structure: a core, several dendritic branches
(called generations) and functional end groups located in the
outer layer of the branches (Menjoge et al., 2010; Zhang
et al., 2010; Mehta et al., 2019). This peculiar structure, which
can be achieved either with divergent or convergent synthetic
approaches, makes dendrimers suitable to a wide range of
chemical modifications. Moreover, their highly branched nature
provides high surface area to size ratio, which can be used
to incorporate different chemical species within the structure
in a host-guest approach. The first family of polyamidoamine
dendrimers (PAMAM) were synthesized by Tomalia et al. (1985)
and PAMAMs are now one of the most studied and used
dendrimers. Since then, other types of dendrimers have been
synthesized and studied for biomedical applications, such as
polyetherhydroxylamine (PEHAM), polypropylenimine (PPI),
and polyether dendrimers. Due to their unique physicochemical,
biological andmechanical properties, these molecules have raised
interest in the field of nanomedicine as possible nanoplatforms
for antimicrobial and gene delivery. Drugs conjugated to
dendrimers can be administered through different routes, such as
oral, injection, ocular, nasal, and pulmonary ones. Compared to
other nanocarriers commonly used in nanomedicine, dendrimers
show some advantages. In fact, by tuning their structure, for
example, it is possible to improve the drug functionality thanks to
the multivalency effect. Moreover, from a pharmacological point
of view, the high monodispersity of dendrimers allows a better
uptake efficacy and bioavailability of drugs encapsulated within
the structure, with an easier penetration across biological barriers
by transcytosis (Menjoge et al., 2010; Mehta et al., 2019).

The main targets of pulmonary therapies using dendrimers
as drug delivery systems are lung cancer, chronic obstructive
pulmonary disease (COPD), asthma, tuberculosis. bronchiectasis
and pneumonia (Rolland et al., 2009). Dendritic formulations
to be administered via inhalation have been developed both
as inhalable suspensions and dry powders. In 2017, Agnoletti
et al. (2017) developed dendrimer-siRNA nanocomplexes for
gene therapy, which is an attractive approach for the treatment of
several pulmonary diseases characterized by an over-expression
of genes. The nanocomplexes developed showed an efficient
cellular uptake and a good gene silencing capability compared
to other types of carriers. Brockman et al. (2017) evaluated
a strategy to improve the bioavailability and targeted delivery
of cysteamine, a FDA approved drug with anti-oxidant, anti-
biofilm and mucolytic properties. They developed a PAMAM
dendrimer whose terminal groups were modified to obtain a
cysteamine-like structure (PAMAM-DENCYS) and demonstrated
its efficacy in reducing PA infection and growth, along with its
ability to rescue the misfolded F508del-CFTR from aggresome-
bodies by inducing its trafficking to the plasmamembrane. CFTR
modulators were also embedded within dendritic structures,
as reported in the work by Faraj et al., who standardized the
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therapeutic efficacy of the novel dendrimer-based autophagy-
inducing agent, cysteamine. In their study, they synthesized
and tested a novel nano-molecule consisting of cysteamine-
core PAMAM dendrimer (G4 90/10 PAMAM DEN[CYS]) and
demonstrated its efficacy in the treatment of patients with
CF, since the nanostructure preserve cysteamine activity while
increasing its bioavailability compared to other means of
administration (Faraj et al., 2019). Several strategies have been
developed to achieve a more effective cellular uptake of drugs-
loaded dendrimers, avoiding their inactivation and elimination
by immune response and macrophages activity. Among these,
the coating with hydrophilic and biocompatible polymers is
the most common strategy. PEG (polyethylene glycol) is the
most frequently used polymer to coat and protect a variety of
nanocarriers due to its ability to offer stealth properties to them
and to drug molecules (Suk et al., 2009, 2011; Kaminskas et al.,
2014; Taghavi Pourianazar et al., 2014; Zhong et al., 2016).

Polymeric Nanoparticles
With the rapid development of nanotechnology in the field of
nanomedicine, polymeric NPs have gained much importance,
as they represent a major class of nanotherapeutics. Polymeric
nanocarriers are widely used as drug delivery systems and
administered via different routes, including inhalation
(Kuzmov and Minko, 2015). The most relevant features of
polymeric systems are their ability to perform a prolonged
and controlled drug release, stabilize the drugs encapsulated
and promote cellular uptake of pharmaceuticals. Moreover,
polymeric NPs show great versatility: their morphological
and surface properties, such as size, shape and zeta potential
can be easily tuned by choosing different polymers length
and kinds of surfactants and solvents for the synthesis.
Moreover, their properties can be tailored by adding specific
functional groups, drug moieties and target ligands on their
surface. Among synthetic polymers, poly-lactic acid (PLA)
and poly-lactic-co-glycolic acid (PLGA), both FDA approved,
are the most widely used (Cryan, 2005) due to their great
biocompatibility and biodegradability. In particular, PLGA offers
the possibility to tailor its biodegradation rate by modifying its
compositional ratio.

Polymeric NPs have been largely used to avoid side effects
and prevent the early degradation of drug molecules, and also to
improve the pharmacokinetic of drugs with scarce bioavailability.
As an example, curcumin has been found to be a non-toxic, low-
affinity sarcoendoplasmic reticulum calcium ATPase (SERCA)
pump inhibitor which allows F508del CFTR to escape from the
endoplasmic reticulum and reach cell membrane (Egan et al.,
2004; Zeitlin, 2004). However, previous studies showed a low
efficacy of this compound due to its poor absorption and rapid
metabolism. In their research, Cartiera et al. (2010) encapsulated
curcumin in PLGA NPs in order to increase its absorption
and improve its bioavailability. The in vivo tests showed that
curcumin loaded NPs enhanced the effects of the compound in
CF mice compared to free drug.

Vij et al. (2010) developed PEGylated PLGA NPs
encapsulating PS-341, a FDA approved proteasome inhibitor,
which has been firstly employed for cancer therapy, even though

recent studies have proved the importance of this class of drugs
in pharmaco-gene therapy of CF. The authors of the study
obtained a controlled and sustained delivery of drug, increasing
its efficacy against PA infections.

Ciprofloxacin was successfully encapsulated in PLGA NPs
by Günday Türeli et al. (2017), who evaluated the efficacy
of the nanocomplex against PA strains, along with its
ability to cross the mucus. Embedding the drug within
a polymeric matrix allowed a high percentage of loading,
while the nanometric size and surface properties permitted a
good penetration of the bioactive payload within the mucus.
Additionally, an enhanced antimicrobial activity of nano-
formulated ciprofloxacin at lower drug doses was reported,
indicating its promising potential as drug delivery system for
CF antimicrobial treatment. Similar results were reported by
Ernst et al. (2018) who encapsulated tobramycin within PEG-
coated PLGA nano (≈230 nm) and micro (≈900 nm) particles
and observed an enhance antimicrobial activity, along with a
good penetration within mucus and bacterial biofilm in dynamic
physiological conditions.

As reported above in this section, NPs have been tested
as carriers not only for antimicrobial treatments but also
for gene therapy. Haque et al. (2018) studied the efficacy
of cmRNAhCFTR encapsulated in chitosan-coated PLGA NP’s
delivered to the lungs of a CFTR deficient mice by intra-venous
and intratracheal administration. In this study, they observed a
reduced chloride secretion and a general restore of critical lung
function parameters, including a noticeable increase in FEV1,
suggesting that NP-cmRNAhCFTR could be promising therapeutic
option for CF patients. Another strategy used to overcome the
issues of storing and to improve dispersion and deep lung
deposition of NPs consists in the use of NEMs formulations
(Muralidharan et al., 2015). In these preparations, NPs can be:
(i) encapsulated in polymer-based carriers, (ii) loaded on the
polymer surface or (iii) dispersed in a polymer matrix. In all these
cases, the polymeric part dissolves upon exposure to the lung
environment and releases NPs (Sung et al., 2007).

An attractive new class of non-viral gene delivery vectors is
represented by poloxamine-based block copolymers (Richard-
Fiardo et al., 2015). Poloxamines are x-shaped block copolymers
constituted of poly(ethylen oxide)/poly(propylen oxide)
(PEO/PPO) blocks bonded to a central ethylenediamine moiety.
Poloxamines are commercially available in a wide range of
PEO/PPO ratios and molecular weights under the tradename
Tetronic R©. Their peculiar structure confers several features,
such as temperature and pH sensitiveness and ease of core
modification. Due to their hydrophobic core, these nanocarriers
are used to solubilize and stabilize poorly water-soluble drugs
(Alvarez-Lorenzo et al., 2010). Despite their potential as non-
viral vectors for gene therapy, poloxamines alone are not able
to overcome some barriers posed by the in vitro transfection,
while in vivo they exhibit a lower efficiency than viral vectors.
Guan et al. (2019) developed a platform of synthetic peptides
able to self-assemble to poloxamines and nucleic acids to form
compacted NPs. The author demonstrated that the use of these
NPs led to the enhancement of both mRNA and plasmid DNA
expression both in vitro and in the lungs of CF mice, without
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showing any toxicity, thus providing a new strategy for the
development of non-viral gene delivery.

CONCLUSIONS AND FUTURE REMARKS

Nanomedicine represents an extraordinary opportunity for the
improvement of current therapies and for the development
of innovative treatment options for CF previously considered
hard or impossible to treat. The huge amount of research on
NPs development as nano-carriers for gene and drug delivery
directly to the lungs by inhalation has the opportunity to strongly
modify symptomatic treatments for CF patients, as well as those
based on CFTR modulators and gene therapies. Due to the
peculiar environment in which the therapies have to operate,
characterized by several biological barriers (pulmonary tract,
mucus, epithelia, bacterial biofilm), the use of nanotechnologies
to improve and enhance drug delivery or gene therapies seems
to be an extremely promising way to be pursued. However, the
road to a definitive realization is still long, although several nano-
systems were already tested with successful results with FDA-
approved drugs. A special attention should be paid in the use
of biocompatible and biodegradable inhalable NPs, that must be
well-tolerated in vivo as in the case of other disease treatment
(Di Mauro et al., 2016; Miragoli et al., 2018). In vitro/in vivo
studies represent a critical step before the selection of the best
formulations to candidate for use in humans. Therefore, there
is an impelling need of in vitro/in vivo CF models to acquire
knowledge on the safety of the nano-carriers in the lungs. Not
only traditional tests, but also newer models should be used
to shed light on the possible mechanisms of NPs toxicity. In
particular, the shortage of chronic toxicological data on NPs is
one of the big gaps to be closed. Once these challenges will be
addressed, sustained-release nanocarriers would represent a real
benefit for both pharmaceutical companies working to develop
novel inhaled products and patients suffering from CF.

The studies on genetic therapies as well as those based on
CTFR modulators are already at an advanced stage, but not
yet optimal and in some case with results not yet inclusive
for a large part of CF patients. Therefore, it should also be
considered that symptomatic therapies have not finished their
function, indeed they need to be open to new solutions, because
we believe that, unfortunately for a long time to come, they will
be indispensable for many patients. In this domain, bacterial and
fungal infections can be fought by the use of appropriate delivery
of antibiotics mediated by NPs while inflammations, due to the
peculiar physiological state of the patients, can be circumvented
with the same approach by the use of anti-inflammatory drugs.

The genetic defects of CFTR channel may be restored by using
highly specific drugs (i.e., modulators) targeting the defective
channel protein restore, at least in part CFTR functions. In
this latter case, patients treated with these drugs experienced
severe systemic side effects and to boost their efficacy the drugs
concentration and their permanence at the lungs, the major site
of disease, should be improved. The pulmonary administration
of CFTR modulators based on mucus penetrating NPs could
be an effective strategy, potentially increasing higher local drug

concentrations and minimizing side effects when compared to
the oral route of administration (Porsio et al., 2018).

Together with these strategies, various different advanced
gene therapies seem to be the most promising to eradicate CF
from patients in a definitive way, especially if these therapies will
be enhanced by the use of nanotechnology in an appropriate way.
Overall, genetic editing tools such as CRISPR/Cas9 look more
convincing in producing an effective and definitive resolution
of CF disease. The major problem to be addressed, is the
possibility that Cas9 recognizes sequences different from the
target one and therefore introduces unpredicted changes. In
fact, the RNA fragment that guides Cas9 admits some incorrect
pairing, making Cas9 able to cut even regions of DNA other than
the target. This issue can currently be very limited by identifying
very selective RNA guide and using alternative or modified
Cas9 that allow greater specificity, such as the one developed
by Casini et al. (2018). The same authors and collaborators
(Maule et al., 2019) developed a genome editing strategy to
repair 3272-26A>G and 3849+10kbC>T CFTRmutations. Both
mutations alter the correct splicing of the CFTR gene leading
to a premature termination codon and consequent expression
of a truncated non-functional CFTR protein. In this study, the
AsCas12a nuclease (from Acidaminococcus sp. BV3L6) and a
single CRISPR RNA were used for gene correction in intestinal
organoids and airway epithelial cells derived from CF patients
carrying the 3272–26A>G or 3849+10kbC>T mutations. The
results obtained shown highly precise genetic repair with a
complete absence of detectable off-targets. Even more recently,
Ricciardi et al. (2018) applied gene editing in the fetuses of
pregnant mice to correct the most common F508del mutation in
the CFTR gene. They used donor DNA and synthetic molecules
that mimic DNA, called peptide nucleic acids, delivered by
biodegradable polymeric NPs to target the CFTR gene. Cell’s own
DNA repair pathways were activated by the triple helix formed by
the NPs linked to the target gene in order to fix the mutation in
fetal cells. The lungs of mice born with the repaired mutations,
appeared normal without obvious signs of inflammation. The
team will continue to study mice organ health. Despite clinical
trials are years away, Ricciardi theorized that the therapy in
humans would be safely deliver at around 18 weeks of gestation.

We must obviously be extremely careful, considering the
enormous quantity of preclinical studies in animal models
to be carried out before a possible application in a human
environment, but it is inevitable to think that in utero DNA
editing could constitute the new frontier of medicine and project
us far ahead in the treatment of diseases like CF. Today, thanks
to amniocentesis and non-invasive prenatal tests performed on
blood samples, we can identify serious and dangerous genetic
diseases in great advance. Tomorrow, thanks to genetic editing
protocols, we hope to be able to defeat them definitely.
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